Ellsberg's Paradox and the Value of Chances

Richard Bradley

July 2013

Ellsberg's paradox

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- Urn contains 90 balls of which 30 are red and the rest are either black or yellow

Ellsberg's paradox

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- Urn contains 90 balls of which 30 are red and the rest are either black or yellow
- Typical Ellsberg preferences: $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$

Ellsberg's paradox

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- Urn contains 90 balls of which 30 are red and the rest are either black or yellow
- Typical Ellsberg preferences: $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$
- Violates Savage's SEU theory

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)
(2) Probabilistic sophistication (P5)

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)
(2) Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)
(2) Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)
(2) Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:
(1) Beliefs not probabilities (e.g. capacities)

Ellsberg: The Standard Diagnosis

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$

Table: The Ellsberg Paradox

- $L_{1} \succeq L_{2}$ and $L_{4} \succeq L_{3}$ is inconsistent with both:
(1) Separability / Sure-thing (P2)
(2) Probabilistic sophistication (P5)
- Ellsberg's explanation: ambiguity aversion
- Typical responses:
(1) Beliefs not probabilities (e.g. capacities)
(2) New decision rules (e.g. Max Choquet EU)

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:
(1) States are distributions of balls (as well as draws)

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:
(1) States are distributions of balls (as well as draws)
(2) Consequences are chances of gains

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:
(1) States are distributions of balls (as well as draws)
(2) Consequences are chances of gains
- Suppose that the agent:

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:
(1) States are distributions of balls (as well as draws)
(2) Consequences are chances of gains
- Suppose that the agent:
(1) Is an expected utility maximiser

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$\frac{1}{3}$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$
Table: Ellsberg Reframed		

- If Ellsberg is correct then problem needs reframing:
(1) States are distributions of balls (as well as draws)
(2) Consequences are chances of gains
- Suppose that the agent:
(1) Is an expected utility maximiser
(2) Regards the two possible states as equally likely

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$

Table: Ellsberg Reframed

- Then:
(1) $L 1>L 2 \Leftrightarrow U\left(\frac{1}{3}\right)>0.5 U\left(\frac{2}{3}\right)+0.5 U(0)$

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$

Table: Ellsberg Reframed

- Then:
(1) $L 1>L 2 \Leftrightarrow U\left(\frac{1}{3}\right)>0.5 U\left(\frac{2}{3}\right)+0.5 U(0)$
(2) $L 4>L 3 \Leftrightarrow U\left(\frac{2}{3}\right)>0.5 U\left(\frac{1}{3}\right)+0.5 U(1)$

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$

Table: Ellsberg Reframed

- Then:
(1) $L 1>L 2 \Leftrightarrow U\left(\frac{1}{3}\right)>0.5 U\left(\frac{2}{3}\right)+0.5 U(0)$
(2) $L 4>L 3 \Leftrightarrow U\left(\frac{2}{3}\right)>0.5 U\left(\frac{1}{3}\right)+0.5 U(1)$
- Hence, assuming the typical Ellsberg preferences:

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$

Table: Ellsberg Reframed

- Then:
(1) $L 1>L 2 \Leftrightarrow U\left(\frac{1}{3}\right)>0.5 U\left(\frac{2}{3}\right)+0.5 U(0)$
(2) $L 4>L 3 \Leftrightarrow U\left(\frac{2}{3}\right)>0.5 U\left(\frac{1}{3}\right)+0.5 U(1)$
- Hence, assuming the typical Ellsberg preferences:

DMU: $U\left(\frac{1}{3}\right)-U(0)>U\left(\frac{2}{3}\right)-U\left(\frac{1}{3}\right)>U(1)-U\left(\frac{2}{3}\right)$

Reframing the Problem

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{3}	$1 / 3$	1
L_{4}	$2 / 3$	$2 / 3$

Table: Ellsberg Reframed

- Then:
(1) $L 1>L 2 \Leftrightarrow U\left(\frac{1}{3}\right)>0.5 U\left(\frac{2}{3}\right)+0.5 U(0)$
(2) $L 4>L 3 \Leftrightarrow U\left(\frac{2}{3}\right)>0.5 U\left(\frac{1}{3}\right)+0.5 U(1)$
- Hence, assuming the typical Ellsberg preferences:

DMU: $U\left(\frac{1}{3}\right)-U(0)>U\left(\frac{2}{3}\right)-U\left(\frac{1}{3}\right)>U(1)-U\left(\frac{2}{3}\right)$

- So, given DMU, the Ellsberg preferences are consistent with SEU.

