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Abstract. This tutorial assumes no previous knowledge of logic. It

only assumes that readers have an interest in some key questions that

arise in the social sciences. Logicians who have never been exposed

to such questions will hopefully appreciate how far beyond the usual

domains of application logic can stretch. The tutorial’s main purpose

is therefore to encourage cross-fertilisation by highlighting how logic

provides a flexible analytical tool to the social sciences and how the

social sciences abound with pressing problems of great potential interest

to logicians.
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1. Three questions on rationality

According to a standard view, decision theory divides into three main branches,

namely individual decision theory (sometimes called decision theory tout

court) interactive decision theory (aka game theory) and social choice the-

ory. Though the overlaps are significant, the tripartition is rooted in three

distinct questions, respectively:

(1) what are the “rationality” constraints to be imposed on an individual

who must select one from a set of alternative courses of action whose

consequences are uncertain?

(2) what is a “rational” solution to an interaction among agents who are

rational in the sense spelled out in (1)?

(3) how are we to aggregate individually “rational” preferences into a

collective profile which expresses the preference of society as a whole?

This tutorial aims at giving readers with no previous knowledge of the sub-

ject a glimpse into how logic can provide an interesting perspective on the

above questions. The tutorial is organised as follows. Section 2 introduces

the key concept of compositionality which will lead us to put a central prob-

lem of aggregation in a very simple logical form. We then move on to what

is arguably the single most important notion in the vast logical landscape,

the formal notion of consequence. In Section 3 I will illustrate how logical

consequence plays a fundamental role in constraining probability functions,

thereby unravelling an interesting perspective on how logic relates to de-

cision theory under uncertainty. Section 4 focusses on a methodological

feature of logic, which I will call Axioms-As-Properties, or AxAP, for short.

As an illustration of its applicability I will introduce some basic notions

from epistemic logics, i.e. those logics which aim at providing a rigorous

definition of “knowledge” which lies at the very heart of solution concepts

in game theory.

The main goal of this note is therefore to suggest that logic can provide

exciting perspectives on central problems in each of the three main branches

of decision theory. In the limited space of this note I can only hope to say

enough to get readers interested in finding out more. Each Section ends with

a selection of references which will hopefully give interested readers enough

guidance to pursue their interests.

Before getting started, let me say something about logic, in general.
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1.1. Logic. Logicians with a taste for applying their work to analysing ra-

tionality1 often assume that drawing consequences from available premisses

is all there is to rationality. Of course they do not mean this in a literal way.

It is rather a commonly accepted abstraction aimed at stripping away the

inessential aspects which accompany the manifestations of rationality from

which logicians draw their inspiration.

A paramount example of this is provided by Alan M Turing’s (1912 - 1954)

analysis of computation. Standing on the shoulders of Leibniz and all his less

well-known forerunners, Turing isolated the essential aspects of the human

activity of computing. This led him to a mathematical definition of compu-

tation which dispensed from the requirement to the effect that the computor

be a human being. The result is what we now call a Turing Machine, which

lies at the very root of the digital information age.

There is at present no reason to believe that modelling what we refer to

as “intelligence” should require us to go beyond handling strings of binary

digits. However, logicians find it useful to tackle the problem of rational

reasoning by looking at which properties are satisfied by certain consequence

relations. By doing this logicians make (albeit often only implicitly) the

sort of abstraction pioneered by Turing, and identify the “rationality” of

an agent with a set of desirable properties of a consequence relation. This

allows logicians to set otherwise hard-to-pose questions on the nature of

rationality in a terse mathematical language.

What follows is a short guided tour of how this happens and of its relevance

to decision theory broadly conceived.

2. Compositionality

It is a good approximation to say that sentences are characterised by the

fact that it makes sense to ask whether they are true or false. Consider the

following

(1) The Scuola Normale Superiore is in Pisa

(2) The Scuola Normale Superiore is in Milan

(3) Where is the Scuola Normale Superiore?

