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Many-body quantum systemsMany-body quantum systems

| Ψ〉

1... 1| | ,...,
Ni i Nc i iΨ〉 = 〉∑

We need      coefficients to represent a state.2N

To determine physical quantitites (expectation values) an exponential
   number of computations is required.

Many-body quantum systems are difficult to describe.



Solutions:

One may use a quantum computer (Lloyd):

1 1 2 2 ... N NiH tiH t iH tiHtU e e e e−− −−= ✛

Quantum simulation may be the first application 
  of a quantum computer.

One may use an analogue system (Feynman):

For example, with trapped ions (NIST,Innsbruck)

(e.g. Hoffstäter, Cirac, Zoller, Demler, and Lukin) (Porras and Cirac)

One may try with a classical computer:



Monte-Carlo methods:

- I t works very well in 1,2, and 3D.

Problems with Fermions or frustration cannot be simulated.

Density Matrix Renormalization Group (DMRG): (White 1991).

- I t has no „sign“ problem.

- I t is difficult to simulate dynamics.

Ground state in problems with open boundary conditions.
Time-dependence for Hamiltonian systems and pure states with OBC. 

    (Vidal, White, Scholwöck et al)

Finite temperature for infinite homogeneous systems.
    (Nishino)

- I t has the „sign“ problem:

-  Works for 1D systems:

Numerical Methods:



This talk:
Motivated by QIT ideas:

Projected-pair entangled states

Application: Numerical algorithms:

1D: 
- Ground state (open boundary conditions) = DMRG.
- Ground state (periodic boundary conditions).
- Finite temperature (finite and inhomogeneous).
- Optimal time-dependent methods.
- Dissipative systems.
- Random systems.
- Excitations and spectral functions.
- Kondo problems 
- …

2D and higher dimensions: 

Collaborations: D. Porras, J.J. Garcia-Ripoll, V. Murg, B. Paredes (MPQ) Numerics
                        U. Schollwöck (Aachen), J. von Delft (LMU)                    Kondo
                        M.A. Martin-Delgado (Madrid)                                         General
                        C. Schön, E. Solano and M. Wolf (MPQ)                            Physical Systems
                        J.I . Latorre, E. Rico (Barcelona)                                       RG

Physical systems: the chicken and the egg…

Application: 1-way quantum computing and error correction.

QIT         CMP



Many-body quantum systems

| Ψ〉

1... 1| | ,...,
Ni i Nc i iΨ〉 = 〉∑

We need      coefficients to represent a state.2N

To determine physical quantitites (expectation values) an exponential
   number of computations is required.

Many-body quantum systems are difficult to describe.

All states

Physically
relevant



Projected entangled-pair states

Family of states.

Important quantity: D: Number of parameters characterizing the state.

All states
D
'D D>

'' 'D D>

2ND ✚

With relatively small D, one can represent physically relevant states.

One can determine physical properties in an efficient way.



1. Definition
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2D states:

General:
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Mixed PEPS

1P 2P 3P 4P 5P 6P

| Φ〉| Φ〉 | Φ〉 | Φ〉 | Φ〉

where the P are now Completely Positive Maps

We can also use purifications

( )PEPS PEPSTr | |ρ = Ψ 〉〈Ψ

PEPS| Ψ 〉

2: D D
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2. Properties:
- They are complete:

1P 2P 3P 4P 5P 6P

| Φ〉| Φ〉 | Φ〉 | Φ〉

...| Ψ〉

Proof: via teleportation

- Expectation values of observables have a simple form:

- In 1D they coincide with: Finitely correlated states (Fannes et al)
Matrix product states (Römer and Ostlund)
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- In 2D they extend FCS and MPS.

- They are ground state of local Hamiltonians:
0| |H EΨ〉 = Ψ〉

- They satisfy the area theorem: a requirement for describing physical states.



PEPS in 1D
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Finitely correlated states (Fannes et al)
Matrix product states (Römer and Ostlund)

[ ]
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Tr ... ... ...
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i i j j Ni j
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N
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E E E
σ σ + +  〈 〉 =Correlation functions:

2 2D D× matrices

Representation

1E 2E 3X 4Y 5E 6E

States:

Correlation functions:

1
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PEPS in 2D

States: Correlation functions:

Representation

iA iA iA iA

iA iA iA iA

iA iA iA iA

iA iA iA iA E E E E

E X E E

E E Y E

E E E E

2D D D D× × × × tensor
2 2 2 2D D D D× × × tensor

Problem: when contracting, the indices proliferate. E E Mαβγδ αεκλ βγδεκλ
α

=∑
This happens for tensor with more than 2 indices.



3. Ground state (1D)

IDEA: For a given D, find the optimal       which minimizes the energy.A

...
kA

1 2 N

,
1 , 1

...
N N

x x y
x x y

H H H
= =

= + +∑ ∑Hamiltonian:

We want to find 0
 PEPS

| |
min

|

H
E

Ψ

〈Ψ Ψ〉 ≥
〈Ψ Ψ〉

Minimize with respect to

Fix all A‘s except for one: kA

kA

One has to solve a (generalized) eigenvalue problem

Iterate.

Procedure:

...The process converges.



