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Plan

1 Introduce the∞-Laplacian. AMLE. Existence (easy).

2 Uniqueness (difficult).

3 Games (funny).

4 More games and mean value properties (demagogic).
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Introduction

Our main goal is to introduce and study the infinity Laplacian
that is the second order elliptic operator given by

∆∞u(x) :=
(

D2u ∇u
)
· ∇u(x) =

N∑
i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xixj

(x).



logo

Introduction

There are two excellent surveys concerning the infinity
Laplacian operator

G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the
theory of absolutely minimizing functions. Bull. Amer. Math.
Soc., 41 (2004), 439–505.

M.G. Crandall. A visit with the∞−Laplace equation.
CALCULUS OF VARIATIONS AND NONLINEAR PARTIAL
DIFFERENTIAL EQUATIONS Lecture Notes in Mathematics,
2008, Volume 1927/2008, 75-122.



logo

Introduction

Some history. It all began in 1967 with Gunnar Aronsson’s
paper

G. Aronsson. Extensions of functions satisfying Lipschitz
conditions. Ark. Mat. 6 (1967), 551–561.

Aronsson looked for optimal Lipschitz extensions of a given
datum. Recall that a function u : Ω 7→ R is Lipschitz if

Lip(u,Ω) = inf{L : |u(x)− u(y)| ≤ L|x − y |, ∀x , y ∈ Ω}

is finite.
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Introduction

The problem of minimizing the Lipschitz constant subject to a
Dirichlet condition was known to have a largest and a smallest
solution, given by explicit formulas, from the works of McShane
and Whitney
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Introduction

In fact,
u∗(x) = min

y∈∂Ω
F (y) + Lip(F , ∂Ω)|x − y |

and
u∗(x) = max

y∈∂Ω
F (y)− Lip(F , ∂Ω)|x − y |

are optimal Lipschitz extensions.
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The following question naturally arose: is it possible to find a
canonical Lipschitz constant extension of F into Ω that would
enjoy comparison and stability properties? Furthermore, could
this special extension be unique once the boundary data is
fixed? The point of view was that the problem was an extension
problem.

Aronsson’s clever proposal in this regard was to introduce the
class of absolutely minimizing functions for the Lipschitz
constant.
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During these research Aronsson was led to the now famous
pde ∆∞u = 0.

Jensen proves uniqueness of viscosity solutions and the validity
of a comparison principle using approximations to the equation
(and variants of it) by p−Laplacian type problems as p →∞.

R. Jensen, Uniqueness of Lipschitz extensions: minimizing the
sup norm of the gradient. Arch. Rational Mech. Anal. 123
(1993), 51–74.
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After existence and uniqueness, one wants to know about
regularity. One of the key ideas to prove regularity results was
the fact that solutions have the property of comparison with
cones.
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The best known explicit irregular absolutely minimizing function
(outside of the relatively regular solutions of eikonal equations)
was exhibited again by Aronsson, who showed in 1984, that

u(x , y) = x4/3 − y4/3

is absolutely minimizing in R2 for the Lipschitz constant and for
the L∞-norm of the gradient.
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One of the challenging open problems in the subject is
concerned with regularity: are∞-harmonic functions C1?

Note that the explicit solution u(x , y) = x4/3 − y4/3 prevents for
general C2 regularity results.

Savin (and also Evans-Savin) proved that they are C1 in the
case N = 2. Differentiability in any dimension was recently
proved by Evans and Smart.
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The second main goal of these notes is to introduce the reader
(expert or not) to some important techniques and results in the
theory of second order elliptic PDEs and their connections with
game theory.

