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An optical quantum computer?
| 0i ́  horizontally polarized single photon

| 1i ́  vertically polarized single photon

Very long decoherence times

Operations

State preparation

Single-qubit gates

Measurement

Current technology 
adequate for basic

experiments



Can we do an entangling gate?

CPHASE | xi| yi = (-1)xy | xi | yi

Impossible with linear optics alone

data

data

ancillas

linear
optics

Success: A single photon is 
measured at each port.  
Occurs with probability ¼.

Knill-Laflamme-Milburn (Nature, 2001) showed how to do this in
a non-deterministic but heralded fashion.

Failure: Data measured in
the computational basis.

An optical quantum computer?



KLM increase the probability of success using two steps.

Step 1

data

data

2n
ancillas

linear
optics

Success: A single photon is 
measured at each port.  
Occurs with probability
(n/(n+1))2.

Failure: Data measured in
the computational basis.

Making n large increases the
success probability, but makes 
doing the gate harder.

Sequential performance of the gate

Interact ancillas with data qubit 1.

Measure half the ancillas ! success probability n/(n+1).
Interact ancillas with data qubit 2.

Measure half the ancillas ! success probability n/(n+1).



Step 2 for increasing the probability of success: Probability 
of success can be boosted closer to 1 using quantum 
error-correction.

Disadvantage: Probability of success close to 1 requires 104-105

optical elements to do a single entangling gate.



Is there a better way?

We’ll use the n = 2 gate, which succeeds with probability (2/3)2.

Higher values of n turn out not to be necessary.

No error-correction is required.

More like 102 optical elements for a CPHASE gate.

The key is to combine the n = 2 KLM gate with the one way 
quantum computer or cluster state model of quantum 
computation (Raussendorf and Briegel, PRL 2001).



Overview of cluster-state computation

Three steps:
1. Prepare a many-qubit state, the cluster state.

2. Perform a sequence of adaptive single-qubit measurements
    on some subset of the cluster qubits.

3. The remaining qubits are the output of the computation.

These three steps can be used to simulate an arbitrary quantum
circuit.



Each node represents
a qubit in the cluster

We define the cluster state as the result of the following two-stage
preparation procedure.

1. Prepare each qubit in the state | +i ́  | 0i+| 1i

2. Apply a CPHASE gate between each pair of connected qubits.

I t doesn’t matter in which order the CPHASE gates are applied.

Defining the cluster state



Recipe to simulate a quantum circuit

Circuit to be simulated

| +i HZα1 HZα2

| +i HZβ1 HZβ2

The cluster-state simulation

1. HZα1

The gates HZα and 
CPHASE are universal.

2. HZ§α2

1. HZβ1 2. HZ§β2

U U

U



What happens if we measure a
cluster qubit in the computational basis?

1. I

Measuring a cluster qubit in the computational 
basis simply removes it from the cluster.



Combining cluster-state computation
with the KLM (2/3)2 gate

Suppose we’ve built up part of a cluster…

And now we attempt to add a qubit.

Success: With probability 2/3 we add a qubit to the cluster.

Failure: With probability 1/3 we lose a qubit from the cluster.

On average, we add 1/3 of a qubit to the cluster, per KLM gate.

Of course, it’s not enough just to build up a linear cluster, we need
a planar cluster.



Building general clusters using
the KLM (2/3)2 gate

Can build up a general cluster using similar random walk ideas.

Result: On average, we add 1/9 th of a qubit to the cluster
per KLM gate performed.



Summary
Basic KLM gate with success probability (2/3)2 can be used to
quickly build up clusters.

Why this works

Optical quantum computation (Nielsen, PRL, 2004).

1. Failure mode of KLM gate is a computational basis measurement.
Coincidentally, such a measurement simply deletes a cluster
qubit.

2. Because the cluster is a fixed state, it’s okay to lose a qubit,
provided we can rebuild.  In particular, losing quantum information
is not a problem!



What about noise?
A proposal for quantum computation should be able to tolerate 
a reasonable level of physical noise.

in abstract circuit models, the techniques of 
fault-tolerant quantum computation enable a 
threshold for quantum computation

For most proposals (e.g superconductors, KLM, ion trap,…) a physical
threshold value follows from straightforward modifications of
theoretical threshold constructions.

With clusters, fault-tolerance is less obvious.

In principle resolution found by Nielsen and Dawson 
(quant-ph, 2004).  C.f. Raussendorf (thesis, 2003)



Two problems in proving a threshold
1. I f we prepare too much of the cluster at once, some qubits

will decohere.

Possible solution

23. HZ§α

23. HZ §β

…

…
Only add extra qubits
slowly into the cluster:
“just-in-time” preparation.

