Individual Evolutionary Learning in the double auction market with full or limited information

Mikhail Anufriev^a, Jasmina Arifovic^b, Valentyn Panchenko^c

^aCeNDEF, University of Amsterdam ^bSimon Fraser University ^cAustralian School of Business, University of New South Wales

Centro di Ricerca Matematica Ennio De Giorgi 02-03 October 2009

Set of questions

- What makes markets efficient?
 - Efficient (Walrasian) allocation
 - Efficient (Walrasian) price
- What is the role of agents behavior?
 - Fully rational behavior
 - Bounder rationality (learning)
 - Zero intelligence
- What is the role of market design?
 - Type of auction
 - ★ Call auction (CA)
 - ★ Continuous Double Auction (CDA)
 - Availability of information
 - Open book (past actions are observed)
 - Closed book (past actions are not observed)
- What agents learn?
- How behavior interacts with design (AP, JEDC 2009)?

Motivation

- Double auctions are popular mechanisms (secondary markets, stock exchanges)
- Double auctions are hardly tractable from game-theoretic perspective
- Yet in many experiments convergence to the equilibrium was observed (starting from Smith (1962))
- Call auction
 - reasonable strategy to bid/ask own valuations/costs
- Continuous double auction
 - not clear intuition about a strategy Friedman (JEBO, 1991) - Bayesian learning Gjerstad, Dickhaut (GEB, 1998) - boundedly rational surplus maximization

- 4 同 6 4 日 6 4 日 6

CA vs CDA

< 一型

Motivation: Existing Literature on CDA

- Gode and Sunder (1993, JPE, 1997, QJE)
 - CDA, ZI agents, budget constraints
 - Conclusion: CDA market mechanism alone leads to efficient allocation and (sometimes) price

Critique:

- Gjerstad and Shachat (2007)
 - Individual Rationality (budget constraints) is not a part of market mechanism
 - Other measures of convergence may lead to different conclusions
- LiCalzi and Pellizarri (2008)
 - Crucial role of *resampling* -assumption, i.e., after each transaction Gode and Sunder force agents to submit new bids/asks
 - No convergence without resampling
 - Only sophisticated learning as in (Gjerstad and Dickhaut, 1998) leads to efficient allocation and price

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Learning Models

- Major types:
 - belief based models learn past decisions of opponents and play best response
 - reinforcement learning models play strategy that behaved well in the past (Erev and Roth, 1998)
 - Hybrid EWA, Experience Weighted Attraction (Camerer and Ho, 1999)

Evidence of reinforcement learning from estimating experimental data. Caviet: possible heterogeneity creates bias in estimation (Wilcox, Econometrica, 2006)

Individual Evolutionary Learning (Arifovic and Ledyard, 2007)

- reinforcement learning with experimentation
- "belief based model", where best response on the past period is learned in evolutionary way
- adaptation of genetic algorithms to economic decision

Model

Market description

- Buyers
 - consume 1 unit of commodity, extracting given value V_b
- Sellers
 - endowed with 1 unit of commodity which costs C_s
- Buyers submit bids, sellers submit asks according to IEL
- Repeated trade over certain number of periods
- Fixed environment: costs and values do not change
- Mechanisms and Information

	Open Book	Closed Book
Call Auction		
Continuous Double Auction		

CDA - random order of arrival, bids/asks do not depend on current state of the book

Individual Evolutionary Learning

- Each agent has an own finite **pool of strategies** (ask/bid prices)
 - Initially strategies are randomly drawn (within bounds of costs/valuations)
 - The pool is evolving over time
- A strategy from a pool is used with some probability
 - Probabilities are based on counterfactual analysis: those which would give higher payoff are reinforced
- Pool is always evolving
 - Experimentation (mutation) with certain (small) probability a strategy in the pool is replaced with a new strategy
 - drawn around the old strategy according to some distribution
 - Replication (reinforcement) replace a strategy from the pool with another randomly selected strategy from the pool if the latter performs better than the former