(4) The President of the United Kindgom is a former leader of the

Labour Party

Whilst (1) and (2) are easily settled (3) and (4) do not qualify as sentences

for our purposes, though they make sense, to some degree.

1To whom I will refer simply as logicians in the remainder of this note.
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We start with a language L, which for our purposes is going to be a finite set

of propositional variables L = {p1, p2, . . . , pn}. Intuitively, elements of L are

thought of as the smallest units for which it makes sense to ask whether they

are true or false. Those building blocks can then be used to form increasingly

more complex sentences by suitably applying four propositional connectives,

namely ¬,∧,∨,→ which read as “negation”, “conjunction”, “disjunction”

and “implication”, respectively. Connectives are used to combine the (finite)

set of propositional variables in L to give rise to the infinite set of sentences

of L, denoted by SL, as follows. We start by saying that all propositional

variables are sentences, i.e.

SL0 = L.
Suppose now that we have combined several simpler sentences to give rise to

more complicated ones, and have done so n times. The following condition

says how we may be able to get from n to n+ 1:

SLn+1 = SLn ∪ {¬θ, (θ ∗ φ) | θ, φ ∈ SLn, ∗ ∈ {∧,∨,→}}

Note that n is arbitrary here. Finally we add a condition that says that

we can iterate this (recursive) construction for as long as we please, and by

doing so we get an infinite set out of the combination of a finite number of

building blocks (SL0) and four connectives:

SL =
⋃
n∈N
SLn.

[Aside. A kind of question which typically catches the logician’s fancy is

what is the smallest set of propositional connectives which is sufficient to

give rise to the whole of SL.]

It fits our purposes to say that “θ holds” means that the agent whose rea-

soning we are modelling takes θ to be true. We make this precise by defining

propositional valuations as functions

v : L → {0, 1}.

Logicians read v(θ) = 1 as “θ is true”, and refer to “1” as θ’s truth-value.

Valuations allow us to provide meaning to our propositional connectives by

means of the following truth table pictured in Table 1

It is an easy but instructive exercise to show that valuations extend uniquely

to SL. So truth-tables analogous to Table 1 can be written for arbitrarily

complex (finite) sentences. This suggests that the truth-value of, say a

conjunction is a fixed function of the truth-value of the conjuncts. More

precisely, let θ, φ ∈ SL, then there exists a function

f∧ : {0, 1} × {0, 1} → {0, 1}
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p q ¬p p ∧ q p ∨ q p→ q

1 1 0 1 1 1

1 0 0 0 1 0

0 1 1 0 1 1

0 0 1 0 0 1
Table 1. The meaning of propositional connectives

such that

v(θ ∧ φ) = f∧(v(θ), v(φ)).

The reader is encouraged to find a function that satisfies the above, and to

do the same for each connective. The (central!) idea that the truth-value of

(arbitrarily complex) sentences is a fixed-function of the truth-value of their

components is known as the principle of compositionality.

2.1. Coherence, consistency and satisfiability. Let L = {p, q, r}. Sup-

pose three jurors must decide whether a defendant is liable (r). According

to contract law, a defendant is liable if and only if they are under the obli-

gations of a valid contract (p) and they are in breach of it (q).

The so-called doctrinal paradox, arises when Jurors submit the following

judgments:

p q r

Juror A 1 1 1

Juror B 1 0 0

Juror C 0 1 0

Majority 1 1 0

Contract law says that (r → (p ∧ q) ∧ (p ∧ q) → r), and it is implicitly

assumed that all Jurors accept that. Under this assumption, the of the

above becomes apparent. Whilst individually each Juror judges in accord

with the constrains imposed by the definition of propositional connectives as

presented in Table 1, the simple-majority aggregation of their judgments by

simple majority gives does violate such constraints. Indeed the Majority’s

judgment is inconsistent.

Inconsistency is a central notion in logic. To some extent logic claims its

normative role by freeing reasoners who conform to it from inconsistency.

