Projeded Entangled-Pair States: propartiesand applications

F. Verstracteand J.I.Crac

MAX-PLANO INSTIUTFÜRQUANTENOPTIK
Pisa, 14 Deearber 2004

Mary-body quantumsystems

- Many-body quantumsystensarediffialt to describe

Weneed ©Uficientstorepreent a state

- Todeterminephysical quantitites(expectation values) an exponential number of computations is required.

Solutions:

- Onemay usea quantumcomputer (Lloyd):

$$
U=e^{-i H t}+e^{-i H_{1} t_{1}} e^{-i H_{2} t_{2}} \ldots e^{-i H_{N} t_{N}}
$$

 gate laser
000000
000000
storage unit

- Onemay usean anal oguesystem(Fegnman):

(eg. Hoffstäte, Orac, Zalle, Detle, and Lukin)

- Onemay try with a dassical computer:

Numrical Methods:

- MonteCarlomethods:
- It worksvery well in 1,2, and 3D.
- It hasthe,sign"problem

Problens with Fermions or frustration cannot besimulated.

- It isdiffialt tosimulatedynarics
- Density Matrix Renormalization Group (DMRG): (White 1991).
- It hasno,sign"problem
- Worksfor 1D systems:
- Ground statein problens with qpen boundary conditions
- Timedependencefor Hariltonian systems and purestates with OBC.
(Vidal, White, Sohdwöck \& al)
- Finitetemperaturefor infinitehomogeneoussystems.

Thistalk:

- Motivated by Q Tidæas:

Prgeeted-pair entangledstates

- Application: Numrical algorithms:

$$
Q T \curvearrowleft M P
$$

1D:

- Ground state(qpen boundary conditions) = DMRG
- Ground state (periodi cboundary conditions).
- Finitetemperature(finiteand inhormgeneous).
- Optimal timedependent mehods
- Dissipativesystems
- Randomsysteme
- Exatationsand spedral fundions.
- Kondoproblems
- ...

2D and highe dimensions:

- Application: 1-way quantumcomputing and eror correetion.
- Physical systems: the dhicken and theegg. .

Collaborations: D. Porras, J.J. GarciaRipdl, V. Murg, B. Paredes(MPQ) Numaics
U. Schdlwödk (Aachen), J. von Deft (LMU) Kondo
M.A. Martin-Dedgado (Madrid) General
C. Schön, E. SolanoandM. Wdf (MPQ) Physical Systens
J.I. Latorre, E. Rico(Barodona)

Many-body quantumsystems

- Many-body quantumsystensarediffialt to desribe

$$
|\Psi\rangle=\sum c_{i_{1}, i_{N}}\left|i_{1}, \ldots, i_{N}\right\rangle
$$

Wened ©afficientstorepreent astate

- Todeterminephysical quantitites(expedation values) an exponential number of computations is required.

Próeted entangled-pair states

- Farily of states
- Important quantity: D: Number of paramterscharaderizing thestate.

- With relatively small D, onecan repreent physically relevant states
- Onecan determinephysical propetiesin an effiaient way.

1. Definition

GHZ states:

where

$$
P=|0\rangle\langle 0,0|+|1\rangle\langle 1,1| \quad \text { maps } \quad:^{2} \otimes:^{2} \rightarrow \mathbf{:}^{2}
$$

1D states

where

- D-dimensional
$|\Phi\rangle=\sum_{m=1}^{D}|m, m\rangle \quad$ aremaximally entangled states
$P_{k}=\sum_{n=1}^{2}|n\rangle\left\langle\varphi_{n}^{k}\right| \quad$ maps $\quad \boldsymbol{:}^{D} \otimes \boldsymbol{\zeta}^{D} \rightarrow 女^{2}$

2D states

$$
\begin{gathered}
P_{k}=\sum_{n=1}^{2}|n\rangle\left\langle\varphi_{n}^{k}\right| \\
\text { maps } \\
:^{D} \otimes:^{D} \otimes 母^{D} \otimes:^{D} \rightarrow \mathbf{:}^{2}
\end{gathered}
$$

Genera:

Mixed PEPS

wheretheP arenow Complety PositiveMaps

$$
P_{k}: B\left[:^{D} \otimes:^{D}\right] \rightarrow B\left[:^{2}\right]
$$

Wecan also usepurifications

$$
\rho=\operatorname{Tr}\left(\left|\Psi_{\text {PEPS }}\right\rangle\left\langle\Psi_{\text {PEPS }}\right|\right)
$$

2 Propaties

- Thej arecomplete.