The fundamental works of Doob, Hunt, Kakutani, Kolmogorov
and many others have shown the profound and powerful
connection between the classical linear potential theory and the
corresponding probability theory. The idea behind the classical
interplay is that harmonic functions and martingales share a
common origin in mean value properties. This approach turns
out to be useful in the nonlinear theory as well.
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Next, we will enter in what is the core of this course, the
approximation by means of values of games of solutions to
nonlinear problems like p−harmonic functions, that is, solutions
to the PDE,

div(|∇u|p−2∇u) = 0

including of course the case p =∞.
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Existence

As we mentioned in the introduction, the infinity Laplacian is
given by

∆∞u(x) :=
(

D2u ∇u
)
· ∇u(x) =

N∑
i,j=1

∂u
∂xi

∂u
∂xj

∂2u
∂xixj

(x).
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Passing to the limit as p →∞ in the equation ∆pu = 0.
Viscosity solutions

Now we present a way of obtaining existence of viscosity
solutions to  ∆∞u(x) = 0, x ∈ Ω,

u(x) = F (x), x ∈ ∂Ω,

taking the limit as p →∞ along subsequences of solutions up
to  ∆pup(x) = 0, x ∈ Ω,

u(x) = F (x), x ∈ ∂Ω.
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Existence

Let us state the definitions of a weak and a viscosity solution.

Definition (Weak)

A function u : Ω→ R is a weak solution in Ω if u ∈W 1,p(Ω),
verifies

−
∫

Ω
|∇u|p−2∇u∇ϕ = 0,

for every ϕ ∈ C∞0 (Ω) and

u = F on ∂Ω

in the sense of traces.
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Now, concerning viscosity solutions we have the following
definition.

In our case, we have to consider the following expression

F (x ,u, ξ,S) = |ξ|p−2trace(S) + (p − 2)|ξ|p−4〈Sξ, ξ〉.
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Definition

An upper semicontinuous function u : Ω→ R is a viscosity
subsolution in Ω if, whenever x̂ ∈ Ω and ϕ ∈ C2(Ω) are such
that u − ϕ has a strict local maximum at x̂ , then

F (x̂ , ϕ(x̂),∇ϕ(x̂),D2ϕ(x̂)) = ∆pϕ(x̂) ≥ 0.
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Definition

A lower semicontinuous function v : Ω→ R is a viscosity
supersolution in Ω if −v is a viscosity subsolution, that is,
whenever x̂ ∈ Ω and ϕ ∈ C2(Ω) are such that v − ϕ has a strict
local minimum at x̂ , then

F (x̂ , ϕ(x̂),∇ϕ(x̂),D2ϕ(x̂)) = ∆pϕ(x̂) ≤ 0.

Definition

Finally, a continuous function h : Ω→ R is a viscosity solution in
Ω if it is both a viscosity subsolution and a viscosity
supersolution.
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Lemma There exists a unique weak solution and it is
characterized as being a minimizer for the functional

Fp(u) =

∫
Ω

|∇u|p

p

in the set {u ∈W 1,p(Ω) : u = F on ∂Ω}.



logo

Existence

Proof The functional Fp is coercive and weakly semicontinuous,
hence the mimimum is attained. It is easy to check that this
mimimum is a weak solution in the sense of the first Definition.
Uniqueness comes from the strict convexity of the functional.
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Proposition A continuous weak solution is a viscosity solution.

Proof Let x0 ∈ Ω and a test function φ such that u(x̂) = φ(x̂)
and u − φ has a strict minimum at x̂ . We want to show that

F (x̂ , φ(x̂),∇φ(x̂),D2φ(x̂)) ≤ 0,

that is,

(p − 2)|Dφ|p−4∆∞φ(x̂) + |Dφ|p−2∆φ(x̂) ≤ 0.
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Assume that this is not the case, then there exists a radius
r > 0 such that

(p − 2)|Dφ|p−4∆∞φ(x) + |Dφ|p−2∆φ(x) > 0,

for every x ∈ B(x̂ , r). Set m = inf|x−x̂ |=r (u − φ)(x) and let
ψ(x) = φ(x) + m/2. This function ψ verifies ψ(x̂) > u(x̂) and

div(|Dψ|p−2Dψ) > 0.
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Multiplying by (ψ − u)+ extended by zero outside B(x̂ , r) we get

−
∫
{ψ>u}

|Dψ|p−2DψD(ψ − u) > 0.

Taking (ψ − u)+ as test function in the weak form of the
problem we get

−
∫
{ψ>u}

|Du|p−2DuD(ψ − u) = 0.
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Hence,

C(N,p)

∫
{ψ>u}

|Dψ − Du|p

≤
∫
{ψ>u}

〈|Dψ|p−2Dψ − |Du|p−2Du,D(ψ − u)〉

< 0,

a contradiction.

