From Preferences to Choice: a Completion Approach

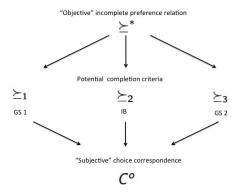
Francesco Girlanda

Pisa, July 2013

From Preferences to Choice: a Completion Approach

Introduction

- In a world characterized by an "objective" incomplete preference relation, we want to study the mental process that lead to the choices that will be eventually made
- The Decision Maker considers several "potential" completion criteria and he aggregates them in a "subjective" choice correspondence
- The attitude of the Decision Maker toward the criteria will influence the aggregation process



- Gilboa, Maccheroni, Marinacci and Schmeidler (2010): model with 2 preference relations that can be considered a bridge between a representation à la Bewley (2002) and à la Gilboa and Schmeidler (1989)
- Crès, Gilboa and Vieille (2011): model in which there are several experts that adopt the Decision Maker's utility function in providing their advice in a situation of uncertainty. The Decision Maker aggregates experts' opinions in such a way that the decision maker's valuation of an act is the minimal weighted valuation over all weights vectors in a set of probability vectors over the experts
- Maccheroni, Marinacci and Rustichini (2006): characterization of variational representation of preferences

- Anscombe and Aumann (1963) model
- *L* is the set of finite support probability distributions over the set of outcomes *X*
- S is the set of states of the world and it is endowed with an algebra of events $\boldsymbol{\Sigma}$
- $riangle (\Sigma)$ is the set of finitely additive probabilities on Σ
- \mathscr{F} is the set of acts and it consists of all simple measurable functions $f: S \rightarrow L$

- \mathscr{F}_c the set of constant acts
- ${\mathfrak S}$ the set of all non empty finite subsets of ${\mathscr F}$
- {≿_i}^N_{i=1} are "subjective" preference relations representing potential completion criteria
- $C^{\circ}: \mathfrak{I} \to \mathfrak{I}$ represents the choices effectively implemented and it is the result of the aggregation of the criteria $\{\succeq_i\}_{i=1}^N$

Axioms (1/5)

- A preference relation \succeq is **Bewley** if it satisfies the following axioms:
 - reflexivity For any $f \in \mathscr{F}$ we have that $f \succeq f$
 - transitivity If $f, g, h \in \mathscr{F}$ $f \succeq g$ and $g \succeq h$ then $f \succeq h$
 - non degeneracy there are $f,g \in \mathscr{F}$ such that $f \succ g$
 - monotonicity For every $f, g \in \mathscr{F}$, if $f(s) \succeq g(s)$ for all $s \in S$ implies $f \succeq g$
 - **continuity** For all $f, g, h \in \mathscr{F}$ the sets $\{\lambda \in [0, 1] : \lambda \cdot f + (1 \lambda) \cdot g \succeq h\}$ and $\{\lambda \in [0, 1] : h \succeq \lambda \cdot f + (1 \lambda) \cdot g\}$ are closed in [0, 1]
 - c-completeness: If $\forall f, g, \in \mathscr{F}_{c}$ either $f \succeq g$ or $g \succeq f$
 - independence For every f,g,h∈ ℱ and α ∈ (0,1) f ≽ g if and only if α ⋅ f + (1 − α) ⋅ h ≽ α ⋅ g + (1 − α) ⋅ h

A preference relation \succeq is **Invariant Biseparable** if it satisfies the following axioms:

- reflexivity For any $f \in \mathscr{F}$ we have that $f \succeq f$
- transitivity If $f, g, h \in \mathscr{F}$ $f \succeq g$ and $g \succeq h$ then $f \succeq h$
- non degeneracy there are $f,g \in \mathscr{F}$ such that $f \succ g$
- monotonicity For every $f, g \in \mathscr{F}$, if $f(s) \succeq g(s)$ for all $s \in S$ implies $f \succeq g$
- continuity For all $f, g, h \in \mathscr{F}$ the sets $\{\lambda \in [0, 1] : \lambda \cdot f + (1 - \lambda) \cdot g \succeq h\}$ and $\{\lambda \in [0, 1] : h \succeq \lambda \cdot f + (1 - \lambda) \cdot g\}$ are closed in [0, 1]
- completeness: For all $f, g \in \mathscr{F}$ either $f \succeq g$ or $g \succeq f$
- c-independence For every f, g ∈ ℱ, h ∈ ℱ_c and α ∈ (0, 1) f ≽ g if and only if α ⋅ f + (1 − α) ⋅ h ≽ α ⋅ g + (1 − α) ⋅ h