Proof: viateleportation

- They areground state of local Hariltonians:

$$
H|\Psi\rangle=E_{0}|\Psi\rangle
$$

- Thej satisfy thearea theorem a requirement for describing physical states
- In 1D they coincidewith: Finitdy corrdated states(Fannest al) Matrix product states(Römer and Ostlund)

$$
P_{k}=\sum_{n=1}^{2}|n\rangle\left\langle\varphi_{n}^{k}\right|=\sum_{i_{k}=1}^{2}\left[A_{k}^{i_{k}}\right]_{\alpha, \beta}\left|i_{k}\right\rangle\langle\alpha, \beta| \Longrightarrow|\Psi\rangle=\sum_{i, \ldots, i_{N}=0}^{1} \operatorname{Tr}\left(A_{1}^{i_{i}^{i}} A_{2}^{i_{2}} . . A_{N}^{i_{N}}\right)\left|i_{1}, \ldots, i_{N}\right\rangle
$$

- In 2D thej extend FCSandMPS.
- Expetation values of dbservableshaveasimpleform

PEPSin 1D

$$
\begin{aligned}
& P_{k}=\sum_{n=1}^{2}|n\rangle\left\langle\varphi_{n}^{k}\right|=\sum_{i_{k}=1}^{2}\left[A_{k}^{i_{k}}\right]_{\alpha, \beta}\left|i_{k}\right\rangle\langle\alpha, \beta| \Longrightarrow|\Psi\rangle=\sum_{i_{i}, \ldots i_{N}=0}^{1} \operatorname{Tr}\left(A_{1}^{i} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1}, \ldots, i_{N}\right\rangle
\end{aligned}
$$

Finitdy corrdated states(Fanneset al) Matrix produd states(Römer and Ostlund)

- Corrdation fundions:

$$
\left\langle\sigma_{x}^{i} \sigma_{y}^{j}\right\rangle=\frac{\operatorname{Tr}\left[E_{1} E_{2} \ldots X_{i} E_{i+1} \ldots Y_{j} E_{j+1} \ldots E_{N}\right]}{\operatorname{Tr}\left[E_{1} E_{2} \ldots E_{N}\right]}
$$

Representation

- States

- Corrdationfundions:

PEPSin $2 D$

Representation

States:

$D \times D \times D \times D \times 2$ tensor

Correation fundions:

Problem when contrading, theindiosprdiferate
This happensfor tensor with morethan 2 indics

$$
\sum_{\alpha} E_{\alpha \beta \gamma \delta} E_{\alpha \varepsilon \kappa \lambda}=M_{\beta \gamma \delta \kappa \kappa \lambda}
$$

3. Grandstate(1D)

IDEA: For agiven D, find theqptimal which pinimizestheenergy.

A_{k}
Hariltonian: $\quad H=\sum_{x=1}^{N} H_{x}+\sum_{x, y=1}^{N} H_{x, y}+\ldots$
Wewant tofind $\quad \min _{\Psi \text { PEPS }} \frac{\langle\Psi| H|\Psi\rangle}{\langle\Psi \mid \Psi\rangle} \geq E_{0}$
Procedure:

- Fix all A'sercept for one A_{k}
- Minimizewith resped to A_{k}

Onehas tosd vea (generalized) eigenvalue problem

- Iterate
- Theprocessconverges

1) Open boundary conditions:

It coindideswith DMRG
2) Periodicboundary conditions:
(Vestrazte, Porras, Orac, PRL 2004)

It autpeformsDMRG

$$
H=\sum_{\langle k, j\rangle}\left(\sigma_{x}^{k} \sigma_{x}^{j}+\sigma_{y}^{k} \sigma_{y}^{j}+\sigma_{z}^{k} \sigma_{z}^{j}\right)
$$

Trans ationally invariant systems: Exátations

(Porras, Vestrade, Orac, in preparation)