This proves that u is a viscosity supersolution. The proof of the
fact that u is a viscosity subsolution runs as above, we omit the
details.
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Now we prove that there is a subsequence of up that converges
uniformly.

Lemma There exists a subsequence of up and a function
u∞ ∈W 1,∞(Ω) such that

lim
pj→∞

upj (x) = u∞(x)

uniformly in Ω.
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Proof Using that up is a minimizer of the associated energy
functional we obtain, for any Lipschitz extension v of F ,∫

Ω
|Dup|p ≤

∫
Ω
|Dv |p ≤ (Lip(v ,Ω))p|Ω|.

Hence, we obtain that(∫
Ω
|Dup|p

)1/p

≤ Lip(v ,Ω)|Ω|1/p.
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Next, fix m, and take p > m. We have,(∫
Ω
|Dup|m

)1/m

≤ |Ω|
1
m−

1
p

(∫
Ω
|Dup|p

)1/p

≤ |Ω|
1
m−

1
p Lip(v ,Ω)|Ω|1/p,

where |Ω|
1
m−

1
p → |Ω|

1
m as p →∞.
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Hence, there exists a weak limit (and hence uniform since we
can assume that m > N) in W 1,m(Ω) that we will denote by u∞.
This weak limit has to verify(∫

Ω
|Du∞|m

)1/m

≤ |Ω|
1
m Lip(v ,Ω).

As the above inequality holds for every m, we get that
u∞ ∈W 1,∞(Ω) and moreover, ‖Du∞‖L∞(Ω) ≤ Lip(v ,Ω).
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Theorem A uniform limit u∞ of up as p →∞ is a viscosity
solution of  ∆∞u(x) = 0, x ∈ Ω,

u(x) = F (x), x ∈ ∂Ω.
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Proof From the uniform convergence it is clear that u∞ is
continuous and verifies u∞ = F on ∂Ω.

Next, to look for the equation that u∞ satisfies in the viscosity
sense, assume that u∞ − φ has a strict minimum at x0 ∈ Ω. We
have to check that

∆∞φ(x̂) ≤ 0.
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By the uniform convergence of upi to u∞ there are points xpi

such that upi − φ has a minimum at xpi with xpi → x̂ as pi →∞.
At those points we have

(pi − 2)|Dφ|pi−4∆∞φ(xpi ) + |Dφ|pi−2∆φ(xpi ) ≤ 0.

If Dϕ(x̂) = 0 then the equation is verified, hence we may
assume that Dϕ(x̂) 6= 0, and hence Dϕ(xpi ) 6= 0 for every pi
large enough.
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Therefore, we get

∆∞φ(xpi ) ≤
1

pi − 2
|Dφ|2∆φ(xpi ).

Then passing to the limit we obtain

∆∞φ(x̂) ≤ 0.

That is, u∞ is a viscosity supersolution.

The fact that it is a viscosity subsolution is analogous, using a
test function ψ such that u∞ − ψ has a strict maximum at x0.
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AMLE-Comparison with cones

L∞ minimization problems in the calculus of variations
Let us consider the functionals

G∞(u) = ‖Du‖L∞(Ω)

and
L(u) = Lip(u,Ω)

where Lip(u,Ω) stands for the Lipschitz constant of u in Ω, that
is,

Lip(u,Ω) = sup
x ,y∈Ω

|u(x)− u(y)|
|x − y |

.
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AMLE-Comparison with cones

Note that we can also write

Lip(u,Ω) = inf{L : |u(x)− u(y)| ≤ L|x − y |, ∀x , y ∈ Ω}.

Also note that one has

G∞(u) = Lip(u,Ω)

if Ω is convex, but equality does not hold in general.

Our goal will be to minimize these functionals.
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AMLE-Comparison with cones

First, to give an idea that this task is not easy in general, let us
present an example of nonuniqueness of the minimum.
Let us consider the optimal Lpschitz extension problem, that is,
given F defined on ∂Ω find a solution to

find u that minimizes Lip(u,Ω) among functions with u = F on ∂Ω.

