Convexity and Risk

(based on Cerreia-Vioglio (2009) and Cerreia-Vioglio, Dillenberger, and Ortoleva (2013))

Simone Cerreia-Vioglio Università Bocconi

Games and Decisions Conference 2013
July 2013

Preferences under Risk

- We consider a Decision Maker, DM, who has preferences over probability distributions
- Why probability distributions?
- In Economics and Finance, probability distributions are used to model: value of an asset, value of an investment, behavior of an opponent, mixed strategies

Formalization of the Decision Framework

- Probability distributions?
- C is a set of consequences which is a subset of a compact metric space
- Δ is the set of all Borel probability measures over C
- Elements of Δ are denoted by $p, q, r \in \Delta$ and they are called lotteries

Examples

- C is a finite set. Δ can be identified with the simplex of $\mathbb{R}^{|C|}$
- C is a bounded and closed interval, $[w, b]$, of \mathbb{R}
- In this tutorial, we will focus on this latter, very special but also very important, case

The Mathematical Framework

- $C([w, b])$: space of continuous functions on $[w, b]$ endowed with the supnorm
- Define \mathcal{V} as

$$
\{v \in C([w, b]): v(b)=1 \text { and } v \text { is increasing }\}
$$

- Define $\mathcal{U}_{\text {nor }}$ as

$$
\{v \in C([w, b]): v(w)=0=v(b)-1 \text { and } s . \text { increasing }\}
$$

- ca $([w, b])$: space of all finite Borel signed measures on $[w, b]$
- $c a([w, b])$ is the norm dual of $C([w, b]) . c a([w, b])$ is endowed with the weak*-topology
- Δ is endowed with the relative topology
- Fact: Δ is convex and compact

Preferences

- How do we model the DM's preferences over lotteries?
- A binary relation \succsim on Δ. More formally, a binary relation is a subset of $\Delta \times \Delta$
- $p \succsim q$ is interpreted as " p is weakly better than q "
- \succ denotes the asymmetric part (Strict Preference)
- \sim denotes the symmetric part (Indifference)

Utility Function

Definition

Let \succsim be a binary relation on $\Delta . V: \Delta \rightarrow \mathbb{R}$ is a utility function of \succsim if and only if

$$
p \succsim q \Longleftrightarrow V(p) \geq V(q)
$$

- We also say that V represents \succsim
- Not each binary relation admits a utility function
- Notice that if $f: V(\Delta) \rightarrow \mathbb{R}$ is strictly increasing than $f \circ V$ also represents \succsim

Key Tenets of Rationality

- Preorder \succsim is reflexive and transitive
- Weak Monotonicity For each $x, y \in[w, b]$

$$
x \geq y \Longleftrightarrow \delta_{x} \succsim \delta_{y}
$$

- Those are key tenets of rationality for a DM with preferences over monetary lotteries

A Technical Property

- Continuity If $\left\{p_{n}\right\}_{n \in \mathbb{N}},\left\{q_{n}\right\}_{n \in \mathbb{N}} \subseteq \Delta, p_{n} \succsim q_{n}$ for all $n \in \mathbb{N}, p_{n} \rightarrow p$, and $q_{n} \rightarrow q$ then $p \succsim q$
- Intuitively, the DM will not experience a big change in his preferences given some small change in the prospects he is facing

Expected Utility: references

- von Neumann-Morgenstern (1944)
- Nagumo-Kolmogorov-De Finetti (1929, 1930, 1931). See also Hardy-Littlewood-Polya (1934)
- Herstein-Milnor (1953)

Expected Utility: the model

- Consider a strictly increasing $v \in C([w, b])$
- Define $U: \Delta \rightarrow \mathbb{R}$ by

$$
U(p)=\int_{[w, b]} v(x) d p(x)=\mathbb{E}_{p}(v) \quad \forall p \in \Delta
$$

