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We view them [derivatives] as time bombs both for the parties that deal in
them and the economic system . . . In our view . . . derivatives are financial
weapons of mass destruction, carrying dangers that, while now latent, are
potentially lethal.

– Warren Buffett, Berkshire Hathaway Annual Report, 2002

Institutions are herding animals. We watch the same indicators and
listen to the same prognostications. Like lemmings, we tend to
move in the same direction at the same time. And that, naturally,
exacerbates price movements.

– WSJ, 17 Oct 1989

This is from a trader.

• Psychological explanations of herding.

• Social cognition explanations of herding.

• Michaely’s fund-manager incentives paper describes a rational source of
herding.

• Information cascades.

It doesn’t take herding to get volatility.



The Representative Consumer
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The Representative Consumer

1. The Lucas critique

2. The representative consumer as an equilibrium construct

3. Welfare problems

4. Behavioral representative consumers



An Important Question
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An Important Question

Why do GE?

• GE is not a theory of markets, it is an outcome function.

• Its utility as such is an empirical question.

• Alan’s research agenda is interesting.

– Model specific market processes
– See if GE does well
– If not, what does better
– Is there a small class of outcome functions which span most

markets (if not, we’re sunk).



Evolution and Economics I

“I know you miss the Wainrights, Bobby,
but they were weak and stupid

people—and that’s why we have wolves
and other large predators.”

Given the uncertainty of the real

world, the many actual and

virtual traders will have many,

perhaps equally many,

forecasts. . . If any group of

traders was consistently better

than average in forecasting

stock prices, they would

accumulate wealth and give

their forecasts greater and

greater weight. In this process,

they would bring the present

price closer to the true value.

R. Cootner, 1967
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Given the uncertainty of the real

world, the many actual and

virtual traders will have many,

perhaps equally many,

forecasts. . . If any group of

traders was consistently better

than average in forecasting

stock prices, they would

accumulate wealth and give

their forecasts greater and

greater weight. In this process,

they would bring the present

price closer to the true value.

R. Cootner, 1967

The classic ’market efficiency through selection’ argument. It gives an
evolutionary justification for rational expectations. Also Fama (65):

. . . dependency in the noise generating process would tend to
produce ‘bubbles’ in the price series. . . If there are many
sophisticated traders in the market, however, they will be able to
recognize situations where the price of a common stock is beginning
to run up above its intrinsic value. If there are enough of these
sophisticated traders, they may trend to prevent these ‘bubbles’
from ever occurring.

And how do we tell who is sophisticated?

A superior analyst is one who gains over many periods of time are
consistently greater than those of the market.

Note:

• Chicago circularity.

• Collapse to homogeneity. Correct pricing comes from uniformity of
beliefs, which is enforced by the market. Is this plausible?



Competitive Exchange Economies

Date-event tree

Single consumption good at
each node

Arrow securities at each node

The supply of each security is 0.
Any security purchased by trader i

must be balanced against security
sales by other traders j .

TH

HTHH TH TTTT

...
...
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Competitive Exchange Economies

Date-event tree

Single consumption good at
each node

Arrow securities at each node

The supply of each security is 0.
Any security purchased by trader i

must be balanced against security
sales by other traders j .

TH

HTHH TH TTTT

...
...

Our economies are built on the usual date-event tree, described on this slide.

At each node, say H, there is a single consumer good, and two Arrow
securities, HH and HT .

Assets are in 0 net supply. If you’re not used to this, think insurance, or horse
races.
If we had firms, this models stock markets as follows. Ownership of the profit
stream is endowed, and these streams can be traded. Arrow securities in this
case measure net trades.



Competitive Exchange Economy Definitions

c A consumption plan {ct}
∞

t=1, ct : σt 7→ R++.

e i Trader i ’s endowment. . . .

ρi Trader i ’s beliefs on Σ.

βi Trader i ’s discount factor.

ui : R+ → R Trader i ’s payoff to consumption at any
partial history.

Ui(c) = E
ρi

{ ∞
∑

t=0

βt
i ui

(

ct(σ
t)

)

}
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Competitive Exchange Economy Definitions

c A consumption plan {ct}
∞

t=1, ct : σt 7→ R++.

e i Trader i ’s endowment. . . .

ρi Trader i ’s beliefs on Σ.