Assume that F is Lipschitz (otherwise this problem does not
have a minimizer). Then we have

Lip(u,Ω) ≥ Lip(F , ∂Ω)

for every u that extends F .
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AMLE-Comparison with cones

Therefore, any Lipschitz extension u of F with
Lip(u,Ω) = Lip(F , ∂Ω) is a solution to our minimization problem.
Now, it is easy to construct such extensions, in fact, let

u∗(x) = min
y∈∂Ω

F (y) + Lip(F , ∂Ω)|x − y |

and
u∗(x) = max

y∈∂Ω
F (y)− Lip(F , ∂Ω)|x − y |.
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AMLE-Comparison with cones

Note that we have

u∗(x) ≤ u∗(x), ∀x ∈ Ω.

EX 1. Prove that u∗ and u∗ are solutions to our minimization
problem. Moreover, show that there are the maximal and the
minimal solution in the sense that any other solution u verifies

u∗(x) ≤ u(x) ≤ u∗(x), ∀x ∈ Ω.
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AMLE-Comparison with cones

From this property we have a clear criteria for uniqueness,
uniqueness for minimizers of our problem holds if and only if

u∗(x) = u∗(x).

There is no reason for these extremal solutions to coincide, and
it is rare that they do. The example below shows this, no matter
how nice Ω might be.



logo

AMLE-Comparison with cones

Let Ω = B(0,1) ⊂ R2 = {x ∈ R2 : |x | < 1} and let F : ∂Ω 7→ R
be such that −1 ≤ F ≤ 1 and the Lipschitz constant
L := Lip(F , ∂Ω) is large. Then, according to the definitions of u∗

and u∗, we have
u∗(0) > u∗(0)

if there exists a δ > 0 such that

F (z)− L|z|+ δ = F (z)− L + δ < F (z) + L + δ = F (z) + L|z|+ δ,

∀z ∈ ∂Ω.
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Since −1 ≤ F ≤ 1 this holds for L > 1 (taking 0 < δ < L− 1), in
fact, we have

F (z)− L + δ < 1− L + (L− 1) = 0 < δ ≤ F (z) + L + δ.

EX 2. Let Ω = (−1,0) ∪ (0,1) and let F (−1) = F (0) = 0,
F (1) = 1. Find u∗ and u∗.
Modify this example to show that even if Ω is bounded, then it is
not necessarily true that

max
Ω

u∗ ≤ max
∂Ω

F .

Moreover, show that F1 ≤ F2 does not necessarily imply that
u∗1 ≤ u∗2 (here ui is the maximal solution to the extension
problem associated with Fi ).
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While this sort of nonuniqueness only takes place if the
functional involved is not strictly convex, it is more significant
here that the previously mentioned functionals are ”not local”.
In fact, look at the local functional

G2(u) =

∫
Ω
|Du|2 dx .
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For this functional it holds that if u minimizes G2 among
functions that verify u = F on ∂Ω then u restricted to a subset
of Ω, D, minimizes the functional in D among functions that
coincide with u on ∂D. This is what we mean by ”local”. This
property does not hold for minimizers of G∞ of for minimizers of
Lip(u,Ω).
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This lack of locality can be corrected by a notion which is
directly build from locality. Given a general nonnegative
functional G(u,D) which makes sense for each open subset D
of the domain Ω, it is said that u : Ω 7→ R is absolutely
minimizing for G in Ω provided that

G(u,D) ≤ G(v ,D), for every v such that u|∂D = v |∂D.
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That is, u is also a minimizer for G in every subdomain D of Ω
taking boundary data u|∂D.

When we take G(u,Ω) to be Lip(u,Ω) we said that we are
dealing with an absolutely minimizing Lipschitz extension
(AMLE for short) of F = u|∂Ω in Ω.
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u is AMLE if and only if u has comparison with cones

Let us start by introducing what is a cone.

Definition

The function
C(x) = a|x − z|+ b

is called a cone with slope a and vertex z.
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We also need the definition of u enjoying comparison with
cones.

Definition

A continuous function u enjoys comparison with cones from
above in Ω iff for every a ∈ R, V ⊂⊂ Ω and z 6∈ V , it holds

u(x)− a|x − z| ≤ max
y∈∂V

u(y)− a|y − z|, x ∈ V .