- A DM could rank lotteries according to the criterion U, that is,

$$
p \succsim q \stackrel{\text { def }}{\Longleftrightarrow} U(p) \geq U(q)
$$

Expected Utility: certainty equivalents

- Define $V: \Delta \rightarrow[w, b]$ by

$$
\begin{equation*}
V(p)=v^{-1}(U(p))=v^{-1}\left(\mathbb{E}_{p}(v)\right) \quad \forall p \in \Delta \tag{1}
\end{equation*}
$$

Notice that $V\left(\delta_{x}\right)=x$ for all $x \in[w, b]$

- Thus, $V(p)$ is the amount of money that, if received with certainty, is equivalent to $V(p)$ under (1)
- It is immediate to see that

$$
p \succsim q \stackrel{\text { def }}{\Longleftrightarrow} U(p) \geq U(q) \Longleftrightarrow V(p) \geq V(q)
$$

von Neumann-Morgenstern

- Completeness If $p, q \in \Delta$ then either $p \succsim q$ or $q \succsim p$
- Independence For each $p, q, r \in \Delta$ and $\lambda \in(0,1]$,

$$
p \succsim q \Longrightarrow \lambda p+(1-\lambda) r \succsim \lambda q+(1-\lambda) r
$$

von Neumann-Morgenstern Representation

Theorem
Let \succsim be a binary relation on Δ. The following statements are equivalent:
(i) \succsim satisfies Preorder, Completeness, Continuity, Weak Monotonicity, and Independence;
(ii) there exists a strictly increasing $v \in C([w, b])$ such that

$$
p \succsim q \Longleftrightarrow \mathbb{E}_{p}(v) \geq \mathbb{E}_{q}(v)
$$

Moreover, v is unique up to an affine transformation

Expected Utility: a discussion

- If we restrict ourselves to elements of $\mathcal{U}_{\text {nor }}$ then we have full fledged uniqueness
- Notice that v is also such that

$$
p \succsim q \Longleftrightarrow v^{-1}\left(\mathbb{E}_{p}(v)\right) \geq v^{-1}\left(\mathbb{E}_{q}(v)\right)
$$

Definition

Let \succsim be a binary relation on $\Delta . ~ \succsim$ is an Expected Utility (EU) binary relation if and only if it satisfies Preorder, Completeness, Continuity, Weak Monotonicity, and Independence

Risk Attitudes: references

- Pratt (1964)
- Yaari (1969)
- Rothschild-Stiglitz (1970)

Absolute Risk Attitudes: definitions

- For each $p \in \Delta, e(p)$ denotes the expected value of p

Definition

Let \succsim be a binary relation on Δ. \succsim is risk averse if and only if $\delta_{e(p)} \succsim p$ for all $p \in \Delta$
Definition
Let \succsim be a binary relation on Δ. \succsim is a mean preserving spread averter if and only if

$$
p \succsim M P S q \Longrightarrow p \succsim q
$$

Absolute Risk Attitudes: a characterization

Theorem
Let \succsim be an EU binary relation on Δ. The following statements are equivalent:
(i) \succsim is risk averse;
(ii) \succsim is a mean preserving spread averter;
(iii) v is concave.

Comparative Risk Attitudes

Definition

Let \succsim_{1} and \succsim_{2} be two binary relations on Δ. \succsim_{1} is more risk averse than \succsim_{2} if and only if for each $p \in \Delta$ and $x \in[w, b]$

$$
p \succsim_{1} \delta_{x} \Longrightarrow p \succsim_{2} \delta_{x}
$$

Theorem

Let \succsim_{1} and \succsim_{2} be EU binary relations. The following statements are equivalent:
(i) \succsim_{1} is more risk averse than \succsim_{2};
(ii) there exists a strictly increasing, continuous, and concave function f such that $v_{1}=f \circ v_{2}$.

