Ellsberg's Paradox and the Value of Chances

Richard Bradley

July 2013

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L ₂	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L_4	\$0	\$100	\$100

Table: The Ellsberg Paradox

• Urn contains 90 balls of which 30 are red and the rest are either black or yellow

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L ₂	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L_4	\$0	\$100	\$100

Table: The Ellsberg Paradox

- Urn contains 90 balls of which 30 are red and the rest are either black or yellow
- Typical Ellsberg preferences: $L_1 \succeq L_2$ and $L_4 \succeq L_3$

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L ₂	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L_4	\$0	\$100	\$100

Table: The Ellsberg Paradox

- Urn contains 90 balls of which 30 are red and the rest are either black or yellow
- Typical Ellsberg preferences: $L_1 \succeq L_2$ and $L_4 \succeq L_3$
- Violates Savage's SEU theory

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L_4	\$0	\$100	\$100

Table: The Ellsberg Paradox

• $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

L₁ ≥ L₂ and L₄ ≥ L₃ is inconsistent with both:
 Separability / Sure-thing (P2)

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:
 - Separability / Sure-thing (P2)
 - Probabilistic sophistication (P5)

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:
 - Separability / Sure-thing (P2)
 - Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:
 - Separability / Sure-thing (P2)
 - Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:
 - Separability / Sure-thing (P2)
 - Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:
 - Beliefs not probabilities (e.g. capacities)

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L_4	\$0	\$100	\$100

Table: The Ellsberg Paradox

- $L_1 \succeq L_2$ and $L_4 \succeq L_3$ is inconsistent with both:
 - Separability / Sure-thing (P2)
 - Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:
 - Beliefs not probabilities (e.g. capacities)
 - 2 New decision rules (e.g. Max Choquet EU)

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

• If Ellsberg is correct then problem needs reframing:

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

- If Ellsberg is correct then problem needs reframing:
 - States are distributions of balls (as well as draws)

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

- If Ellsberg is correct then problem needs reframing:
 - States are distributions of balls (as well as draws)
 - Onsequences are chances of gains

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

- If Ellsberg is correct then problem needs reframing:
 - States are distributions of balls (as well as draws)
 - Onsequences are chances of gains
- Suppose that the agent:

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

- If Ellsberg is correct then problem needs reframing:
 - States are distributions of balls (as well as draws)
 - Onsequences are chances of gains
- Suppose that the agent:
 - Is an expected utility maximiser

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	$\frac{1}{3}$
L_2	2/3	Ō
L ₃	1/3	1
L_4	2/3	2/3

- If Ellsberg is correct then problem needs reframing:
 - States are distributions of balls (as well as draws)
 - Onsequences are chances of gains
- Suppose that the agent:
 - Is an expected utility maximiser
 - Regards the two possible states as equally likely

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L ₃	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

• Then:

$$1>L2 \Leftrightarrow U(\frac{1}{3}) > 0.5U(\frac{2}{3}) + 0.5U(0)$$

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L ₃	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

• Then:

$$\begin{array}{l} \bullet \quad L1 > L2 \Leftrightarrow U(\frac{1}{3}) > 0.5U(\frac{2}{3}) + 0.5U(0) \\ \bullet \quad L4 > L3 \Leftrightarrow U(\frac{2}{3}) > 0.5U(\frac{1}{3}) + 0.5U(1) \end{array}$$

< □ > < ---->

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_3	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

Then:

- $\begin{array}{l} \bullet \quad L1 > L2 \Leftrightarrow U(\frac{1}{3}) > 0.5U(\frac{2}{3}) + 0.5U(0) \\ \bullet \quad L4 > L3 \Leftrightarrow U(\frac{2}{3}) > 0.5U(\frac{1}{3}) + 0.5U(1) \end{array}$
- Hence, assuming the typical Ellsberg preferences:

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L ₃	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

Then:

 $\begin{array}{l} \bullet \quad L1 > L2 \Leftrightarrow U(\frac{1}{3}) > 0.5U(\frac{2}{3}) + 0.5U(0) \\ \bullet \quad L4 > L3 \Leftrightarrow U(\frac{2}{3}) > 0.5U(\frac{1}{3}) + 0.5U(1) \end{array}$

• Hence, assuming the typical Ellsberg preferences:

DMU:
$$U(\frac{1}{3}) - U(0) > U(\frac{2}{3}) - U(\frac{1}{3}) > U(1) - U(\frac{2}{3})$$

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L ₃	1/3	1
L_4	2/3	2/3

Table: Ellsberg Reframed

Then:

1 L1 > L2 ⇔
$$U(\frac{1}{3}) > 0.5U(\frac{2}{3}) + 0.5U(0)$$

1 L4 > L3 ⇔ $U(\frac{2}{3}) > 0.5U(\frac{1}{3}) + 0.5U(1)$

• Hence, assuming the typical Ellsberg preferences:

DMU:
$$U(\frac{1}{3}) - U(0) > U(\frac{2}{3}) - U(\frac{1}{3}) > U(1) - U(\frac{2}{3})$$

• So, given DMU, the Ellsberg preferences are consistent with SEU.