A continuous function u has comparison with cones from below
iff −u has comparison with cones from above.
When both conditions hold we say that the continuous function
u has comparison with cones.
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Note that the condition to have comparison with cones from
above can be written as

u(x)− C(x) ≤ max
y∈∂V

u(y)− C(y), x ∈ V ,

for every cone C with vertex z 6∈ V . That is, the maximum of
u − C is attained on ∂V .
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Assume now that u is a continuous function that has
comparison with cones.
First, remark that comparison with cones from above can be
rewritten as follows: for every a, c ∈ R and z 6∈ V it holds

u(x) ≤ c + a|x − z|, for x ∈ Ω, if it holds for x ∈ ∂Ω.

Similarly comparison with cones from below can be written as,
for every a, c ∈ R and z 6∈ V it holds

u(x) ≥ c + a|x − z|, for x ∈ Ω, if it holds for x ∈ ∂Ω.
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Now, our aim is to show that, if u has comparison with cones
then, for any x ∈ V ,

Lip(u, ∂(V \ {x})) = Lip(u, ∂V ∪ {x}) = Lip(u, ∂V ). (1)

To prove this we have to show that when y ∈ ∂V ,

u(y)− Lip(u, ∂V )|x − y | ≤ u(x) ≤ u(y) + Lip(u, ∂V )|x − y |.

These inequalities hold since they hold for every x ∈ ∂V and,
from he fact that u has comparison with cones, they hold for
every x ∈ V .
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Now, let x , y ∈ V , using (1) twice we obtain that

Lip(u, ∂V ) = Lip(u, ∂(V \ {x})) = Lip(u, ∂(V \ {x , y})).

Since x , y ∈ ∂(V \ {x , y}) we get that

|u(x)− u(y)| ≤ Lip(u, ∂V )|x − y |,

and we conclude that u is AMLE in V .
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Now, let us prove that u has comparison with cones if u is
AMLE.

To this end let us observe that the Lipschitz constant of a cone
C(x) = a|x − z|+ b is given by

Lip(C,V ) = |a|

and moreover, if z 6∈ V we have

Lip(C, ∂V ) = |a|.
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Now, assume that z 6∈ V and let

W =

{
x ∈ V : u(x)− a|x − z| > max

w∈∂V
(u(w)− a|w − z|)

}
.

Our goal is to show that W is empty. If it is not empty, then it is
an open set, W ⊂ V , and

u(x) = a|x − z|+ max
w∈∂V

(u(w)− a|w − z|) := C(x)

for x ∈ ∂W .
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Therefore u = C on ∂W and since u is AMLE we have
Lip(u,W ) = Lip(C, ∂W ) = |a|.

Now, if x0 ∈W the ray of C that contain x0, i.e.,
t 7→ z + t(x0 − z), contains a segment in W that contains x0
and its endpoints are on ∂W .

Since t 7→ C(z + t(x0 − z)) = at |x0 − z| is linear on the
segment with slope a|x0 − z| (hence its Lipschitz constant is
|a||x0 − z|) while t 7→ u(z + t(x0 − z)) also has |a||x0 − z| as
Lipschitz constant on the segment and has the same boundary
values at the endpoints; hence both functions are the same.
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Therefore,

C(z + t(x0 − z)) = u(z + t(x0 − z))

on the segment. In particular, C(x0) = u(x0), a contradiction
with the fact that x0 ∈W .

This proves that u has comparison with cones.
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If u has comparison with cones then ∆∞u = 0

We know that when u has comparison with cones from above it
holds

u(x) ≤ u(y) + max
w∈∂Br (y)

(
u(w)− u(y)

r

)
|x − y |

= max
w∈∂Br (y)

u(w)

r
|x − y |+ u(y)

(
1− |x − y |

r

)
,

for any x ∈ Br (y) ⊂⊂ Ω. This inequality follows since it holds
trivially for x ∈ ∂Br (y).
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Now rewrite it as

u(x)− u(y) ≤ max
w∈∂Br (y)

(u(w)− u(x))
|x − y |

r − |x − y |
, (2)

for any x ∈ Br (y) ⊂⊂ Ω.
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Assume that u is twice differentiable at x , that is, there are a
vector p and a matrix X such that

u(z) = u(x) + 〈p; z − x〉+
1
2
〈X (z − x); z − x〉+ o(|z − x |2). (3)

In fact,
p = Du(x), X = D2u(x).
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We will prove that

∆∞u(x) = 〈D2u(x)Du(x); Du(x)〉 = 〈Xp; p〉 ≥ 0. (4)

That is, comparison with cones from above implies ∆∞u ≥ 0 at
points where u is twice differentiable.