Hence, many would regard consistency (or coherence) to be the single most

important contribution made by logic to the normative analysis of rational-

ity. We approach the formal definition of (in)consistency via the notion of

satisfiability.
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Let v be a propositional valuation on L. We say that v is a model of Γ ⊆ SL
if v(γ) = 1 for all γ ∈ Γ (which we abbreviate by writing v(Γ) = 1). We say

that Γ is satisfiable if it has a model, and unsatisfiable otherwise.

This captures a central feature of coherence. For if a set is unsatisfiable,

there is no way in which its elements can be all true, that is to say they do

not cohere.

It is a simple exercise to show that taken individually all jurors submit satisfi-

able judgments, but that the simple-majority aggregation of their individual

judgments is unsatisfiable. Hence incoherent. If coherence is identified with

rationality (and at this level of abstraction, this seems entirely plausible),

the discursive dilemma is a situation in which individual rationality leads,

via simple majority aggregation, to collective irrationality.

There is more than analogy between this and the celebrated Arrow’s im-

possibility theorem. Building on an elementary logical setting of the sort

just outlined Dietrich and List (2007) prove an impossibility result for judg-

ment aggregation from which Arrows’ impossibility theorem is derived as

a corollary. Hence aggregating preferences is less fundamental than aggre-

gating judgments. This is just one example of how the logical analysis of

aggregation may shed interesting light on this central problem.

2.2. Further reading. The idea that logic is to do with the formalisation of

coherence is articulated very accessibly in Hodges (1985). I wholeheartedly

recommend this as an entry point to the subject.

The area of Judgment aggregation originates with a problem known in legal

theory as the doctrinal paradox (Kornhauser and Sager, 1986), but entered

the social choice literature through (Pettit, 2001), who termed it discursive

dilemma. Despite its very recent history, there is a very substantial body

of work on judgment aggregation, which is very well documented by List

(2011). (Williamson, 2010, Chapter 8) puts forward a model of judgment

aggregation based on merging evidence rather than judgments directly and

discusses an application of this to (medical) decision-making.

3. Consequence

If we identify rationality with coherence, the mathematical definition of

satisfiability can be used to define what it means to reason irrationally,

namely to move from premisses which are satisfied to conclusions which are

not. Since not all sets are satisfiable, satisfiability can be seen as an asset
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which we certainly don’t want rational reasoning to waste. Hence the central

feature of logical consequence is that it should preserve satisfaction.

Definition 3.1 (Tarski 1936). θ is a logical consequence of Γ if and only if

every model of Γ is a model of θ, which we write as follows

Γ |= θ ⇔MΓ ⊆Mθ.

Example 3.1. Let Γ = {p, p→ q} and let θ = q. Is it the case that Γ |= θ?

Compositionality allows us to answer in a way which logicians call effective.

This amounts to say that we possess a procedure to answer definitely (either

Yes or No) which is guaranteed to end after a finite number of steps. One

such method is provided by truth-tables as follows:

p q p→ q q

1 1 1 1

1 0 0 0

0 1 1 1

0 0 1 0

Each row corresponds one of the 4 possible valuations on L. By the Defini-

tion 3.1 we need to check whether there exists a model of Γ which does not

satisfy θ. A quick inspection of the table shows that no such model exists,

hence it is indeed the case that Γ |= θ.

We say that a sentence θ is a tautology, and write |= θ, if and only if every

valuation satisfies θ (alternatively: θ is true under all the 2L valuations

on L, alternatively: if it is mapped to 1 in each row of a suitable truth-

table). A tautology is therefore true “in virtue of its logical structure”, and

therefore we don’t need to mention its models. This explains the notation.

A contradiction is defined similarly, i.e. as a sentence which has no models.

So contradictions are unsatisfiable.

One cannot overemphasise the formal nature of consequence. Whether a

sentence θ is a logical consequence of some premisses Γ must not depend

on the intuitive meaning which we associate to those sentences, but only on

their logical form. The reader may get a glimpse of this by cooking up a valid

relation Γ |= θ which nonetheless can be given an implausible rendering (by

suitably interpreting the sentences). In addition, it is an instructive exercise

to show that any sentence is a logical consequence of unsatisfiable premisses.