A choice correspondence C^{o} is **Invariant Biseparable** if it satisfies the following axioms:

- WARP If $A, B \in \mathfrak{I}$ are such that $B \subseteq A$ and $C^{\circ}(A) \cap B \neq \emptyset$ then $C^{\circ}(B) = C^{\circ}(A) \cap B$;
- non degeneracy there are $f, g \in \mathscr{F}$ such that $f = C^o(\{f, g\})$;
- monotonicity For every $f, g \in \mathscr{F}$, if $f(s) \in C^{\circ}(\{f(s), g(s)\})$ for all $s \in S$ implies $f \in C^{\circ}(\{f, g\})$;
- continuity For any $f, g, h \in \mathscr{F}$ the sets $\{\lambda \in [0, 1] : \lambda \cdot f + (1 - \lambda) \cdot g \in C^{\circ}(\{\lambda \cdot f + (1 - \lambda) \cdot g, h\})\}$ and $\{\lambda \in [0, 1] : h \in C^{\circ}(\{\lambda \cdot f + (1 - \lambda) \cdot g, h\})\}$ are closed in [0, 1];

• **c-independence** For every $A \in \mathfrak{I}$, $h \in \mathscr{F}_c$ and $\alpha \in (0, 1)$ $C^{\circ}(\alpha \cdot A + (1 - \alpha) \cdot h) = \alpha \cdot C^{\circ}(A) + (1 - \alpha) \cdot h$

Two preference relations \succeq^* and \succeq can satisfy the following axioms:

- Consistency $f \succeq^* g$ implies $f \succeq g$;
- **Caution** For $f \in \mathscr{F}$ and $g \in \mathscr{F}_c$, $f \not\geq^* g$ implies $g \succeq f$

The "subjective" choice correspondence $C^o: \mathfrak{I} \to \mathfrak{I}$ and the potential completion criteria $\{\succeq_i\}_{i=1}^N$ can be related by the following axioms:

- Consistency Toward Criteria If $f \succeq_i g$ for i = 1, ..., N implies that $f \in C^o(\{f, g\})$
- Caution Toward Criteria For $f \in \mathscr{F}$ and $g \in \mathscr{F}_c$ if $\exists i \in \{1, 2, ..., N\}$ such that, $f \not\succeq_i g$ implies $g \in C^o(\{f, g\})$

- For each act f ∈ ℱ we denote with c_i^f ∈ ℱ_c the certainty equivalent of the act f with respect to the preference relation ≿_i
- The certainty equivalent of act $f \in \mathscr{F}$ with respect to the choice correspondence $C^o: \mathfrak{I} \to \mathfrak{I}$ is defined as the constant act $c_o^f \in \mathscr{F}_c$ such that we have both $c_o^f \in C^o\left(\{f, c_o^f\}\right)$ and $f \in C^o\left(\{f, c_o^f\}\right)$
- Criteria Uncertainty Aversion (CUA) For every act $f \in \mathscr{F}$,

$$\begin{split} f_{j} \in \mathscr{F} \, j = 1, \dots J, \text{ and every number } \alpha_{j} \geq 0 \text{ such that } \sum_{j=1}^{J} \alpha_{j} = 1, \text{ if } \\ f \succeq_{i} \sum_{j=1}^{J} \alpha_{j} \cdot c_{i}^{f_{j}} \text{ for } i = 1, \dots, N \text{ then } f \in C^{o} \left(\left\{ f, \sum_{j=1}^{J} \alpha_{j} \cdot c_{o}^{f_{j}} \right\} \right) \end{split}$$

Lemma 1 (1/3)