We can assume that p 6= 0 (otherwise the inequality that we
want to prove holds trivially).
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We use (3) in (2) with two choices of z. First, let us take

z = y = x − λp

and expand (2) according to (3), we have,

−〈p; y − x〉 − 〈X (y − x); y − x〉+ o(|y − x |2)

≤ max
w∈∂Br (y)

(u(w)− u(x))
|x − y |

r − |x − y |
.
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Now, consider the point wr ,λ at which the maximum in the right
hand side is attained and use it as z in (3) to obtain, after
dividing by λ > 0,

|p|2 + λ
1
2
〈Xp; p〉+ o(λ)

≤
(
〈p; wr ,λ − x〉+

1
2
〈X (wr ,λ − x); (wr ,λ − x)〉+ o((r + λ)2)

)
× |p|

r − λ|p|
.
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Taking λ→ 0 we obtain

|p|2 ≤
(
〈p;

wr − x
r
〉+

1
2
〈X (

wr − x
r

); (wr − x)〉+ o(r)

)
|p| (5)

where wr is a limit point of wr ,λ and hence we have
wr ∈ ∂Br (x), that is, wr−x

r is a unit vector.
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From the previous inequality, it follows that

wr − x
r

→ p
|p|

(6)

as r → 0. Again from the inequality (5), using that,

〈p;
wr − x

r
〉|p| ≤ |p|2

we obtain
0 ≤ lim

r→0

1
2
〈X (

wr − x
r

); (
wr − x

r
)〉
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that is,
0 ≤ 〈X p

|p|
;

p
|p|
〉,

which implies (4).

EX 3. Show that this argument prove that when ∇u(x) = p = 0
we obtain

D2u(x) = X has a nonnegative eigenvalue.
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Now, assume that ϕ is a smooth test function, that is, u − ϕ has
a local maximum at x , then

ϕ(x)− ϕ(y) ≤ u(x)− u(y)

and
u(w)− u(x) ≤ ϕ(w)− ϕ(x).
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Hence we have that (2) holds with u replaced by ϕ and from our
previous argument, using that ϕ is smooth we get

∆∞ϕ(x) ≥ 0, if Dϕ(x) 6= 0,

and

D2ϕ(x) has a nonnegative eigenvalue if Dϕ(x) = 0.
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In any case, we have

u − ϕ has a local maximum at x ⇒ ∆∞ϕ(x) ≥ 0,

that is, if u has comparison with cones from above, then u is a
viscosity subsolution to ∆∞u = 0 in Ω.

EX 4. Show that if u has comparison with cones from below
then it is a viscosity supersolution to ∆∞u = 0 in Ω.
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AMLE-Comparison with cones

∆∞u = 0 implies comparison with cones

First, let us compute the∞−Laplacian of a radial function, we
get

∆∞G(|x |) = G′′(|x |)(G′(|x |))2

when x 6= 0. Hence, for any small γ > 0

∆∞(a|x − z| − γ|x − z|2) = −2γ(a− 2γ|x − z|)2 < 0,

for x 6= z.
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Now, if u verifies ∆∞u ≥ 0 in the viscosity sense (that is, u is a
viscosity subsolution to ∆∞u = 0), then we have that
u(x)− (a|x − z| − γ|x − z|2) cannot have a maximum in V
different from z (if it has then we get a contradiction with the
fact that ∆∞u ≥ 0 in the viscosity sense).
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Hence, if z 6∈ V and x ∈ V we must have

u(x)− (a|x − z|− γ|x − z|2) ≤ max
y∈∂V

u(y)− (a|y − z|− γ|y − z|2).

Now, just take γ → 0 to obtain

u(x)− a|x − z| ≤ max
y∈∂V

u(y)− a|y − z|,

that is, we have that u has comparison with cones from above.

Analogously, one can show that if u is a viscosity supersolution
to ∆∞u = 0 then it has comparison with cones from below.


