

Excess Covariance and Dynamic Instability in a Multi-Asset Model

Mikhail Anufriev, Giulio Bottazzi, Matteo Marsili and Paolo Pin

Pisa - October 3^{rd} 2009

Paolo Pin pin3@unisi.it

http://www.econ-pol.unisi.it/paolopin/

Excess Covariance and Dynamic Instability in a Multi-Asset Model – p. 1/22

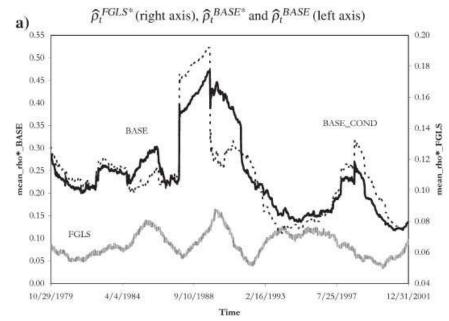
Outline

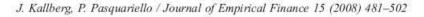
- 6 Motivation
- 6 Literature
 - excess covariance
 - previous modelling
- 6 The model
 - a multi–asset Walrasian market
 - generic heterogeneous agents
 - stationary equilibria
 - the mean-variance CRRA agents case
 - evolutionary stability of strategies
 - evolutionary pressure towards instability

Excess Covariance (1/2)

It is difficult to measure it ('excess' compared to what?)

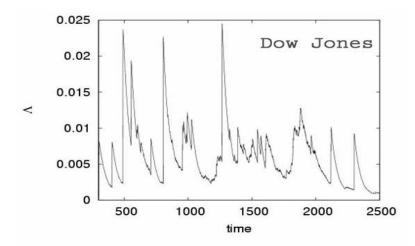
- Froot and Dabora (1999) and Brealey et al. (2008) analyze the same stock on different markets
- 6 Kallberg and Pasquariello (2008) measure excess idiosyncratic covariance of 82 industries traded at NYSE from 1976 to 2001





"Econophysics" approach: statistical analysis of covariance matrices in real stock markets

- one dominant eigenvalue (Bouchaud & Potters, 2003)
- 6 high fluctuation of this eigenvalue \rightarrow price instability



Other models

- 6 Why excess covariance?
 - Allen and Gale (2000): financial contagion
 - Kyle and Xiong (2001): wealth effects
 - Kodres and Pritsker (2002): rebalancing of risk–averse agents
 - Yuan (2005): financial constraints
 - Veldkamp (2006): cost of information and herding
 - A Raffaelli and Marsili (2006): a stochastic behavioral model
- Our model is related to
 - Heterogeneous Agent Models (a survey is Hommes, 2006)
 - Capital Asset Pricing Model CAPM (Sharpe, 1964)

Assets

- 6 One riskless asset supplied at price 1 (numeraire) with fixed return r_f
- 6 *I* assets with price p_t^i , $i \in I$, paying risky dividend d_t^i at time t
- 6 Vectors notation: $\vec{p_t} = (p_t^1, \dots, p_t^I)'$, $\vec{d_t} = (d_t^1, \dots, d_t^I)'$
- 6 $\vec{d_t}$ is the real "economy", $\vec{p_t}$ is the financial one
- 6 there is no (explicit) consumption

N heterogeneous (types of) strategies

For strategy $n \in N$:

- $b w_{t,n}$ wealth at time t
- 6 $x_{t,n}^i$ wealth fraction invested in risky assets $n \in N$
- 6 $1 \vec{x}'_{t,n} \vec{1} = 1 \sum_{i} x^{i}_{t,n}$ wealth fraction invested in riskless security
- 6 CRRA: $x_{t,n}^i$ independent on wealth $w_{t,n}$

- 6 full information & CRRA
- $\bullet \rightarrow$ aggregate wealth for agents with same strategies

$$\vec{x}_{t,n} \equiv f_n\left(\{\vec{p}_{\tau}, \vec{d}_{\tau}\} : \tau < t\right) \quad ,$$

- 6 \hat{X}_t is the $I \times N$ matrix of portfolios
- 6 Aggregate portfolio of the representative investor

$$\vec{x}_t \equiv \frac{\hat{X}_t \vec{w}_t}{\sum_n w_{t,n}}$$

Market mechanism

Time is discrete.