Lemma 1. \succeq^* is **Bewley**; $\{\succeq_i\}_{i=1}^N$ and C^o are **invariant biseparable**; $\{\succeq_i\}_{i=1}^N$ are **consistent** with respect to \succeq^* ; C^o satisfies **criteria uncertainty aversion**. Under these assumptions there exists a nonempty closed and convex set \mathscr{C} of probabilities on Σ , a nonconstant function $u: X \to \mathbb{R}$, several monotonic, constant additive and positively homogenous linear functionals $\{I_i : B_0(\Sigma) \to \mathbb{R}\}_{i=1}^N$ and $I_o : B_0(\Sigma) \to \mathbb{R}$ and a closed and convex set $\Gamma \subseteq \Delta(\{1, 2, ..., N\})$ such that for every $f, g \in \mathscr{F}$ and $A \in \mathfrak{I}$ we have that:

$$f \succeq^{*} g \iff \int_{S} E_{f(s)} u \cdot dp(s) \ge \int_{S} E_{g(s)} u \cdot dp(s) \ \forall p \in \mathscr{C}$$
$$f \succeq_{i} g \iff I_{i}(E_{f}u) \ge I_{i}(E_{g}u) \text{ for } i = 1, \dots, N$$

$$C^{\circ}(A) = \underset{f \in A}{\operatorname{argmax}} \left\{ I_{o}(f) \right\} = \underset{f \in A}{\operatorname{argmax}} \left\{ \underset{\gamma \in \Gamma j=1}{\min \sum_{j=1}^{N}} \gamma_{j} \cdot I_{j}(f) \right\}$$

Moreover, in this case, ${\mathscr C}$ is unique and u is unique up to positive affine transformations.

Lemma 1 (2/3)

Proof of Lemma 1. (Sketch)

- Step1: find the functional representations of all the preference relations and of the choice correspondence
- Step 2: notice that all the subjective preference relations are consistent with
 [→]* and we have that u^{*} = u^o = u¹ = ··· = u^N := u
- Step 3: By consistency we have that $\succeq^* \subseteq \succeq_i$ and Proposition A.1 of GMM(2004) delivers $\mathscr{C}^i \subseteq \mathscr{C}^*$. Hence we have that for any $f \in \mathscr{F}$: $\min_{p \in \mathscr{C}^*} \int_{S} E_{f(s)} u \cdot dp(s) \leq \min_{p \in \mathscr{C}^i} \int_{S} E_{f(s)} u \cdot dp(s) \leq I_i(E_f u)$
- Step 4: denote with R = R(I) the range of the vector $I = (I_1(\cdot), \dots, I_N(\cdot))$ and show that that there exists a function $\phi : R \to \mathbb{R}$ such that for each $f \in \mathscr{F}$ we have that $I_o(f) = \phi(I(f))$
- Step 5: extend ϕ by successive steps to $\mathbb{R}^{\mathbb{N}}$ retaining monotonicity, concavity, positive homogeneity and constant additivity
- Step 6: by an application of the supporting hyperplane theorem we have that $\phi(x) = \min_{\gamma \in \Gamma} \sum_{j=1}^{N} \gamma_j \cdot x_j$ for all $x \in R$

12/18

Lemma 1 (3/3)

Corollary. Under the assumptions of Lemma 1, if the there exists $\overline{i} \in \{1, \ldots, N\}$ such that $\succeq_{\overline{i}}$ satisfies cautiousness with respect to \succeq^* and the standard vector $e_{\overline{i}} \in \Gamma \subseteq \triangle(\{1, 2, \ldots, N\})$, where $e_{\overline{i}}$ is the standard vector of $\mathbb{R}^{\mathbb{N}}$ that assigns probability 1 to the element \overline{i} , then we have that the following holds:

$$f \succeq^{*} g \Leftrightarrow \int_{S} E_{f(s)} u \cdot dp(s) \ge \int_{S} E_{g(s)} u \cdot dp(s) \ \forall p \in \mathscr{C}$$
$$C^{o}(A) = \underset{f \in A}{\operatorname{argmax}} \left\{ \underset{p \in \mathscr{C}}{\min} \int_{S} E_{f(s)} u \cdot dp(s) \right\}$$

Moreover, in this case, ${\mathscr C}$ is unique and u is unique up to positive affine transformations.