Whether this property of consequence (often referred to as ex falso quodlibet

(sequitur)) is acceptable or not for the normative science of reasoning, has

bothered logicians for centuries.
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3.1. Consequence and probability. Definition 3.1 supports the common

view that logic is to do with certainty. And that’s in fact how it started. Yet,

since the mid-seventeenth century, the idea idea that logic had something

important to say about the ars inveniendi became increasingly popular. In

1704 Leibniz put it as follows

I maintain that the study of the degrees of probability would

be very valuable and is still lacking, and that is a serious

shortcoming in our treatises on logic. For when one can-

not absolutely settle a question one could still establish the

degree of likelihood on the evidence, and so one can judge

rationally which side is the most plausible2.

Probability logic, and the logical approach to probability, both address the

lacuna lamented by Leibniz. The remainder of this section is devoted to

illustrating how probability can be given a simple, yet extremely interesting,

logical footing.

3.2. A representation theorem for probability functions. A proba-

bility function over the language L is a map P : SL → [0, 1] satisfying

(P1): If |= θ then P (θ) = 1

(P2): If θ |= ¬φ then P (θ ∨ φ) = P (θ) + P (φ).

It is interesting to note that a finite subset of SL carries all the relevant

information about probability functions. To see this, we need a little nota-

tion. Let p ∈ L and let p1 = p and p0 = ¬p. Then, for a valuation v and

ε ∈ {0, 1}:

v(pε) = 1⇔
{
ε = 1 and v(p) = 1 or

ε = 0 and v(¬p) = 1

}
⇔ v(p) = ε

Let ATL be the set of atoms of L, that is the set of sentences of the form

α = pε11 ∧ p
ε2
2 ∧ . . . ∧ p

εn
n ,

where εi ∈ {0, 1}, i = 1, . . . , n.

Notice that the set ATL is in 1-1 correspondence with the valuations on L.

This implies that there is a unique valuation satisfying v(α) = 1 namely

vα(pi) = εi for 1 ≤ i ≤ n. Conversely, given a valuation v ∈ V there exists

a unique atom α ∈ AT L such that v(α) = 1, namely that α =
∧n
i=1 p

εi
i for

2Leibniz Nouveaux essais, translated by P. Remnant e J. Bennet (1981) p. 372
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which εi = v(pi) for 1 ≤ i ≤ n, i.e. the atom:

α =
n∧
i=1

p
v(pi)
i .

Let

Mθ = {α ∈ ATL | α |= θ}.

Since there exists a unique valuation satisfying α, say vα, by definition of |=
it must be the case that vα(θ) = 1. Thus

Mθ = {α ∈ ATL | vα(θ) = 1}.

Theorem 3.1 (Paris 1994).

(1) Let P be a probability function on SL. Then the values of P are

completely determined by the vales it takes on the atoms of L, as

fixed by the vector

〈P (α1), P (α2), . . . , P (αJ)〉 ∈ DL = {~x ∈ RJ | ~x ≥ 0,
J∑
i=1

xi = 1}.

(2) Conversely, fix ~a ∈ DL and let P ′ : SL→ [0, 1] be defined by

P ′(θ) =
∑
α∈Mθ

ai.

Then P ′ is a probability function.

Theorem 3.1 brings clearly to the fore the heavy lifting done by logical

consequence in constraining probability values. Suppose now that you felt

dissatisfied with some properties of the relation |=, say the fact that

(1) |= θ ∨ ¬θ

also known as the “law of excluded middle”. Well, if you do feel that, you

are very likely to sympathise with an important research strand known as

intuitionistic logic, which in turn constitutes the main foundational frame-

work for the development of constructive mathematics. Suppose you reject,

as intuitionistic logicians to, the validity (in general) of (1). Then you would

very probably be dissatisfied with an immediate consequence of P1-P2 above,

namely

(2) P (θ ∨ ¬θ) = 1
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aka probabilistic excluded middle. A common argument for rejecting the

universal adequacy of (2) is that we might not know anything at all about

θ, so why giving a statement about it the highest of degrees of belief? To

some people this just doesn’t seem rational – chances are they have strong

constructive sympathies.