βi Trader i ’s discount factor.

ui : R+ → R Trader i ’s payoff to consumption at any
partial history.

Ui(c) = E
ρi

{ ∞
∑

t=0

βt
i ui

(

ct(σ
t)

)

}

A consumption plan is any map from the nodes of the date event tree to
positive amounts of the consumption good. Thus e i is the consumption plan

representing trader is endowment. Notice that all components of all plans are
(by definition) measurable with respect to the right things.

Preferences here are the usual intertemporally additively separable type. Each
such preference order is characterized by a payoff function ui , a discount factor

βi , and beliefs ρi . The selection question is, which of these factors is important
for selection, and how do they trade off.

Explain how to move resources from HH to TT .

To describe a CE, there are prices at each state. Traders know the prices that
will be realized at each state (prices are part of the state description) but
disagree on probabilities with which states are realized. Consumers have a
budget constraint. Demand is derived from EU maximization. Prices (the
states which can be realized) are those in which markets clear — net demand
equals 0.



Assumptions

A.1. The payoff functions ui are C 1, strictly concave, strictly
monotonic, and satisfy an Inada condition at 0.

A.2. Each trader has a strictly positive endowment at every partial
history, and the aggregate endowment is uniformly bounded, below
away from zero and from above.

A.3. At every partial history, each trader i believes all truly
possible states to be possible: ρi ≫ 0
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Assumptions

A.1. The payoff functions ui are C 1, strictly concave, strictly
monotonic, and satisfy an Inada condition at 0.

A.2. Each trader has a strictly positive endowment at every partial
history, and the aggregate endowment is uniformly bounded, below
away from zero and from above.

A.3. At every partial history, each trader i believes all truly
possible states to be possible: ρi ≫ 0

1. The Inada conditions are not necessary. Any trader who does not satisfy
the Inada condition will almost surely vanish in finite time. That is, the
probability that c i

t > 0 infinitely often is 0.

2. David’s assumptions from yesterday.



Competitive Equilibrium Existence

Def. A present value price system is p = {pt}
∞

t=0, pt : σt 7→ R++

such that, for each trader i , p · e i < ∞.

Def. A competitive equilibrium is a present value price system p∗

and a consumption plan c i∗ for each trader such that . . .

Def. qs
t (σ

t) is the price of the Arrow security that pays off in
partial history (σt , s) in terms of consumption at partial history σt .
That is, q is the current value price system.
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Competitive Equilibrium Existence

Def. A present value price system is p = {pt}
∞

t=0, pt : σt 7→ R++

such that, for each trader i , p · e i < ∞.

Def. A competitive equilibrium is a present value price system p∗

and a consumption plan c i∗ for each trader such that . . .

Def. qs
t (σ

t) is the price of the Arrow security that pays off in
partial history (σt , s) in terms of consumption at partial history σt .
That is, q is the current value price system.

As was already said, competitive paths exist and inherit all the properties of
optimal paths. We want to talk about the evolution of current value prices —
the value of a date t asset in units of date t consumption.

Existence comes from standard arguments.



Multiple Survivors

Limit log MU ratios:

log
u′

i

(

c i
t(σ

t)
)

u′

j

(

c
j
t (σ

t)
)

= t

(

log
βj

βi

−
∑

s

ρs

(

log
ρs

ρi
s

− log
ρs

ρj
s

)

)

−
∑

s

(

ns
t (σ) − tρs

)

(

log
ρs

ρi
s

− log
ρs

ρj
s

)
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Multiple Survivors

Limit log MU ratios:

log
u′

i

(

c i
t(σ

t)
)

u′

j

(

c
j
t (σ

t)
)

= t

(

log
βj
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−
∑

s

ρs
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log
ρs

ρi
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− log
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)

)
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t (σ) − tρs

)

(
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− log
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0
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Multiple Survivors

Suppose several traders have maximal fitness index.

log
u′

i

(

c i
t(σ

t)
)

u′

j

(

c
j
t (σ

t)
)

=
∑

s

(

ns
t (σ) − tρs

)

(

log ρj
s − log ρi

s

)

The RHS is a random walk. lim supRHS = +∞, so

lim inf ci
t = 0.

Are traders with maximal fitness disappearing, or is the market
volatile?