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{5}	0	$2 / 3$

Table: Risk Averse Preferences

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{5}	0	$2 / 3$

Table: Risk Averse Preferences

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{5}	0	$2 / 3$

Table: Risk Averse Preferences

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
(1) Preference for $\$ 50$ to a $50: 50$ gamble on $\$ 100$ or nothing.

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{5}	0	$2 / 3$

Table: Risk Averse Preferences

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
(1) Preference for $\$ 50$ to a $50: 50$ gamble on $\$ 100$ or nothing.
(2) Preference for $L 1$ over $L 2$ or $L 5$.

Risk Aversion

	30 red, 60 black	30 red, 60 yellow
L_{1}	$1 / 3$	$1 / 3$
L_{2}	$2 / 3$	0
L_{5}	0	$2 / 3$

Table: Risk Averse Preferences

- Intuitively someone is risk averse with respect to a divisible good G if they view losses and gain of quantities of G asymmetrically.
- Revealed in preference for constant equivalents (in expectation) of risky acts e.g.:
(1) Preference for $\$ 50$ to a $50: 50$ gamble on $\$ 100$ or nothing.
(2) Preference for $L 1$ over $L 2$ or $L 5$.
- So chance risk aversion implies a preference for hedging.

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)
(3) \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)
(3) \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
(9) \succsim : Preference relation on \mathcal{F}.

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)
(3) \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
(9) \succsim : Preference relation on \mathcal{F}.
- \mathcal{F} is a linear space with the mixture-act $\alpha f+(1-\alpha) g$ defined by:

$$
[\alpha f+(1-\alpha) g](s):=\alpha f(s)+(1-\alpha) g(s)
$$

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)
(3) \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
(9) \succsim : Preference relation on \mathcal{F}.
- \mathcal{F} is a linear space with the mixture-act $\alpha f+(1-\alpha) g$ defined by:

$$
[\alpha f+(1-\alpha) g](s):=\alpha f(s)+(1-\alpha) g(s)
$$

- Risk aversion with respect to chances implies that for all $f, g \in \mathcal{F}$

$$
f \approx g \Rightarrow \alpha f+(1-\alpha) g \succsim f
$$

Risk Aversion and Uncertainty Aversion

- Formally, we are in an A-A set-up with:
(1) $\Pi=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$: Set of lotteries i.e. probability distributions on the set of goods Γ
(2) Ω : Set of events (sets of states $s_{1}, s_{2}, \ldots, s_{m}$)
(3) \mathcal{F} : Set of all acts i.e functions from states of the world to lotteries
(9) \succsim : Preference relation on \mathcal{F}.
- \mathcal{F} is a linear space with the mixture-act $\alpha f+(1-\alpha) g$ defined by:

$$
[\alpha f+(1-\alpha) g](s):=\alpha f(s)+(1-\alpha) g(s)
$$

- Risk aversion with respect to chances implies that for all $f, g \in \mathcal{F}$

$$
f \approx g \Rightarrow \alpha f+(1-\alpha) g \succsim f
$$

- So chance risk aversion implies uncertainty aversion.

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion
(2) PAA: Pyschological Ambiguity Aversion

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion
(2) PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion
(2) PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
(1) CRA predicts uncertainty loving behaviour if chances of losses are treated as negative chances

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion
(2) PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
(1) CRA predicts uncertainty loving behaviour if chances of losses are treated as negative chances
(2) PAA predicts uncertainty aversion here as well

Chances of Losses

	red	black	yellow
B_{1}	$-\$ 100$	$\$ 0$	$\$ 0$
B_{2}	$\$ 0$	$-\$ 100$	$\$ 0$
B_{3}	$-\$ 100$	$\$ 0$	$-\$ 100$
B_{4}	$\$ 0$	$-\$ 100$	$-\$ 100$

Table: The Negative Ellsberg Problem

- Compare the two hypotheses:
(1) CRA: Chance Risk Aversion
(2) PAA: Pyschological Ambiguity Aversion
- Both hypotheses explain the Ellsberg preferences, but make opposite predictions in the Negative Ellsberg Problem
(1) CRA predicts uncertainty loving behaviour if chances of losses are treated as negative chances
(2) PAA predicts uncertainty aversion here as well
- Evidence not unambiguous, but favours CRA

The Explanatory Trade-off

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory

The Explanatory Trade-off

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:

The Explanatory Trade-off

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
(1) Theory is not partition-independent, or

The Explanatory Trade-off

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
(1) Theory is not partition-independent, or
(2) Consequences are not properly described

The Explanatory Trade-off

	30	60	
	Red	Black	Yellow
L_{1}	$\$ 100$	$\$ 0$	$\$ 0$
L_{2}	$\$ 0$	$\$ 100$	$\$ 0$
L_{3}	$\$ 100$	$\$ 0$	$\$ 100$
L_{4}	$\$ 0$	$\$ 100$	$\$ 100$
Table: The Ellsberg Paradox			

- When the problem is correctly framed, CRA explains ambiguity aversion in a way that is consistent with SEU theory
- But what about consistency with the standard framing? Either:
(1) Theory is not partition-independent, or
(2) Consequences are not properly described
- It is the latter: chances matter too.