Removing Completeness: references

- Aumann (1962)
- Dubra, Maccheroni, Ok (2004)
- Baucells and Shapley (2006)

Multi-Expected Utility

Theorem
Let \succsim be a binary relation on Δ. The following statements are equivalent:
(i) \succsim satisfies Preorder, Continuity, Weak Monotonicity, and Independence;
(ii) there exists a set, \mathcal{W}, of strictly increasing and continuous functions such that

$$
p \succsim q \Longleftrightarrow \mathbb{E}_{p}(v) \geq \mathbb{E}_{q}(v) \quad \forall v \in \mathcal{W}
$$

Moreover, \mathcal{W} can be chosen to be a subset of $\mathcal{U}_{\text {nor }}$. In this case, it is unique up to the closed and convex hull.

Multi-Expected Utility: a discussion

- Notice that we could rewrite the aforementioned representation result in the following way

$$
p \succsim q \Longleftrightarrow v^{-1}\left(\mathbb{E}_{p}(v)\right) \geq v^{-1}\left(\mathbb{E}_{q}(v)\right) \quad \forall v \in \mathcal{W}
$$

Definition
Let \succsim be a binary relation on Δ. \succsim is a Multi-Expected Utility (EU) binary relation if and only if it satisfies Preorder, Continuity, Weak Monotonicity, and Independence

Experimental Evidence

- One of the most prominently observed behavior pattern: certainty effect; overvalue risk-free prospects, even in violation of EU
- Allais paradox (common-ratio effect)
- Choose between:
- (A) 3000 for sure
- (B) 4000 with probability 0.8 and 0 with probability 0.2
- Choose between:
- (C) 3000 with probability 0.25 and 0 with probability 0.75
- (D) 4000 with probability 0.2 and 0 with probability 0.8
- Majority violate Expected Utility by choosing (A,D) or (B,C)
- Violations are systematic; most of them are of the (A,D) type
- Many more related experiments

Getting Rid of Independence: references

- Kahneman and Tversky (1979)
- Quiggin (1982)
- Machina (1982)
- Fishburn (1983)
- Dekel (1986)
- Becker and Sarin (1987)
- Yaari (1987)
- Chew (1989)
- Chew, Epstein, and Segal (1991)
- Gul (1991)

A Different Approach: references

- Maccheroni (2002)
- Cerreia-Vioglio (2009)
- Cerreia-Vioglio, Dillenberger, and Ortoleva (2013)
- Ghirardato, Maccheroni, and Marinacci (2004) (under Knightian Uncertainty)
- Gilboa, Maccheroni, Marinacci, and Schmeidler (2010) (under Knightian Uncertainty)
- Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011) (under Knightian Uncertainty)

Getting Rid of Independence

- For the moment, let us just consider a binary relation that satisfies Preorder, Completeness, Continuity, and Weak Monotonicity
- Can we retrieve a part of this binary relation which is standard, that is, it still satisfies Independence?
- In other words, is the DM an "EU guy" for some of his choices?
- Define a derived binary relation \succsim^{\prime}

$$
p \succsim^{\prime} q \Longleftrightarrow \lambda p+(1-\lambda) r \succsim \lambda q+(1-\lambda) r \quad \forall \lambda \in(0,1], \forall r \in \Delta
$$

- \succsim^{\prime} captures the DM ranking for which the DM is sure
- \succsim^{\prime} is a Multi-EU binary relation

Getting Rid of Independence: the story

- The DM is EU... when he is sure of his rankings. Failures of Independence arise in his behavior when forced to choose and he is not definitely sure about p being better than q
- Failures of Independence happen in completing preferences

Getting Rid of Independence: a result (Cer '09)

Theorem
Let \succsim be a binary relation on Δ that satisfies Preorder,
Completeness, Continuity, and Weak Monotonicity. The following statements are true:
(a) There exists a convex set $\mathcal{W}^{\prime} \subseteq \mathcal{U}_{\text {nor }}$ such that

$$
p \succsim^{\prime} q \Longleftrightarrow \mathbb{E}_{p}(v) \geq \mathbb{E}_{q}(v) \quad \forall v \in \mathcal{W}^{\prime}
$$