Walrasian price setting mechanism (quantity normalized to 1)

$$p_t^i = \sum_{n \in N} w_{t,n} x_{t,n}^i$$

Full information, but "no trade argument" does not apply. Inter-temporal budget constraint $\forall n \in N$

$$w_{t+1,n} = w_{t,n} \left((1 - \sum_{i} x_{t,n}^{i})(1 + r_{f}) + \sum_{i} \frac{x_{t,n}^{i}}{p_{t}^{i}} \left(d_{t+1}^{i} + p_{t+1}^{i} \right) \right)$$

Excess Covariance and Dynamic Instability in a Multi-Asset Model - p. 9/22

Notation

\hat{X}_t	$I \times N$	matrix of the investment shares at time t , $x_{t,n}^i$
$ec{x}_{t,n}$	$I \times 1$	vector of the investment shares of strategy n at time t , $x_{t,n}^i$
$ec{w}_t$	N imes 1	vector of the wealths at time t , $w_{t,n}$
$ec{arphi}_t$	N imes 1	vector of wealth shares $arphi_{t,n} = rac{w_{t,n}}{\sum_{m} w_{t,m}}$
$ec{x}_t$	$I \times 1$	vector of the "representative" portfolio at time $t, \vec{x}_t = \hat{X}_t \varphi_t$
$ec{p_t}$	$I \times 1$	vector of endogenous prices p_t^i
$ec{r_t}$	$I \times 1$	vector of ex–dividend returns $r_t^i = rac{p_{t+1}^i - p_t^i}{p_t^i} - r_f$
$ec{d_t}$	$I \times 1$	vector of random dividends d_t^i
$ec{\delta}_t$	$I \times 1$	vector of random dividend yields $\delta^i_t \equiv rac{d^i_t}{p^i_{t-1}}$

Every variable at time t can be expressed from variables at time t - 1 and $\vec{d_t}$.

The system is well defined under general assumption

"Ex-capital" gains: $z_{t-1,n} = \left((1+r_f)(1-\vec{x}_{t-1,n}\cdot\vec{1}) + \vec{x}_{t-1,n}\cdot\vec{\delta}_t \right) w_{t-1,n}$

Does not depend on the investment decisions, prices and wealths at time t.

Positions of different strategies:
$$\hat{Y}_t$$
: $y_{t,n}^i \equiv \frac{x_{t,n}^i w_{t,n}}{p_t^i} = \frac{x_{t,n}^i w_{t,n}}{\sum_m x_{t,m}^i w_{t,m}}$

Then we have evolution of total wealth and of wealth shares $\varphi_{t,n}$:

$$\vec{w}_t = \vec{z}_{t-1} + \hat{Y}_{t-1}\vec{p}_t$$

$$\vec{\varphi_t} = \frac{\left(\mathbb{I}_n - \hat{Y}_{t-1}\hat{X}_t\right)^{-1}\vec{z}_{t-1}}{\vec{1}'\left(\mathbb{I}_n - \hat{Y}_{t-1}\hat{X}_t\right)^{-1}\vec{z}_{t-1}} = \frac{\left(\mathbb{I}_n - \hat{Y}_{t-1}\hat{X}_t\right)^{-1}\vec{\varphi_{t-1}}}{\vec{1}'\left(\mathbb{I}_n - \hat{Y}_{t-1}\hat{X}_t\right)^{-1}\vec{\varphi_{t-1}}}$$

Dividend yields

- 6 Dividend yields: $\delta_t^i \equiv \frac{d_t^i}{p_{t-1}^i}$
- 6 $\vec{\delta}_t \simeq$ multi–normal distribution with mean $\vec{\delta}$ and variance covariance matrix \hat{D}
 - this ties real and financial economy
 - established assumption: Chiarella and He (2001) and Anufriev et alii (2006)
 - possible story:
 - a time step takes months
 - firms obtain credit from banks according to financial capitalization
 - the expected return of scale is constant
 - the assumption is strong
 - helps computations
 - seems unnecessary:

(finance \rightarrow real economy) \Rightarrow finance is more correlated than real economy

Stationary Equilibria

Complicated non-linear dynamics are possible. We focus on special solution.

