Optimal Transport from Lebesgue to Poisson

We study couplings q^{\bullet} of the Lebesgue measure and the Poisson point process μ^{\bullet} – i.e. the set of measure-valued random variables $\omega \mapsto q^{\omega}$ s.t. for a.e. ω the measure q^{ω} on $\mathbb{R}^d \times \mathbb{R}^d$ is a coupling of \mathfrak{L}^d and μ^{ω} – and we ask for a minimizer of the asymptotic mean L^p -transportation costs for any given $p \in (0, \infty)$

$$\mathfrak{c}_{\infty} = \inf_{q^{\bullet} \in \mathfrak{Q}} \limsup_{n \to \infty} \frac{1}{\mathfrak{L}^{d}(B_{n})} \mathbb{E}\left[\int_{\mathbb{R}^{d} \times B_{n}} |x - y|^{p} dq^{\bullet}(x, y) \right]$$

with $B_n := [0, 2^n)^d \subset \mathbb{R}^d$. On of our main results states that the asymptotic mean L^p -transportation costs are finite if $d \geq 3$, or if d = 2 and p < 1, or if d = 1 and p < 1/2.

Moreover, in any of these cases we prove that there exist a unique translation invariant coupling which minimizes the asymptotic mean L^p -transportation costs. The unique optimal coupling q^{ω} can be represented as $(Id, T^{\omega})_* \mathfrak{L}^d$ for some map $T^{\omega} : \mathbb{R}^d \to \operatorname{supp}(\mu^{\omega}) \subset \mathbb{R}^d$.

In the case p = 2, actually, $T^{\omega} = \nabla \varphi^{\omega}$ for some convex function $\varphi^{\omega} : \mathbb{R}^d \to \mathbb{R}$ and the pre-image $U(\xi) = (T^{\omega})^{-1}(\{\xi\})$ of any $\xi \in \operatorname{supp}(\mu^{\omega})$ is a convex polytope of volume 1.

This is joint work with Martin Huesmann (University of Bonn).