(b) For each $p, q \in \Delta$, if $p \succsim^{\prime} q$ then $p \succsim q$;
(c) If $\succsim^{\prime \prime}$ is another binary relation that satisfies (a) and (b) then $p \succsim^{\prime \prime} q$ then $p \succsim^{\prime} q$;
(d) If $\succsim^{\prime \prime}$ is another binary relation that satisfies (a) and (b) then $\overline{\operatorname{co}}\left(\mathcal{W}^{\prime}\right) \subseteq \overline{\operatorname{co}}\left(\mathcal{W}^{\prime \prime}\right)$.

Getting Back Some Independence: NCI

- Negative Certainty Independence For each $p, q \in \Delta$, $x \in[w, b], \lambda \in(0,1]$

$$
p \succsim \delta_{x} \Longrightarrow \lambda p+(1-\lambda) q \succsim \lambda \delta_{x}+(1-\lambda) q
$$

- It was first proposed by Dillenberger (2010)
- Let us reread NCI in terms of \succsim^{\prime} and its interpretation

$$
p \succsim \delta_{x} \Longrightarrow p \succsim^{\prime} \delta_{x}
$$

- In other words,

$$
p \not \mathscr{L}^{\prime} \delta_{x} \Longrightarrow \delta_{x} \succ p
$$

- When in doubt, go with certainty!
- Certainty Effect!

Cautious Expected Utility (CDO '13)

Theorem
Let \succsim be a binary relation on Δ. The following statements are equivalent:
(i) \succsim satisfies Preorder, Completeness, Continuity, Weak Monotonicity, and NCI;
(ii) There exists a set \mathcal{W} of strictly increasing and continuous functions such that $V: \Delta \rightarrow \mathbb{R}$, defined by

$$
V(p)=\inf _{v \in \mathcal{W}} v^{-1}\left(\mathbb{E}_{p}(v)\right) \quad \forall p \in \Delta
$$

is a continuous utility function for \succsim.
Moreover, \mathcal{W} can be chosen to also represent \succsim^{\prime} (that is, $=\mathcal{W}^{\prime}$). In this case, it is unique up to the closed convex hull.

Absolute Risk Attitudes: a characterization

Definition

Let \succsim be a binary relation on $\Delta . \succsim$ is a Cautious Expected Utility binary relation if and only if it satisfies Preorder, Continuity, Weak Monotonicity, and NCl

Theorem
Let \succsim be a Cautious EU binary relation on Δ. The following statements are equivalent:
(i) \succsim is a mean preserving spread averter;
(ii) Each v in \mathcal{W} is concave.

We can also carry a comparative static exercise!

Preference for Randomization

- Mixing For each $p, q \in \Delta$ and $\lambda \in(0,1)$

$$
p \sim q \Longrightarrow \lambda p+(1-\lambda) q \succsim p
$$

- It is not hard to show that Cautious EU binary relations satisfy Mixing
- If \succsim satisfies Preorder, Completeness, Continuity, and Mixing then for each $q \in \Delta$ the set

$$
\{p \in \Delta: p \succsim q\}
$$

is convex

A Duality Class

Call $\mathcal{U}(\mathbb{R} \times \Delta)$ the class of functions $U: \mathbb{R} \times \mathcal{V} \rightarrow[-\infty, \infty]$ such that
P. 1 For each $v \in \mathcal{V}$ the function $U(\cdot, v): \mathbb{R} \rightarrow[-\infty, \infty]$ is increasing
P. $2 \lim _{t \rightarrow \infty} U(t, v)=\lim _{t \rightarrow \infty} U\left(t, v^{\prime}\right)$ for all $v, v^{\prime} \in \mathcal{V}$
P. $3 U$ is \diamond-even quasiconvex
P. $4 U$ is linearly continuous, that is, the function $V_{U}: \Delta \rightarrow[-\infty, \infty]$, defined by

$$
V_{U}(p)=\inf _{v \in \mathcal{V}} U\left(\mathbb{E}_{p}(v), v\right) \quad \forall p \in \Delta,
$$

is real valued and continuous

A Representation (Cer '09)