Blume and Easley Market Selection 12



Multiple Survivors

Suppose several traders have maximal fitness index.

log
u′

i

(

c i
t(σ

t)
)

u′

j

(

c
j
t (σ

t)
) =

∑

s

(

ns
t (σ) − tρs

)
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log ρj
s − log ρi

s

)

The RHS is a random walk. lim supRHS = +∞, so

lim inf ci
t = 0.

Are traders with maximal fitness disappearing, or is the market
volatile?

In this extended example, the log Marginal Utility ratio is a random walk. The
difference in fitness is the mean of the walk. Different maximal-fitness types
can exist because of a trade-off between accuracy of beliefs and discount
factors, or because beliefs can be equally wrong (in the entropy sense) in
different ways. With multiple maximal-fitness types, the random walks of log
MU ratios has 0 drift.

The existence of multiple maximal-fitness types is non-generic. Why study it?

• The phenomenon is robust in more complicated models.

• In some cases with a unique long-run survivor type, the drift of the
random walk can be sufficiently slow relative to the speed of the large
scale fluctuations in the walk that the asymptotic analysis of the walk is
useful. In any event, short run properties of the walk can be translated
into statements about short-run price behavior.



Multiple Survivors Definitions

For distribution θ on S ,

lo(θ) =
(

log θ(s)/θ(1)
)

s

s=2

A

B

C

D

E

Trader i is interior if lo(ρi ) is in the relative interior of
Conv{lo(ρj )}I

j=1. She is extremal if lo(ρi ) is an extreme point,

that is, not a non-negative linear combination of the other lo(ρj ),
and boundary otherwise.
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Multiple Survivors Definitions

For distribution θ on S ,

lo(θ) =
(

log θ(s)/θ(1)
)

s

s=2

A

B

C

D

E

Trader i is interior if lo(ρi ) is in the relative interior of
Conv{lo(ρj )}I

j=1. She is extremal if lo(ρi ) is an extreme point,

that is, not a non-negative linear combination of the other lo(ρj ),
and boundary otherwise.

The long-run behavior of the process with multiple survivors is determined by
these log-odds ratios. Of course it does not matter how the normalization is
done (which state).

Back one slide: The stochastic process (ns
t − tρs)

s

s=1 is an s− 1-dimensional
random walk, to which the linear functionals (log ρi

1, . . . , log ρi
s
) are applied.

After messing around, these terms turn out to be (ns
t − tρs)

s

s=2 · lo(ρ
i) plus a

constant. We want to compare this with (ns
t − tρs)

s

s=2 · lo(ρj) to see how big or
how small it is. This is simple geometry: Where in walk-space is
walkt ·

`

lo(ρi) − lo(ρj)
´

large? How often is that region of walk-space visited?



Multiple Survivors Who Survives?

If s ≤ 3,

All maximally fit traders

survive.

For extremal traders,

limsupt ci
t/e = 1.

If s > 3,

Interior traders vanish.

For extremal traders,

limsupt ci
t/e = 1.
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Multiple Survivors Who Survives?

If s ≤ 3,

All maximally fit traders

survive.

For extremal traders,

limsupt ci
t/e = 1.

If s > 3,

Interior traders vanish.

For extremal traders,

limsupt ci
t/e = 1.

Survival requires enormous patience and extreme beliefs.

PICS

The long run survivor properties and their price implications follow from the
recurrence properties of the walk, and these depend upon the state space.
Extreme traders have consumption shares which are infinitely often near 1, but
not boundary or interior traders. This is because whenever the random walk
benefits a boundary or interior trader, it benefits an extreme type even more.



Multiple Survivors Prices

Assume no social risk.

Correct asset Pricing:

p(σt) = ρ.

If multiple traders are maximally fit, then for all extremal

traders i and all ǫ > 0, |qt − ρi| < ǫ infinitely often. If s > 3

it is possible that for ǫ > 0 sufficiently small, the event

|qt − ρ| < ǫ is transient, even if some survivor has rational

expectations.
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Multiple Survivors Prices

Assume no social risk.

Correct asset Pricing:

p(σt) = ρ.

If multiple traders are maximally fit, then for all extremal

traders i and all ǫ > 0, |qt − ρi| < ǫ infinitely often. If s > 3

it is possible that for ǫ > 0 sufficiently small, the event

|qt − ρ| < ǫ is transient, even if some survivor has rational

expectations.