It might come as a surprise to non logicians that an beautiful and densely

populated galaxy of non-classical logics exists, allowing many venues of non-

classical probability to be explored. Indeed dissatisfaction with probability

as a norm of rational belief under uncertainty may sometimes be better

understood as dissatisfaction with |= as the rational norm of reasoning under

certainty.

Finally, the logical setting of theorem 3.1 offers an interesting take on the

vexed question of the state space in decision theory. For in our setting con-

troversies related to the determination of a suitable state-space can hardly

arise. Once a language L has been fixed, there is a unique state space,

namely the set of atoms AT L over which the unit mass is to be distributed.

Pushing the problem of the state-space one level up to the choice of a logical

language has interesting consequences. I’d like to mention briefly two. First,

as noted in (Section 9.2 Williamson, 2010), language has an epistemic value,

hence certain languages are naturally more suited to capture certain phe-

nomena of interest than others. So, for example, Italian has generally been

regarded as the operatic language par excellence, whereas German has been

often recognised as a favourite language for writing mathematics. Second,

it makes perfect sense to assume that one individual possesses a plurality

of languages. Again, the choice of the most suitable language, and hence of

state-space, may be constrained by context-dependent evidence. Put other-

wise, the choice of a language appears to be significantly less arbitrary than

the choice of a state-space.

3.3. Further reading. The notion of logical consequence has been around

for as long as the idea of logic has, but it became mathematically precise

only after the seminal work of Alfred Tarski (1901 - 1983). Definition 3.1 lies

at the very heart of mathematical logic, for which many excellent introduc-

tions are available, including (Enderton, 2001; Boolos et al., 2002; Chiswell

and Hodges, 2007). Readers with a good command of classical (proposi-

tional) logic, will find chapter 1 of Bochman (2001) a concise and elegant

introduction to Tarskian consequence operators.

Probability logic is a rapidly growing field which is being fed by parallel

and research strands. A very good introduction to the area is provided by

(Haenni et al., 2011), which assumes very little. Mathematically inclined
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readers with a good command of classical first-order logic are suggested

to engage with (Paris and Vencovska, 2013). This book extends to first-

order logic the propositional setting of Paris (1994). Finally, (Jeffrey, 2004;

Adams, 1996) constitute exciting entry points for philosophically minded

readers.

The logical representation of probability function is made possible by the

algebraic properties of propositional logic. Readers who wish to explore how

propositional connectives act as operations on truth-values to give rise to

boolean algebras are highly recommended to start with (Halmos and Givant,

1998).

The investigation on probability based on non-classical logics is in its infancy.

One currently very active research strand started with (Paris, 2001) and is

recapped in the introductory section of (Fedel et al., 2011). Although the

paper doesn’t address the question of adding a (probability) measure on the

algebra, I’d like to mention Ciraulo et al. (2013) which explores constructive

versions of boolean algebras.

4. Axioms As Properties (AxAP)

Whereas (individual) decision theory focusses on understanding uncertainty

and ignorance, i.e. what agent’s don’t know, game theory has a distinctive

interest on what agents do know, and what they known about who knows

what. In this context knowledge is essential in reducing strategic uncertainty.

The simplest example being the role of the assumption of common knowledge

of rationality in the elimination of dominated strategies.

For a relatively long time, economic theorists relied on their intuition in

relation to the notion of “knowledge”, until Aumann (1976) put forward

what have become known as Aumann structures. But do we really know

what we are talking about when reasoning about knowledge? According to

standard epistemic logic we should know – that’s called positive introspection

in the trade.

Interestingly enough the standard epistemic logic, known as S5, turns out

to be isomorphic to Aumann’s structure. Hence, by and large, epistemic lo-

gicians (philosophers, mathematicians and computer scientists) agree with

economists on what should count as knowledge. This is all the more sur-

prising given that game theorists and logicians ignored for a long time each

other’s work.