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_5	0	2/3

Table: Risk Averse Preferences

• Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_5	0	2/3

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_5	0	2/3

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
 - Preference for \$50 to a 50:50 gamble on \$100 or nothing.

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_5	0	2/3

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
 - Preference for \$50 to a 50:50 gamble on \$100 or nothing.
 - Preference for *L*1 over *L*2 or *L*5.

	30 red, 60 black	30 red, 60 yellow
L_1	1/3	1/3
L_2	2/3	0
L_5	0	2/3

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
 - Preference for \$50 to a 50:50 gamble on \$100 or nothing.
 - Preference for *L*1 over *L*2 or *L*5.
- So chance risk aversion implies a preference for hedging.

• Formally, we are in an A-A set-up with:

- Formally, we are in an A-A set-up with:
 - $\Pi = \{p_1, p_2, ..., p_n\}$: Set of lotteries i.e. probability distributions on the set of goods Γ

- Formally, we are in an A-A set-up with:
 - Π = {p₁, p₂, ..., p_n}: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)

- Formally, we are in an A-A set-up with:
 - Π = {p₁, p₂, ..., p_n}: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)
 - O \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries

- Formally, we are in an A-A set-up with:
 - Π = {p₁, p₂, ..., p_n}: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)
 - O \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
 - \succ : Preference relation on \mathcal{F} .

- Formally, we are in an A-A set-up with:
 - Π = {p₁, p₂, ..., p_n}: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)
 - \bigcirc \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
 - \succeq : Preference relation on \mathcal{F} .
- \mathcal{F} is a linear space with the mixture-act $\alpha f + (1 \alpha)g$ defined by:

$$[\alpha f + (1-\alpha)g](s) := \alpha f(s) + (1-\alpha)g(s)$$

- Formally, we are in an A-A set-up with:
 - $\Pi = \{p_1, p_2, ..., p_n\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)
 - \bigcirc \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
 - \succeq : Preference relation on \mathcal{F} .
- \mathcal{F} is a linear space with the mixture-act $\alpha f + (1 \alpha)g$ defined by:

$$[\alpha f + (1-\alpha)g](s) := \alpha f(s) + (1-\alpha)g(s)$$

• Risk aversion with respect to chances implies that for all f, $g \in \mathcal{F}$

$$f \approx g \Rightarrow \alpha f + (1 - \alpha)g \succeq f$$

- Formally, we are in an A-A set-up with:
 - Π = {p₁, p₂, ..., p_n}: Set of lotteries i.e. probability distributions on the set of goods Γ
 - **2** Ω : Set of events (sets of states $s_1, s_2, ..., s_m$)
 - \bigcirc \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
 - \succeq : Preference relation on \mathcal{F} .
- \mathcal{F} is a linear space with the mixture-act $\alpha f + (1 \alpha)g$ defined by:

$$[\alpha f + (1-\alpha)g](s) := \alpha f(s) + (1-\alpha)g(s)$$

• Risk aversion with respect to chances implies that for all f, $g \in \mathcal{F}$

$$f \approx g \Rightarrow \alpha f + (1 - \alpha)g \succeq f$$

So chance risk aversion implies uncertainty aversion.

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
B_3	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

• Compare the two hypotheses:

• • • • • • • • • • • •

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
B_3	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion

Image: Image:

→ ∃ →

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
B_3	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion
 - PAA: Pyschological Ambiguity Aversion

★ ∃ ► ★

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
<i>B</i> ₃	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion
 - PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
B_3	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion
 - PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
 - CRA predicts uncertainty *loving* behaviour if chances of losses are treated as negative chances

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
<i>B</i> ₃	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion
 - PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
 - CRA predicts uncertainty *loving* behaviour if chances of losses are treated as negative chances
 - PAA predicts uncertainty aversion here as well

	red	black	yellow
B_1	-\$100	\$0	\$0
B_2	\$0	-\$100	\$0
B_3	-\$100	\$0	-\$100
B_4	\$0	-\$100	-\$100

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
 - CRA: Chance Risk Aversion
 - PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
 - CRA predicts uncertainty *loving* behaviour if chances of losses are treated as negative chances
 - PAA predicts uncertainty aversion here as well
- Evidence not unambiguous, but favours CRA -> < -> < -> < ->