Stationary equilibria:

- 1. Agents don't modify investment decision $x_{t,n}^i$ (because expectations are constant)
- 2. Agents wealth shares $\phi_{t,n} = w_{t,n}/w_t$ are (almost) constant
- 3. Trade happens because of (small) stochastic wealth fluctuations

Formally:

$$ec{x}_{t,n}
ightarrow ec{x}_n \;, \qquad \phi_{t,a}
ightarrow \phi_a \;, \qquad ec{x}_t
ightarrow ec{x} \;.$$

It is a self-consistent equilibrium of the model under:

- 6 full rationality
- every agent has a negligible impact
- wealth does not influence choices (CRRA)
- 6 coexistence of strategies is possible

Excess covariance

We are interested in first and second moments, mean

$$\vec{c}_t = E_t \left[\vec{r}_{t+1} + \vec{\delta}_{t+1} \right]$$

and variance-covariance matrix

$$\hat{C}_t = Cov \left(\vec{r}_{t+1} + \vec{\delta}_{t+1}, \vec{r}_{t+1} + \vec{\delta}_{t+1} \right) .$$

In equilibrium (all variables are constant)

$$\vec{c} = \frac{\vec{x}'\vec{\delta}}{1 - \vec{x}'\vec{1}}\vec{1} + \vec{\delta}$$

and

$$\hat{C} = \underbrace{\frac{\vec{x}'\hat{D}\vec{x}}{(1-\vec{x}'\vec{1})^2}}_{(1-\vec{x}'\vec{1})^2}\vec{1}\vec{1}' + \frac{\vec{1}\vec{x}'\hat{D} + \hat{D}\vec{x}\vec{1}'}{1-\vec{x}'\vec{1}} + \hat{D}$$

Excess covariance

Relation to Capital Asset Pricing Model (CAPM)

The ex-dividend return r_t^x of the portfolio \vec{x} is

$$r_t^x = \vec{x}' \vec{r_t} + r_f = r_f + \vec{x}' \vec{1} \frac{\vec{\delta_t}' \vec{x}}{1 - \vec{x}' \vec{1}}$$

the excess return (equity premium) of each asset i is

$$r_t^i = \frac{\vec{\delta_t}' \vec{x}}{1 - \vec{x}' \vec{1}} = \frac{1}{\vec{x}' \vec{1}} (r_t^x - r_f)$$

it is similar to CAPM: $E[r_t^i - r_f] = \beta^i E[r_t^x - r_f]$

it holds for all returns, not only for expected values (stronger than CAPM)

In CAPM:

$$\beta^i = \frac{\operatorname{Cov}(r_t^i, r_t^x)}{\operatorname{Var}(r_t^x)}$$

For us $\beta_i = \frac{1}{\vec{x}'\vec{1}}$ (for every asset)

Main example (1/3):

Mean-variance CRRA strategies

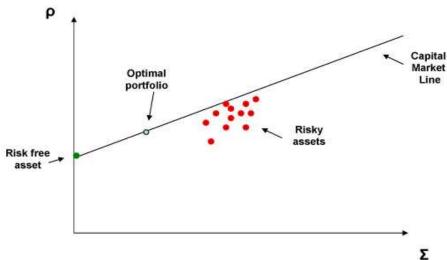
The agents are Constant Relative Risk Averse (CRRA) and choose a portfolio taking into account expected first and second moments

They compute mean vector $\vec{c}_t = E_t \left[\vec{r}_{t+1} + \vec{\delta}_{t+1} \right]$

and variance–covariance matrix $\hat{C}_t = \text{Cov}_t \left(\vec{r}_{t+1} + \vec{\delta}_{t+1}, \vec{r}_{t+1} + \vec{\delta}_{t+1} \right)$

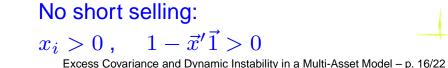
They choose the portfolio

 $\vec{x} = \frac{1}{\gamma} \hat{C}_t^{-1} \vec{c}_t$, where γ is a positive parameter of risk aversion.



Equilibrium (no more *t*-dependence):

 $\vec{x} = \frac{1}{\gamma + \vec{1}'\hat{D}^{-1}\vec{\delta}}\hat{D}^{-1}\vec{\delta}$



Main example (2/3): Analytical results in equilibrium

Action of investors \Rightarrow three main results:

- 1. The dynamics of log-prices of different assets do not behave as random walks, rather they are bounded one to the other, the difference $\log \frac{p_i}{p_j}$ stays finite and it does not diverge as \sqrt{t} as for correlated random walks.
- 2. The market develops a volatility of returns which is much higher than the volatility of dividend yields (by a factor N)
- 3. The market develops a market mode, i.e. an eigenvalue of the correlation matrix which is much larger than the others (Of the order of N)

Main example (3/3):