This tutorial ends by illustrating the remarkable flexibility licensed by the

logical formalisation of knowledge.
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4.1. Aiming at a normatively adequate formalisation of knowledge.

Epistemic logic had an interesting feedback on the pre-formal conception of

knowledge, or more precisely on what we should take as a normatively ad-

equate notion of knowledge. This is one of two secrets for the success of

epistemic logics in epistemology and artificial intelligence. The way epis-

temic logic could feed back on purely epistemological investigation on the

nature of knowledge depends on a key feature of logical formalisation which

I will refer to as Axioms As Properties (AxAP). The idea, quite simply, is

that the notion of knowledge is too complex to be analysed directly, so it

is broken down to properties which are considered to be necessary for any

reasonable formalisation of knowledge to satisfy. As usual with mathemat-

ical axiomatisation, it is a lot easier to list necessary conditions and claim

they’re also sufficient when we don’t seem to be able to list more. So, for

instance, many epistemologists believe that it is necessary to any norma-

tively adequate account of knowledge that we should not be in a position to

know falsehoods, as captured by Axiom T below. The beauty of the AxAP

approach is that you can judge your axioms independently of one another.

Thus, a favourite logic for a “revisable” notion of knowledge, which many

find more suited to scientific (empirical) knowledge, is obtained by replacing

T with one which intuitively requires knowledge to be consistent rather than

true.

The second reason for the success of epistemic logic is again to do with

correspondence, but this time of a formal kind. The idea is that each axiom

singles out a class of graphs that serve as a semantics for the corresponding

logic. To appreciate this we have to introduce some more logical notions

and notation.

Let N be a set of agents, S be a set of states (often deceivingly called “pos-

sible worlds”) and θ, φ ∈ SL. The key intuition motivating epistemic logics

is that agent i, whom we assume to be in epistemic state s, may access other

epistemic states. This motivates the introduction of an accessibility relation

Ri ⊆ S2 (one for each agent i ∈ N). We say that an agent i ∈ N in epistemic

state s ∈ S knows θ just if θ is true (as above) in all epistemic states which

i can access from s. Distinct formalizations of “knowledge” (and “belief”)

arise by imposing distinct constraints on the accessibility relation R. In

the most widely studied (multi-agent) epistemic logic, known as S5, R is

an equivalence relation (reflexive, symmetric and transitive), thus making

the resulting logical characterization of knowledge effectively equivalent to

that provided by Aumann’s structures. This is all rather abstract, so let

us move on to an example which illustrates well the appropriateness of the

equivalence relation.
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Example 4.1 ((Fagin et al., 1996)). Consider two players N = {1, 2} and

a deck of three (distinct) cards labelled A,B,C. Each player is dealt a card,

whilst the third card is left face down on the table. There are six possible

configurations which constitute meaningful epistemic states

S = {AB,AC,BC,BA,CA,CB},

where s1 reads as “player 1 is dealt card A, player 2 is dealt card B and card

C is left on the table” etc. The idea here is that in state s = (x, y) player

1 has access to (hence considers possible) states s = (x, y) and t = (x, z)

whereas player 2 has access to (hence consider possible) states s = (x, y)

and u = (z, y), where of course x 6= y 6= z. This gives rise to the following

graph representation of the situation, where the edges between states are

labelled with the players’ names:

CB

CA

BA BC

AC

AB

1

2

1

2

1

2

This can be generalised by introducing a little logical background and no-

tation. First we need to extend the set SL by closing under the epistemic

operator K(·) as follows:

ESL0 = L
ESLn+1 = ESLn ∪ {¬θ,Kiθ, (θ ∗ φ)} where θ, φ ∈ ESLn, i ∈ N,

∗ ∈ {∧,∨,→}

ESL =
⋃
n∈N
ESLn.