When trader i ’s consumption share is near 1, prices of the Arrow securities are
near his beliefs — the price of a bet on horse s is approximately the probability
that i assigns to s winning the race. So asset prices are volatile. They return
infinitely often to the region of any extreme traders’ beliefs.

The picture is of minute-by-minute electricity prices on an Ontario energy
market. I chose it to illustrate price volatility, but experts tell me that, in a
sense, this picture doesn’t do the job. Apparently, even at small time scales,
demand is fractal, so these prices reflect volatility in demand rather than some
internally driven (rather than exogenously driven) volatility.

The model we’ve built here is for illustrative purposes only. We do not claim
that real asset-market price volatility looks like the volatility that comes from a
random walk. Our claim is smaller; that, contrary to intuition, long-run price
volatility can occur even in the most conventional of equilibrium models, as
soon as one takes agent heterogeneity seriously.



Unbounded Endowments Assumptions

A.1. The payoff functions ui are C 1, strictly concave, strictly
monotonic, and satisfy an Inada condition at 0.

A.2. Each trader has a non-zero endowment.

A.3. At every partial history, each trader i believes all truly
possible states to be possible: ρi ≫ 0
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Unbounded Endowments Selection

log
u′

i

(

c i
t(σ

t)
)

u′

j

(

c
j
t (σ

t)
)

= t log
βj

βi

+

∑

s

ns
t (σ) log

ρj (s)

ρi (s)

Under some conditions, u′

i

(

c i
t(σ

t)
)

/u′

i

(

et(σ
t)

)

→ ∞ implies
c i
t(σ

t)/et(σ
t) → 0.
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A quick analysis of the B&E 06 type. The RHS is something to which laws of
large numbers applies.

Normalizing by the MU of the endowment controls the denominator.

This insight carries over into production models.



Unbounded Endowments Example I

CRRA Utility:

u(c) =
1

γ
cγ , γ < 1.

Stochastic Geometric Endowment Process:

e0 given.

et = r̃tet−1; r̃t iid on (0,∞), E r̃t = r .

fi = log βi − Ii (ρ, pi ) + γi r .
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Unbounded Endowments Example II

CARA Utility:

u(c) = −
1

γ
exp−γc , γ > 0.

Endowment process is a random walk with mean drift η > 0 and a
reflecting barrier at some δ > 0.

fi = log βi − Ii (ρ, pi ) + γiη.
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Firms

A.4. Production functions are concave and
C 1.

A.5. For all firms j and states s,
limx→∞ f

j
s (x) < 1.
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Firms

A.4. Production functions are concave and
C 1.

A.5. For all firms j and states s,
limx→∞ f

j
s (x) < 1.

• Endowments are only initial stocks of consumption goods.

• Private ownership economy

• One input, many outputs

• Price of shares: Value of production plan in consumption good at current
node.

• Normalize by maximal possible output.

• FOC are consumer FOC plus firm FOC. So selection analysis proceeds as
before.



Evolution and Economics I

Confidence in the maximization-of-

returns hypothesis is justified by evidence

of a very different character. . . . Let

the apparent immediate determinant

of business behavior be anything at

all. . . Whenever this determinant happens

to lead to behavior consistent with

rational and informed maximization of returns, the business will

prosper and acquire resources with which to expand; whenever it

does not, the business will tend to lose resources . . . The process of

“natural selection” thus helps to validate the hypothesis — or,

rather, given natural selection, acceptance of the hypothesis can be

based largely on the judgment that it summarizes appropriately the

conditions for survival.

Friedman, 1953
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Confidence in the maximization-of-

returns hypothesis is justified by evidence

of a very different character. . . . Let

the apparent immediate determinant

of business behavior be anything at

all. . . Whenever this determinant happens

to lead to behavior consistent with

rational and informed maximization of returns, the business will

prosper and acquire resources with which to expand; whenever it

does not, the business will tend to lose resources . . . The process of

“natural selection” thus helps to validate the hypothesis — or,

rather, given natural selection, acceptance of the hypothesis can be

based largely on the judgment that it summarizes appropriately the

conditions for survival.

Friedman, 1953

Here Friedman uses an evolutionary argument to justify the hypothesis of profit
maximization. We have worked on this.



Finis
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