Dynamic under a learning process

Investors update first and second moments with a parameter μ

$$i) \quad \vec{x_t} = \frac{1}{\gamma} \hat{C}_{t-1}^{-1} \vec{c}_{t-1}$$

ii)
$$r_t^i = \frac{\vec{x}_{t-1}'\vec{\delta}_t x_t^i + (1+r_f)(1-\vec{x}_{t-1}'\vec{1})x_t^i}{(1-\vec{x}_t'\vec{1})x_{t-1}^i} - 1 - r_f$$

iii)
$$\vec{c_t} = (1-\mu)\vec{c_{t-1}} + \mu\left[\vec{r_{t-1}} + \vec{\delta_{t-1}}\right]$$

iv) $\hat{C}_t = (1-\mu)\hat{C}_{t-1} + \mu \text{Cov}(\vec{r}_{t-1} + \vec{\delta}_{t-1}, \vec{r}_{t-1} + \vec{\delta}_{t-1})$

Deterministic skeleton of the system is stable but fluctuations of $\vec{\delta}_t$ have tremendous effects as $\vec{x}'\vec{1} \rightarrow 1$ (from (ii))

Consider the \vec{x} vector of (constant) aggregate investments

 \vec{c} and $\vec{\delta} = E(\vec{\delta})$ are in the same plane generated by $\vec{1}$ and $\vec{\delta}$ (call $\vec{2}$ the orthogonal part of $\vec{\delta}$ with respect to $\vec{1}$)

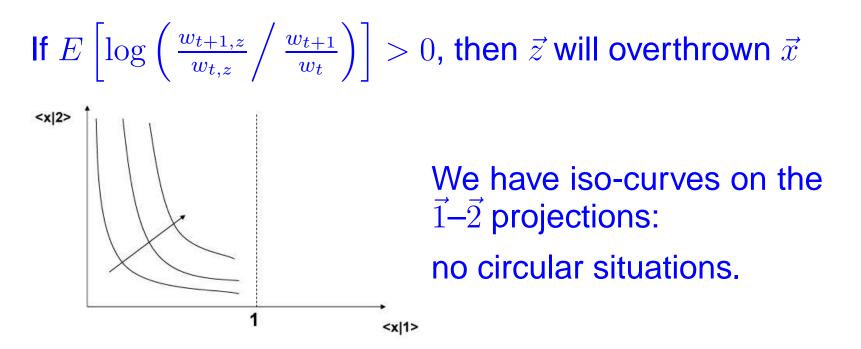
It means that any other dimension brings unrewarded risk

Any rational risk–averse agent n, if she has learnt $\vec{\delta}$ would not use a strategy \vec{x}_n outside this plane

Invading strategies

A population is in equilibrium with \vec{x} in the $\vec{1}$ - $\vec{2}$ plane

Suppose that a new population of agents, with negligible wealth, enters with a new strategy \vec{z} (also in the $\vec{1}$ - $\vec{2}$ plane)

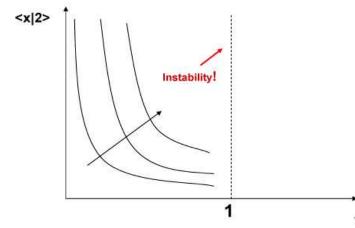


Evolutionary stability

A part of the population changes slightly from \vec{x} to $\vec{x} + \vec{\epsilon}$ (still in the $\vec{1} - \vec{2}$ plane)

We can compute the gradient of a variation that brings higher expected wealth growth

$$\frac{\partial E\left[\log\left(\frac{w_{t+1,\epsilon}}{w_{t,\epsilon}} \middle/ \frac{w_{t+1}}{w_t}\right)\right]}{\partial \vec{\epsilon}} = E\left[\frac{\vec{\delta}_{t+1} + r_{t+1}\vec{1}}{1 + r_f + r_{t+1} + \vec{\epsilon}'\vec{\delta}_{t+1} + r_{t+1}\vec{\epsilon}'\vec{1}}\right]$$
$$\simeq E\left[\frac{\vec{\delta}_{t+1} + r_{t+1}\vec{1}}{1 + r_f + r_{t+1}}\right]$$



If expected yields $\vec{\delta}$ are (as expected) all positive:

Evolutionary pressure brings towards instability

<x|1>

Main results

We have a multi-asset model

- 6 it allows for any set of heterogeneous strategies (aggregation)
- 6 the only source of noise is from dividend yields
- ⁶ under Stationary Equilibria it explicitly shows excess covariance
- 6 it has relation to CAPM
- 6 it is unstable as the risk–free investment $\rightarrow 0$
- evolutionary pressure pushes towards instability

Under mean-variance strategies

- 6 it explicitly shows a dominant eigenvalue
- 6 it has a unique stable equilibrium
- 6 there is no short–selling in equilibrium