Sentence Ki(θ) reads “agent i knows θ”, (i.e. knows that θ is true). Note

thatK(·) is not a compositional connective, in the sense outlined in Section 2

above (exercise!). We say that agent i knows θ at state s if Ki(θ) is satisfied

at s.

Definition 4.1 (Epistemic satisfiability). State s ∈ S satisfies Ki(θ), writ-

ten s |= Ki(θ) if and only if v(θ) = 1 in all states t ∈ S such that R(s, t).

It is immediate to note that this definition extends that of classical conse-

quence, hence the abuse of notation. The idea is that classical consequence
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holds “locally” at each state, whereas epistemic validity requires a “global”

check on all accessible states. As anticipated above, distinct constraints on

accessibility give rise to distinct formalisations of knowledge. The standard

epistemic logic S5 arises by imposing that R ⊆ 2S be an equivalence relation.

So far we have considered only one of the two standard presentations of

logical consequence, namely the one based on the (preservation of) satisfi-

ability which constitutes the backbone of Definition 3.1 and Definition 4.1.

Those semantic (as logicians say) notions of consequence are coupled with

axiomatic counterparts. It is this coupling which enables the AxAP per-

spective on the logical investigations on the concept of knowledge.

The axioms of S5 include all propositional tautologies, in addition to the

following:
K : Ki(θ → φ) | (Kiθ → Kiφ)

T : Kiθ | θ
4 : Kiθ | KiKiθ

5 : ¬Kiθ | Ki¬Kiθ

where the stroke symbol is to be read intuitively as “entails”. So, the above

mentioned axiom T reads as: if agent i knows θ then θ is true. Axiom 4,

also mentioned above, prescribes that agents should know that they know

what they know, i.e. should be able to positively introspect. The next axiom

demands even more, that if there’s a θ they don’t know then they should

know that they don’t know θ.

The definition of epistemic satisfiability (i.e. what it means for you to know θ

at state s) is given independently of the actual properties which are satisfied

by R. Different constraints on R lead to materially different formalisations

of knowledge. But in virtue of correspondence, this means that different

accessibility relations are captured by different axioms, i.e. they capture

properties of knowledge which may or may not be deemed adequate for a

normative characterisation of knowledge. So you can see how epistemic logic

provides an incredibly rich and flexible framework for the investigation of

what we should take knowledge to be.

One immediate advantage of the axiomatic presentation of epistemic logic(s)

is that it allows for distinguishing among epistemic attitudes. Popular ones

are

(1) i knows θ

(2) i believes θ

(3) i is certain that θ

(4) i is aware of θ
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(5) i is informed that θ.

The question as to which are the fundamentally independent attitudes feeds

much of the current research in epistemic logics. Of particular interest to

economic theory are the following. First, whether knowledge entails belief.

Second, whether awareness can be used to model the epistemic attitudes of

non omniscient agents.

To conclude, in analogy with Section 3, suppose you are dissatisfied with

the consequences of the “common knowledge” assumption in the definition

of Nash equilibrium. One reaction is to consider “correlated equilibrium” as

being less demanding, as it only requires rational players to have common

beliefs in the form of common prior probabilities. Epistemic logics provide

an interesting framework to investigate qualitative analogues of the notion.

AxAP suggests to undertake a more radical step and to question –at the

very root– our conception of knowledge.

4.2. Further reading. (Fagin et al., 1996) is the first systematic formal-

ization of the epistemic interaction of logical agents. (Shoham and Leyton-

Brown, 2009) builds on its tradition.

Readers with a background in mathematical logic are referred to (Blackburn

et al., 2001) for a state-of-the-art introduction to Modal logic and (Blackburn

et al., 2007) for a comprehensive account of its development. (Meyer and

van der Hoek, 1995) shows how by the mid-1990s epistemic logic was a

standard analytical tool in artificial intelligence.

On the logic of “being informed” see Allo (2011). Halpern and Pucella

(2007) provides an overview of the problem of logical omniscience. Schipper

(2012) is a recent bibliography on (un)awareness.
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