- Imposing $|\Psi\rangle=\sum_{i, \ldots, i_{N}=0}^{1} \operatorname{Tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1}, \ldots, i_{N}\right\rangle \quad$ wewill not get a 11 state
- Wecan imposes

$$
|\Psi\rangle=\sum_{n=1}^{N} \mathrm{~T}^{n} \sum_{i_{1}, \ldots, i_{N}=0}^{1} \operatorname{Tr}\left(A_{1}^{i_{1}^{i}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1}, \ldots, i_{N}\right\rangle
$$

- Wecan dbtain exátationswith agiven momentumby choosing:

$$
\begin{gathered}
\left|\Psi_{k}\right\rangle=\sum_{n=1}^{N} \mathrm{~T}^{n} e^{i k n / N} \sum_{i_{1}, \ldots, i_{N}=0}^{1} \operatorname{Tr}\left(A_{1}^{i_{1}} A_{2}^{i_{2}} \ldots A_{N}^{i_{N}}\right)\left|i_{1}, \ldots, i_{N}\right\rangle \\
E(k)-E_{0} \\
k
\end{gathered}
$$

- Wecan also dbtain exaitationsfor k=O imposing

$$
\left\langle\Psi \mid \Psi_{0}\right\rangle=0
$$

4. Optimal dimensional reduction

- Wedarived an algorithmto determinethebest approximation by aPEPS
- Given windthePEPS, wishfixed D for which

I dea: - Fix all matrioes A at all locationsexopt for oneat k.

- Find theA'sat thek-thlocation by minimizing

$$
\left\|\Psi-\Psi_{D}\right\|
$$

Note $\left\|\Psi-\Psi_{D}\right\|^{2}=c+\left\langle\Psi_{D} \mid \Psi_{D}\right\rangle-\left\langle\Psi_{D} \mid \Psi\right\rangle-\left\langle\Psi \mid \Psi_{D}\right\rangle$
thuswehavetosdve $\quad M \stackrel{\rightharpoonup}{x}=\stackrel{\rightharpoonup}{b}$

- Iteate

In partiallar: If чंsitsdf aMPSor asuperposition of MPS, thisisvery efficient.
Optimal dimensional redudion:
Given Ψ weecan find theqptimal with nthirral distanceand
$D<D^{\prime}$.

Application I: contrading tensors

Tensorsin a2D configuration

I. reduction

Contradingtensors: Applications

1) Correlation fundions in 2 and higher dimensions:
2) Classical partition fundion in 2 or highe dimensions:
3) Finitetemparaturein 1D:
(equival ent toevaluating thepartition fundiain

- Finite
- Inhormgeneaus for a dassical modd in 2D)

Example BoseGasin an qptical lattice

Application 2: timeevdution

Optimal dimensional redudion

$$
\delta t=e^{-i H \delta t}+1-i H \delta t
$$

Optimal dimensional redudion

Ascompared to themethod devel qped by G. Vidal (sealso White, Schdl/wök and coll):

- I s variational (i.e, qptimal) although may beslowe.
- Worksfor arbitrary interadions
- Worksfor perioolicboundary conditions.

Timeerdution: Applications

1) Finitetemperature

Detrminethetimeerdution in imaginary time

$$
\begin{aligned}
\rho(0)=1 & \rightarrow \rho(T)=\underbrace{e^{-\beta H / 2}} 1 e^{-\beta H / 2}=e^{-\beta H} \\
& e^{-\beta H / 2 M} e^{-\beta H / 2 M} \ldots e^{-\beta H / 2 M}
\end{aligned}
$$

Verstrate, Porras andOrrac, PRL 2004: Usppurification and timeqptimal.
Vidal and Zwoak, PRL 2004: Extension of G. Vidal'smehod
treet as a veetopand dotimeevdution.
Illustration:

2) Decoherence:

$$
\begin{aligned}
& \frac{d}{d t} \rho=-i[H, \rho]+\mathrm{L} \rho \quad \text { Master equation } \\
& H=\sum_{k}\left(\sigma_{x}^{k} \sigma_{x}^{k+1}+\sigma_{y}^{k} \sigma_{y}^{k+1}\right)+h \sum_{k} \sigma_{x}^{k} \\
& \mathrm{~L} \rho=\gamma \sum_{k}\left(\sigma_{z}^{k} \rho \sigma_{z}^{k}-\rho\right)
\end{aligned}
$$

3) Soin glasses:

$$
\begin{aligned}
& H=\sum_{k} J_{k} \sigma_{z}^{k} \sigma_{z}^{k+1}+h \sum_{k} \sigma_{x}^{k} \\
& \text { where } J_{k}= \pm 1
\end{aligned}
$$

wewant to determineaveraged quantitiesover all realizations.