2. I f we build the cluster up just-in-time, won’t the stochastic
nature of the KLM gate make erasing the cluster a possibility?

Yes, but this can be dealt with by building error-correction into
the cluster.



Basic idea

Quantum
circuit

FT
quantum
circuit

Cluster-
state

computation

   Noisy   
CSC

Q: Is it possible to map
noise in the CSC back
to equivalent noise in
the FT circuit?      

Q: Is “physically
reasonable” noise in the
CSC mapped back to
physically reasonable
noise in the FT circuit?

Noisy
FT

circuit

Yes! Such a mapping can
be constructed.  
(Involved.)



What properties does the noise mapping have?

Quantum
circuit

FT
quantum
circuit

Cluster-
state

computation

   Noisy   
CSC

Local, Markovian noise
in CSC

Noisy
FT

circuit

Local, non-Markovian
noise of about the same
strength.

Terhal / Burkard (2004):
There is a threshold for
local non-Markovian noise
in quantum circuits.

There is a threshold
for clusters!



Constructing the noise mapping for a toy example

1. HZα1 2. HZ§α2

| +i

| +i

| +i

HZα1

HZ§α2

| +i

| +i

| +i

HZα1

HZ§α2

Standard implementation Buffered implementation

σ HZα1| +i

σ‘ HZα2HZα1| +i

Two points of view: We’ll be interested in both ideal circuit, and 
the real implementation of the circuit, with noisy elements.



Constructing the noise mapping for a toy example

| +i

| +i

| +i

HZα1

HZ§α2

(Noisy) buffered cluster state computation

| +i

| +i

| +i

HZα1

HZ§α2

Equivalent to:

σ HZα1| +i

σ‘ HZα2HZα1| +i

σ HZα1| +i
σ‘ HZα2HZα1| +i



Constructing the noise mapping for a toy example

| +i

| +i | +iHZα1 HZ§α2 

In a more compact form

| +i

| +i | +iHZ§α1 HZ§α2

Insert classical circuitry explicitly.

0
0

σ HZα1| +i
σ‘ HZα2HZα1| +i

σ HZα1| +i
σ‘ HZα2HZα1| +i



Constructing the noise mapping for a toy example

| +i

| +i | +iHZ§α1 HZ§α2 

With classical circuitry

0
0

Change classical to quantum

| +i

| +i | +iHZ§α1 HZ§α2 

| 0i
| 0i

σ HZα1| +i
σ‘ HZα2HZα1| +i

σ HZα1| +i
σ‘ HZα2HZα1| +i



Constructing the noise mapping for a toy example
After changing classical to quantum

| +i

| +i | +iHZ§α1 HZ§α2 

| 0i
| 0i

σ HZα1| +i
σ‘ HZα2HZα1| +i

Inserting the identity:

| +i

| +i | +iHZ§α1 HZ§α2 

| 0i
| 0i

HZα2HZα1| +i

σ σ

HZα1| +i

σ σ



Constructing the noise mapping for a toy example

The cluster state computation The cluster state computation 
is made up of repeating blocks is made up of repeating blocks 
of the form:of the form:

| +i HZ§α1

σσ

When done perfectly this has When done perfectly this has 
the effect:the effect:

HZα 1

| +i

Intuitively, when some of the elements on the left areIntuitively, when some of the elements on the left are
done imperfectly, we will get a noisy version of the gate on thedone imperfectly, we will get a noisy version of the gate on the
right.right.



Constructing the noise mapping for a toy example

The rigorous connection to the noise model of Terhal and BurkardThe rigorous connection to the noise model of Terhal and Burkard
may be made using the may be made using the unitary extension theoremunitary extension theorem..

Inner product space T

Subspace S

Let U and V be unitaries on T.

The unitary extension theorem guarantees the existence of a unitary W
such that
(c) WS = VS

(d) | U - W |  · 2 | US – VS|  = 2 | US – VS|

U and V may have quite
different actions on T,
but be quite similar on S.

E.g., | U-V|  may be large, while
| US – VS|  is small.



Constructing the noise mapping for a toy example

Can extend the noise mappping to multiple-qubit cluster state Can extend the noise mappping to multiple-qubit cluster state 
computation using similar ideas.computation using similar ideas.

The extension to optical cluster-state computation involvesThe extension to optical cluster-state computation involves
similar ideas, but also some additional ideas to cope with the similar ideas, but also some additional ideas to cope with the 
occasional failure of the CPHASE.occasional failure of the CPHASE.



Conclusion

We are now doing numerical investigations of the
threshold, basing our approach on Steane’s
threshold construction.

Do simple proof-of-principle experiments.

Best possible threshold?

Develop better sources and detectors.

Goal is to see how (optical) cluster-state thresholds
compare with standard constructions.