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $\mathrm{vN}-\mathrm{M}$ axioms on Π

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $\mathrm{vN}-\mathrm{M}$ axioms on Π
(3) The Ellsberg pattern.

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $\mathrm{vN}-\mathrm{M}$ axioms on Π
(3) The Ellsberg pattern.
- Responses

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $v \mathrm{~N}-\mathrm{M}$ axioms on Π
(3) The Ellsberg pattern.
- Responses
(1) Conservatives reject 3 .

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $v \mathrm{~N}-\mathrm{M}$ axioms on Π
(3) The Ellsberg pattern.
- Responses
(1) Conservatives reject 3 .
(2) Radicals reject 1 (Sure-Thing in particular).

The Explanatory Trade-off

- The 'trilemma': We must either abandon Savage, or abandon vN-M, or abandon Ellsberg.
- Formally, \succsim cannot satisfy all of:
(1) The Savage axioms on \mathcal{F}
(2) The $v \mathrm{~N}-\mathrm{M}$ axioms on Π
(3) The Ellsberg pattern.
- Responses
(1) Conservatives reject 3 .
(2) Radicals reject 1 (Sure-Thing in particular).
(3) I reject 2. In particular Linearity:

$$
U(\text { Chance } x \text { of } G)=x \cdot U(G)
$$

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
(1) Agents anticipate regret when learning that they picked a lottery with poor chances.

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
(1) Agents anticipate regret when learning that they picked a lottery with poor chances.
(2) Asymmetry of regret and joy explained by different reference points

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
(1) Agents anticipate regret when learning that they picked a lottery with poor chances.
(2) Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
(1) Agents anticipate regret when learning that they picked a lottery with poor chances.
(2) Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)
(1) Formally, the model proposed here is akin to KMM

Connections

- Halevy (Econometrica 2007): Ambiguity aversion associated with failure to reduce compound lotteries.
- Krahmer and Stone (Econ. Theory 2011)
(1) Agents anticipate regret when learning that they picked a lottery with poor chances.
(2) Asymmetry of regret and joy explained by different reference points
- KMM (Econometrica 2005)
(1) Formally, the model proposed here is akin to KMM
(2) But interpretation is quite different ...

Formal Stuff

- Consider any act f. Let:

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}
(2) Pr be the agent's subjective probabilities over the s_{i}

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}
(2) Pr be the agent's subjective probabilities over the s_{i}
(3) $E U\left(P_{i}\right)$ be the $\mathrm{vN}-\mathrm{M}$ expected utility of P_{i}

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}
(2) Pr be the agent's subjective probabilities over the s_{i}
(3) $E U\left(P_{i}\right)$ be the $\mathrm{vN}-\mathrm{M}$ expected utility of P_{i}
- A-A:

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot E U\left(P_{i}\right)
$$

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}
(2) Pr be the agent's subjective probabilities over the s_{i}
(3) $E U\left(P_{i}\right)$ be the $\mathrm{vN}-\mathrm{M}$ expected utility of P_{i}
- A-A:

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot E U\left(P_{i}\right)
$$

- KMM: For concave function Φ

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot \Phi\left(E U\left(P_{i}\right)\right)
$$

Formal Stuff

- Consider any act f. Let:
(1) $P_{i}=\left(p_{i}^{j}\right)$ be the lottery (chance function) on the set of goods $\Gamma=\left\{G^{j}\right\}$ determined by f at state s_{i}
(2) Pr be the agent's subjective probabilities over the s_{i}
(3) $E U\left(P_{i}\right)$ be the $\mathrm{vN}-\mathrm{M}$ expected utility of P_{i}
- A-A:

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot E U\left(P_{i}\right)
$$

- KMM: For concave function Φ

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot \Phi\left(E U\left(P_{i}\right)\right)
$$

- Bradley: For concave functions $\phi^{1}, \ldots, \phi^{n}$:

$$
V(f)=\sum_{i} \operatorname{Pr}\left(s_{i}\right) \cdot \sum_{j} \phi^{j}\left(p_{i}^{j}\right)
$$