2) Periodic boundary conditions:

I t outperforms DMRG

( )
,

k j k j k j
x x y y z z

k j

H σ σ σ σ σ σ
〈 〉

= + +∑

1) Open boundary conditions:

I t coincides with DMRG
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1P 2P 3P 4P 5P 6P
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| Φ〉

(Verstraete, Porras, Cirac, PRL 2004)



Translationally invariant systems: Excitations
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We can obtain excitations with a given momentum by choosing:
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We can also obtain excitations for k=0 imposing
0| 0〈Ψ Ψ 〉 =

(Porras, Verstraete, Cirac, in preparation)



4. Optimal dimensional reduction

Given     find the PEPS,      , with fixed D for whichΨ DΨ DΨ − Ψ is minimal

We derived an algorithm to determine the best approximation
   by a PEPS.

Idea: Fix all matrices A at all locations except for one at k.

1
1
iA 2

2
iA 3

3
iA ? 5

5
iA 6

6
iA

Find the A‘s at the k-th location by minimizing 
DΨ − Ψ

2
| | |D D D D DcΨ − Ψ = + 〈Ψ Ψ 〉 − 〈Ψ Ψ〉 − 〈Ψ Ψ 〉Note

thus we have to solve M x b=
❒ ❒

I terate:

1
1
iA 2

2
iA 3

3
iA ?4

4
iA 6

6
iA

I f     is itself a MPS or a superposition of MPS, this is very efficient.Ψ

Given       we can find the optimal      with minimal distance and 'DΨ DΨ '.D D<

In particular:

Optimal dimensional reduction:



Application I : contracting tensors

E E E E

E E E

E E E

E

E

Tensors in a 2D configuration

E E E E

F F F F

is a MPS

E E EE

E E E E

reduction

contract
a row

E E EE

F F F F
is a MPS

G G G G

reduction

contract
a row



- Finite
- Inhomogeneous.

t
U

Example: Bose Gas in an optical lattice

U → ∞

Tonks gas

Paredes et al,
Nature 2004.

0T →

Schollwöck et al
PRL 2004.

DMRG calculations

U < ∞
0T >

Murg, Verstraete, JIC
in preparation

Contracting tensors: Applications

1) Correlation functions in 2 and higher dimensions:

3) Finite temperature in 1D: (equivalent to evaluating the partition functioin
 for a classical model in 2D)

2) Classical partition function in 2 or higher dimensions:



A A A A A A

tδ 1iH te iH tδ δ− −✚

Optimal dimensional reduction

B B B B B B

tδ 1iH te iH tδ δ− −✚

Optimal dimensional reduction

C C C C C C

As compared to the method developed by G. Vidal (see also White, Schollwöck and coll):

- Is variational (i.e., optimal) although may be slower.
- Works for arbitrary interactions.
- Works for periodic boundary conditions.

Application 2: time evolution



Time evolution: Applications

1) Finite temperature:

( )1 1k k k k k
x x y y x

k k

H hσ σ σ σ σ+ += + +∑ ∑
60 spins

-Valid for inhomogeneous
  systems.
- For T=0 recovers DMRG.
- More precise.

8 spins
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I llustration:

Determine the time evolution in imaginary time.

/ 2 / 2(0) 1 ( ) 1H H HT e e eβ β βρ ρ − − −= → = =
/ 2 / 2 / 2...H M H M H Me e eβ β β− − −

Verstraete, Porras, and Cirac, PRL 2004: Use purification and time optimal.
Vidal and Zwoelk, PRL 2004: Extension of G. Vidal‘s method
                                              treat     as a vector and do time evolution. ρ



2) Decoherence:
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8 spins
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GHZ



3) Spin glasses:
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where 1kJ = ±

we want to determine averaged quantities over all realizations.

Idea: consider the system
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Evolution:

Expectation values:
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Other initial states             Correlated glasses.

Adiabatic algorithms           Ground state properties.



2D Systems: ( )
,
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4x4
10x10
20x20

Contracting tensors + Time evolution: 2 D systems



5. PEPS in Quantum Optics5. PEPS in Quantum Optics

Photon generators:

Cavity QED 
Rempe, Kimble, Walther

Quantum dots 
Yamamoto, Finley, 

Imamouglu, etc

(C. Schön, E. Solano, M. Wolf, I . Cirac, in preparation)



What kind of states can this system produce?

For N photons, the Hilbert space has dimension 2N

We have access to DN parameters

General scheme:

Atom or quantum dot
with D levels

Excitation Photon 
is produced

Excitation Photon 
is produced



General scheme:

Atom or quantum dot
with D levels

Excitation Photon 
is produced

Excitation Photon 
is produced
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The generated states are 1D PEPS with D.



Other activities on QI at MPQOther activities on QI at MPQ

Localizable entanglement

F. Verstraete, M. Popp, M. Martin-Delgado

Entanglement and SSRules
F. Verstraete, N. Schuch

Gaussian states and channels
M. Wolf and N. Schuch

Q. Computing with global operations
K. Vollbrecht

Entanglement flow

T. Cubitt and F. Verstraete

Physical implementations

- Trapped ions
J. Garcia-Ripoll, D. Porras

- Atomic ensembles
K. Hammerer

Entanglement detection G. Toth

Quantum Cryptography F. Grossans

Channel capacities M. Wolf, K. Vollbrecht

- Optical lattices
K. Vollbrecht, E. Solano

- Quantum dots
H. Chist, B. Paredes
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