Theorem
Let \succsim be a binary relation on Δ. The following statements are equivalent:
(i) \succsim satisfies Preorder, Completeness, Continuity, Weak Monotonicity, and Mixing;
(ii) There exists a function U in $\mathcal{U}(\mathbb{R} \times \mathcal{V})$ such that

$$
p \succsim q \Longleftrightarrow \inf _{v \in \mathcal{V}} U\left(\mathbb{E}_{p}(v), v\right) \geq \inf _{v \in \mathcal{V}} U\left(\mathbb{E}_{q}(v), v\right)
$$

- U can be proven to be "essentially" unique and also an index of risk aversion (comparative statics is possible)

Particular Cases

- Cautious EU binary relations

$$
U(t, v)=\left\{\begin{array}{cc}
v^{-1}(t) & v \in \mathcal{W} \\
\infty & \text { otherwise }
\end{array} \quad \forall(t, v) \in \mathbb{R} \times \Delta\right.
$$

- Maccheroni's binary relations

$$
U(t, v)=\left\{\begin{array}{cc}
t & v \in \mathcal{W} \\
\infty & \text { otherwise }
\end{array} \quad \forall(t, v) \in \mathbb{R} \times \Delta\right.
$$

Conclusions

- There are several experimental studies providing evidence for the violation of the axiom of Independence
- There are also several models out there that address this issue
- DMO '13 offer as motivation the Certainty Effect (Negative Certainty Independence)
- One read of this model: a procedure of cautious extension of incomplete preferences
- Certainty Effect implies a preference for hedging (Mixing/Preference for Randomization)
- Mixing yields a generalized version of the pessimistic criterion characterized in DMO '13 under the same interpretation (see Cer '09)

A Message

- Decision Theory is fun! Often, in answering relevant Economics questions, it forces you to solve nontrivial mathematical problems!

Preorder: a discussion

- Reflexive $p \succsim p$ for all $p \in \Delta$
- Transitive If $p \succsim q$ and $q \succsim r$ then $p \succsim r$

Preorder

Uniqueness

- Assume v_{1} and v_{2} "both represent" \succsim
- There exists $\alpha>0$ and $\beta \in \mathbb{R}$ such that

$$
v_{1}=\alpha v_{2}+\beta
$$

vNM's Theorem

A Problem of Choice under Risk

Consider two lotteries

Notice that $e(p)=500 k$. Personally, $q \succ p$. Thus, $\delta_{e(p)} \succ q \succ p$.

Risk Aversion

A Problem of Choice under Risk

- Assume \mathcal{W}_{1} and \mathcal{W}_{2} "both represent" \succsim
- $\overline{\operatorname{co}}\left(\mathcal{W}_{1}\right)=\overline{\operatorname{co}}\left(\mathcal{W}_{2}\right)$

Multi-Expected Utility

Sketch of the Proof

1. Define the Aumann cone

$$
C(\succsim)=\{\lambda(p-q): \lambda>0 \text { and } p \succsim q\}
$$

2. Prove it is indeed a weak* closed and convex cone (non trivial use of Banach-Steinhaus and Krein-Smulian theorems)
3. Compute the polar cone

$$
\mathcal{W}=\left\{v \in C([w, b]): \int_{[w, b]} v(x) d r \leq 0 \text { for all } r \in C(\succsim)\right\}
$$

4. By an application of the Hahn-Banach Theorem and point 2, it follows that \mathcal{W} is the set that does the job

Multi-Expected Utility