<ロト <同ト < 国ト < 国ト

Individual Evolutionary Learning - Counterfactual analysis

The probability π_s to select a strategy depends on "foregone" payoff U_s

$$\pi_{s} = \frac{U_{s}}{\sum_{i} U_{i}}$$

Foregone payoff U_s for buyers as a function of *counterfactual* bid:

$$U_s = \begin{cases} V - P^* & ext{if trade occurs} \\ 0 & ext{otherwise} \end{cases}$$

 P^* - *counterfactual* price Closed book: trade occurs if *bid* > P^* Open book: can recalculate the whole book

Closed vs Open book

CA

- closed book P* is price of last round
- open book P* calculated changing own bids and holding strategies of others fixed

CDA

- closed book P* is average price of all transactions of last round
- open book P* calculated changing own bids and holding the strategies of others and the order of arrival fixed

Set-up

Parameter	Symbol	Value (Range)
Interval of valuation/costs	[0, η]	[0, 1.2]
Number of strategies in a pool	J	100
Number of buyers and sellers	B = S	5
Probability of experimentation	ho	0.03
Distribution of experimentation	$\mathcal{P}(0,\sigma^2)$	$N(0, 0.01^2)$
Individual Rationality constraint	IR	enforced

Benchmark: Walrasian market clearing

Mikhail Anufriev et al. (CeNDEF)

 ▶
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓
 ↓

Call Auction: Close vs Open book

 ▶
 ■
 ■
 >
 ○
 ○

 2-3/10/09
 13 / 24

CA, Individual Strategies Buyers: Close vs Open book

2-3/10/09 14 / 24

CA, Individual Strategies Sellers: Close vs Open book

2-3/10/09 15 / 24

Call Auction: Summary

- high allocative efficiency in the long-run
- longer convergence for **open book**
 - traders do not take into account that others are also learning
- correct price discovery
- much more price stability for open book
 - marginal traders play their "best responce" on others' strategies
- traders do not learn to submit their own evaluations

CDA: Close vs Open book

Mikhail Anufriev et al. (CeNDEF)

IEL in double auction

▶ < ≧ ▶ 差 ∽ Q C 2-3/10/09 17 / 24

CDA, Individual Strategies Buyers: Close vs Open book

CDA, Individual Strategies Sellers: Close vs Open book

2-3/10/09 19 / 24

CDA: Summary

• for the **closed book**:

- traders learn to submit their own evaluations
 - * traders have no influence on price
 - \star order of arrival is random \Rightarrow high price volatility
 - * traders avoid do not trade, and shift their orders towards valuations
- no price discovery, high volatility
- overtrading \Rightarrow lower allocative efficiency (than in CA)

• for the **open book**:

- inframarginal traders coordinate on the order submission
 - * traders have an influence on price
 - \star they try to extract a maximum surplus \Rightarrow buyers bid low, sellers ask high
 - traders avoid to lose an opportunity to trade and to trade at lower prices
- much more price stability, correct price discovery
- undertrading \Rightarrow lower allocative efficiency (than in CA)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Major Findings

- Open book design leads to more stable price over time in both CA and CDA
- Closed book design is more efficient in terms of surplus under CDA
- Learning
 - agents "coordinate" their bids/asks under open CDA
 - agents "learn" their costs/valuations under closed CDA

Robustness of results

- Experimentation (mutation)
 - Normal and uniform distributions give similar results
 - higher probability of experimentation leads to faster convergence
 - larger variance gives larger deviations in price and efficiency
 - the efficiency of closed auction is more stable under higher mutations
- Replication
 - very important for learning
 - ▶ at least 50% of strategies need follow replication
- Strategy pool need relatively large strategy pool
- Violation of individual rationality (budget constraints))
 - higher volatility of price, lesser efficiency longer converges (more effect on open book CDA)
 - agents are able to eliminate violating strategies

CDA: Zero intelligent vs open book

2-3/10/09 23 / 24

Conclusions and Extensions

- CA, CDA + other mechanisms, e.g. Market maker
- Information: open/closed, vary more
- Fixed environment to endogenous valuations (BH, AP)
- CDA: strategic timing
- Single item to multiple items
- Compare with other learning, e.g. EWA
- Closer look at data and estimation