• **CUA** alone is not enough for having a GMMS(2010) representation result even if at least one of the potential criteria satisfies **caution**, in fact it is necessary that our decision maker consider possible to use only the cautious completion criteria

Lemma 2 (1/2)

Lemma 2. \succeq^* is **Bewley**; $\{\succeq_i\}_{i=1}^N$ and C^o are **invariant biseparable**; $\{\succeq_i\}_{i=1}^N$ are **consistent** with respect to \succeq^* ; C^o satisfy **consistency toward criteria** and **caution toward criteria**. If there exists $\overline{i} \in \{1, \ldots, N\}$ such that $\succeq_{\overline{i}}$ satisfies **caution** with respect to \succeq^* then we have that there exists a nonempty closed and convex set \mathscr{C} of probabilities on Σ and a nonconstant function $u: X \to \mathbb{R}$ such that:

$$f \succeq^{*} g \Leftrightarrow \int_{S} E_{f(s)} u \cdot dp(s) \ge \int_{S} E_{g(s)} u \cdot dp(s) \ \forall p \in \mathscr{C}$$
$$C^{o}(A) = \underset{f \in A}{\operatorname{argmax}} \left\{ \underset{p \in \mathscr{C}}{\min} \int_{S} E_{f(s)} u \cdot dp(s) \right\}$$

Moreover, in this case, ${\mathscr C}$ is unique and u is unique up to positive affine transformations.

Lemma 2 (2/2)

Proof of Lemma 2. (Sketch) It is possible to show that there exists \mathscr{C}^* and a unique *u* such that for any act $f \in \mathscr{F}$:

$$I_o(E_f u) \geq \min_{p \in \mathscr{C}^*} \int_S E_{f(s)} u \cdot dp(s)$$

If there exists \overline{i} such that $\succeq_{\overline{i}}$ satisfies caution then by Theorem 3 of GMMS(2010) we have that:

$$I_{o}(E_{f}u) \geq \min_{p \in \mathscr{C}^{*}} \int_{S} E_{f(s)}u \cdot dp(s) = \min_{p \in \mathscr{C}^{\overline{i}}} \int_{S} E_{f(s)}u \cdot dp(s) = I_{\overline{i}}(E_{f}u)$$

Suppose by contra that $I_o(E_f u) > \min_{p \in \mathscr{C}^*} \int_S E_{f(s)} u \cdot dp(s)$, then it is possible to find a constant act $g \in \mathscr{F}_c$ such that the following holds:

$$I_{o}(E_{f}u) > u(g) > \min_{p \in \mathscr{C}^{*}} \int_{S} E_{f(s)}u \cdot dp(s) = I_{\overline{i}}(E_{f}u)$$

But this latter inequality contradicts **Caution Toward Criteria** because for \overline{i} we have that $f \not\succeq_{\overline{i}} g$ but $f \in C^o(\{f, g\})$. Q.E.D.

From Preferences to Choice: a Completion Approach

15/18

- We constructed a framework in which it is possible to model and study the mental aggregation process that lead to the choice of a particular completion criteria
- We showed that only a really cautious decision maker will satisfy **GMMS (2010)** representation theorem

Work in Progress:

• Find a set of axioms that lead to a representation of the type $C^{o}(A) = \underset{f \in A}{\operatorname{argmax}} \left\{ \min_{\gamma \in \Gamma} \left[\sum_{j=1}^{N} \gamma_{j} \cdot I_{j}(f) + c(\gamma) \right] \right\} \text{ in order to model the idea that a decision maker could be biased toward some potential completion criteria}$ Thank you.

Bibliography

- Simone Cerreia-Vioglio, Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini.
 Niveloids and their extensions: Risk measures on small domains. Technical report, Igier Working Paper n.458, 2012.
- Hervé Crès, Itzhak Gilboa, and Nicolas Vieille. Aggregation of multiple prior opinions. Journal of Economic Theory, 146(6):2563–2582, 2011.
- Paolo Ghirardato, Fabio Maccheroni, and Massimo Marinacci. Differentiating ambiguity and ambiguity attitude. Journal of Economic Theory, 118(2):133–173, 2004.
- Itzhak Gilboa, Fabio Maccheroni, Massimo Marinacci, and David Schmeidler.

Objective and subjective rationality in a multiple prior model. *Econometrica*, 78(2):755–770, 2010.

Itzhak Gilboa and David Schmeidler. Maxmin expected utility with non-unique prior. Journal of Mathematical Economics, 18(2):141–153, 1989.