Richard Bradley

Ellsberg's Paradox and the Value of Ch

July 2013 8 / 12

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

• When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
 - Theory is not partition-independent, or

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
 - Theory is not partition-independent, or
 - Onsequences are not properly described

	30	60	
	Red	Black	Yellow
L_1	\$100	\$0	\$0
L_2	\$0	\$100	\$0
L ₃	\$100	\$0	\$100
L ₄	\$0	\$100	\$100

Table: The Ellsberg Paradox

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
 - Theory is not partition-independent, or
 - Onsequences are not properly described
- It is the latter: chances matter too.

Richard Bradley

Ellsberg's Paradox and the Value of Chances

• The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2 The vN-M axioms on Π

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2 The vN-M axioms on Π
 - The Ellsberg pattern.

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2 The vN-M axioms on Π
 - The Ellsberg pattern.
- Responses

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2) The vN-M axioms on Π
 - The Ellsberg pattern.
- Responses
 - Conservatives reject 3.

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2) The vN-M axioms on Π
 - The Ellsberg pattern.
- Responses
 - Conservatives reject 3.
 - Padicals reject 1 (Sure-Thing in particular).

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succeq cannot satisfy all of:
 - ① The Savage axioms on ${\mathcal F}$
 - 2) The vN-M axioms on Π
 - The Ellsberg pattern.
- Responses
 - Conservatives reject 3.
 - Padicals reject 1 (Sure-Thing in particular).
 - I reject 2. In particular Linearity:

U(Chance x of G) = x.U(G)

• Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
 - Agents anticipate regret when learning that they picked a lottery with poor chances.

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
 - Agents anticipate regret when learning that they picked a lottery with poor chances.
 - Asymmetry of regret and joy explained by different reference points

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
 - Agents anticipate regret when learning that they picked a lottery with poor chances.
 - Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
 - Agents anticipate regret when learning that they picked a lottery with poor chances.
 - Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)
 - Formally, the model proposed here is akin to KMM

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
 - Agents anticipate regret when learning that they picked a lottery with poor chances.
 - Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)
 - Isomally, the model proposed here is akin to KMM
 - Ø But interpretation is quite different ...

• Consider any act f. Let:

Image: A matrix and a matrix

3 1 4

- Consider any act f. Let:
 - P_i = (p^j_i) be the lottery (chance function) on the set of goods Γ = {G^j} determined by f at state s_i

< ∃ > <

- Consider any act *f*. Let:
 - P_i = (p^j_i) be the lottery (chance function) on the set of goods
 Γ = {G^j} determined by f at state s_i
 - Pr be the agent's subjective probabilities over the s_i

- Consider any act f. Let:
 - $P_i = (p_i^j)$ be the lottery (chance function) on the set of goods
 - $\Gamma = \{G^j\}$ determined by f at state s_i
 - 2 Pr be the agent's subjective probabilities over the s_i
 - $EU(P_i)$ be the vN-M expected utility of P_i

- Consider any act *f*. Let:
- P_i = (p^f_i) be the lottery (chance function) on the set of goods Γ = {G^j} determined by f at state s_i
 Pr be the agent's subjective probabilities over the s_i
 EU(P_i) be the vN-M expected utility of P_i
 A-A:

$$V(f) = \sum_{i} \Pr(s_i).EU(P_i)$$

- Consider any act *f*. Let:
 - P_i = (p^I_i) be the lottery (chance function) on the set of goods Γ = {Gⁱ} determined by f at state s_i
 Pr be the agent's subjective probabilities over the s_i
 EU(P_i) be the vN-M expected utility of P_i

• A-A:

$$V(f) = \sum_{i} \Pr(s_i).EU(P_i)$$

• KMM: For concave function Φ

$$V(f) = \sum_{i} \Pr(s_i) . \Phi(EU(P_i))$$

- Consider any act *f*. Let:
 - P_i = (p_i^I) be the lottery (chance function) on the set of goods Γ = {G^I} determined by f at state s_i
 Pr be the agent's subjective probabilities over the s_i
 EU(P_i) be the vN-M expected utility of P_i

• A-A:

$$V(f) = \sum_{i} \Pr(s_i).EU(P_i)$$

• KMM: For concave function Φ

$$V(f) = \sum_{i} \Pr(s_i) \cdot \Phi(EU(P_i))$$

• **Bradley**: For concave functions $\phi^1, ..., \phi^n$:

$$V(f) = \sum_{i} \Pr(s_i) \cdot \sum_{j} \phi^j(p_i^j)$$