Idea: conside thesystem

$$
\begin{aligned}
& H=\sum_{k} s_{z}^{k} \sigma_{z}^{k} \sigma_{z}^{k+1}+h \sum_{k} \sigma_{x}^{k}
\end{aligned}
$$

$$
e^{-i H t}\left|\Psi_{0}\right\rangle(|0\rangle+|1\rangle)^{\otimes N}=\sum_{s_{1}, \ldots, s_{N}=0}^{1}\left|s_{1}, \ldots, s_{N}\right\rangle e^{-i H_{s} t}\left|\Psi_{0}\right\rangle
$$

- Expetation values:

$$
\langle A \otimes 1\rangle=\sum_{s_{1}, \ldots, s_{N}=0}^{1}\left\langle\Psi_{0}\right| e^{-i H_{s} t} A e^{-i H_{s} t}\left|\Psi_{0}\right\rangle=\langle\langle A\rangle\rangle
$$

- Adiabaticalgorithms Grudstatepropaties
- Aher initial states Cerrd tedglasses

Contradingtensors+ Timeevdution: 2D systems

2D Systems:

$$
H=\sum_{\langle k, j\rangle}\left(\sigma_{x}^{k} \sigma_{x}^{j}+\sigma_{y}^{k} \sigma_{y}^{j}+\sigma_{z}^{k} \sigma_{z}^{j}\right)
$$

5. PEPSin QuantumQotics

(C. Schön, E. Sdano, M. Wdf, I. Crac, in preparation)

Photon generators:

Cavity $O E D$
Rempe Kimble, Wather

Quantumdots
Yamamoto, Finle, Imarouglu, etc

General scheme:

Atomor quantumdot with D levds

Photon Exactation isproduced
\bullet
 Photon isproduced

What kind of states can thissystemproduce?

For N photons, theHilbet spacehas dimension
2^{N}
Wehaveacoessto DN parameers

General scheme:

$$
\begin{aligned}
& \begin{array}{c}
\text { Atomor quantumdot } \\
\text { withD levals }
\end{array} \\
& \qquad \begin{array}{c}
\text { Exatation } \\
\text { isproduced }
\end{array} \\
& \qquad \sum_{\alpha=1}^{D} \sum_{i_{1}=0}^{1} A_{\alpha}^{i_{1}}|\alpha\rangle\left|i_{1}\right\rangle
\end{aligned} \sum_{\alpha, \beta=1} \sum_{i_{1}=0}^{1} A_{\alpha}^{i_{i}^{i}} A_{\alpha \beta}^{i_{2}}|\beta\rangle\left|i_{1}\right\rangle\left|i_{2}\right\rangle
$$

Thegenerated statesare 1D PEPSwithD.

Other adivitieson © at MPQ

Localizableentanglement
F. Verstrąte M. Popp, M. Martin-Deggado

Gaussian states and channds
M. Wdf andN. Schuch

Entanglement flow
T. Oubitt and F. Verstraete

Entanglement and SSRules
F. Verstrate, N. Schuch

Q Computing with gobal pperations
K. Vallbredht

Physical implementations

- Trappedions
J. Garcia Ripoll, D. Porras
- Optical lattioes
K. Vollbreeht, E. Solano
- Quantumdats
H. Chist, B. Paredes

Entanglement detection
Quantum Oryptography
Channel capadities
G. Toth
F. Grossans

- Atoricensembles
K. Наттөя
M. Wdf, K. Vdlbreeht

References

Quantumcomputation and error corredion:
2D systems:
F. Verstrate

Problens with periodic boundary conditions:
F. Verstrate, D. Porras

Exatations:

Finitetemperature

Spoin gasses:
F. Vestracte J.J. GardiaRipoll, V. Murg
F. Vestracte, B. Paredes

Quantumqotical systems:
M. Walf, C Schön, E. Solano

