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Problem: a black box performs on the input         a random 
unitary transformation         from some group representation

|ψ〉
Ug

An abstract scenario

A black box performs on an input state |ψ〉 a random transformation Ug

belonging to some group representation:

Ug|ψ〉 Ug|ψ〉

Problem: We are asked to estimate the parameter g

Rules: Let’s assume that:

• the input state |ψ〉 is perfectly known

• any measurement on the output state |ψg〉
.
= Ug|ψ〉 is allowed.

3

We are asked to estimate the parameter g

Outline 

• Optimal detection strategy for covariant estimation 
(rotation, displacement, phase, ...) 

• Find the optimal state and the optimal measurement 
according to some figure of merit



• A review on phase estimation with any degenerate 
shift operator

• Covariant measurements for arbitrary group 
representations that maximise the likelihood

• Exploit all group representations (also equivalent)  

• Efficient use of quantum resources 

• A relevant application: absolute alignment of  
Cartesian reference frames

• Use N spins to encode the directions and exploit 
equivalent reps. to achieve sensitivity  ∝ 1/N2   



Mathematical description of 
quantum measurements

Pi ≥ 0 ,
∑

i

Pi = I

Measurement statistics - POVM

Given quantum system in state ρ

pi = Tr[ρPi]



Covariant POVMs

P (d g) = µ(d g)UgνU†
g

Positivity and normalization conditions are

ν ≥ 0 ,

∫
µ(dg)UgνU†

g = I



Generalize Holevo’s  solution of the problem of 
estimating a phase shift to any degenerate shift operator 

H with discrete spectrum S
(D’Ariano, Macchiavello, Sacchi, PLA 1998)

S=Zq    bounded
S=N      bounded from below
S=Z      unbounded

ρφ = e
−iφH

ρ0 e
iφH

A review on phase estimation



Find the optimal measurement and the optimal state 
for given cost function 
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two relevant examples: one concerning a multi-mode

phase estimation problem that arises in multi-path in-

terferometry; the other involving a shift operator that

is the difference between the number of photons of

two modes, corresponding to unconventional hetero-

dyne detection of the phase.

2. Optimal POM for the phase-shift estimation

We address the problem of estimating the phase-

shift φ pertaining to the unitary transformation

ρφ = e
−iφĤ ρ0 e

iφĤ, (1)

where Ĥ is a self-adjoint operator degenerate on the

Hilbert space H with discrete (un)bounded spectrum
S = Z, or S = N, or S = Zq, q > 0, and ρ0 is a
generic initial state (actually in the following we will
mostly restrict to the pure state case). The estimation
problem is posed in the most general framework of

quantum estimation theory [5] on the basis of a cost
function C(φ∗,φ), which weights the errors for the
estimate φ∗ given the true value φ. For a given a priori
probability density p0(φ) for the true value φ the

estimation problem consists in minimizing the average

cost,

C̄ =

2π∫
0

dφ p0(φ)

2π∫
0

dφ∗C(φ∗,φ) p(φ∗|φ), (2)

where p(φ∗|φ) is the conditional probability of esti-
mating φ∗ given the true value φ. The average cost is
minimized by optimizing the positive operator-valued

measure (POM) [5] dµ(φ∗) which gives the condi-
tional probability by the Born rule

p(φ∗|φ) dφ∗ = Tr[dµ(φ∗) e−iφĤρ0 eiφĤ]. (3)

We consider the general situation in which φ is a pri-
ori uniformly distributed, i.e. with probability density

p0(φ) = 1/2π. Moreover, we want to weight errors
independently on the value φ of the phase, but only

versus the size of the error φ∗ − φ, so that the cost
function becomes an even function of only one vari-

able, i.e. C(φ∗,φ) ≡ C(φ∗−φ). It follows that also
the optimal conditional probability will depend only

on φ∗ −φ, and the optimal POM can be obtained re-

stricting attention only to phase-covariant POMs, i.e.

of the form

dµ(φ∗) = e−iĤφ∗ξ eiĤφ∗ dφ∗
2π

, (4)

where ξ is a positive operator. satisfying the complete-
ness constraints needed for the normalization of the

POM
∫ 2π
0
dµ(φ) = 1. In fact, using Eq. (3) and the

invariance of trace under cyclic permutations one can

easily recognize that p(φ∗|φ) ≡ p(φ∗ − φ) if and
only if dµ(φ∗) is covariant. Hence the optimization
problem resorts to finding the best positive operator ξ
for a given cost function C(φ) and a generic given
state ρ0. As we will see, the POM obtained in this

way is optimal for a whole class of cost functions and

initial states ρ0. Once the best POM is obtained, one

further optimizes the state ρ0. This resorts to solving
a linear eigenvalue problem. In fact, the average cost

can be written as the expectation value of the cost op-

erator Ĉ , i.e.

C̄ = Tr[Ĉρ0], (5)

where

Ĉ =

∫
dµ(φ)C(φ). (6)

Using the Lagrange multipliers method to account for

normalization and mean energy one has to minimize

the function

L[ρ0] = Tr[Ĉρ0]− λTr[ρ0], (7)

which for a pure state |p0〉〈p0| is a quadratic form
whose minimum is given by the eigenvalue equation

Ĉ |p0〉 = λ|p0〉 (8)

with the Lagrange parameter λ playing the role of an
eigenvalue. The linear problem can be easily extended

to account also for finite mean energy.

In summary, our problem is to minimize the cost C̄
for a given cost functionC(φ) in Eq. (2). This is done
in two steps: (i) by optimizing the positive operator
ξ for given generic fixed state ρ0: this will give a
POM which is optimal for an equivalence class of

states E(ρ0); (ii) by further optimizing the state in the
equivalence class E(ρ0). Since the original state was
arbitrarily chosen, this will give the absolute minimum
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Minimise the average cost
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For and uniform a priori
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iφĤ, (1)
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we can always find an optimal COVARIANT POVM

Once the best POVM is found, one further 
optimises the input state 

In fact,  for any given POVM 
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Abstract

The problem of estimating a generic phase-shift experienced by a quantum state
is addressed for a generally degenerate phase shift operator. The optimal positive
operator-valued measure is derived along with the optimal input state. Two rel-
evant examples are analyzed: i) a multi-mode phase shift operator for multipath
interferometry; ii) the two mode heterodyne phase detection.

1 Introduction

dµ̃(φ) (1)

dµ(φ) =
dφ

2π
e−iĤφ(

∫
eiĤφ′

dµ̃(φ′)e−iĤφ′
)eiĤφ (2)

The problem of estimating the phase shift experienced by a radiation beam
has been the object of hundreds of studies in the last forty years [1]. The
problem arises because for a single mode of the electromagnetic field there is
no selfadjoint operator for the phase. This is due to the semiboundedness of
the number operator [2,3] which is canonically conjugated to the phase as a
Fourier-transform pair [4]. The most general and, at the same time, concrete
approach to the problem of the phase measurement is quantum estimation
theory [5], a framework that has become popular only in the last ten years in
the field of quantum information. The most powerful method for deriving the
optimal phase measurement was given by Holevo [6] in the covariant case. In
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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onal.TheoperatorĤisgenerallydegenerate,andwe

willdenoteby|n〉νachoiceof(normalized)eigen-
vectorscorrespondingtoeigenvaluen,νbeingade-
generacyindex,andbyΠntheprojectorontothecor-

respondingdegenerateeigenspace.Theproblemfor

aninputgenerallymixedstateρ0istoodifficulttoad-
dress:therefore,wefocusourattentiononthecaseof

purestateρ0=|p0〉〈p0|,andwewillleavesomegen-
eralassertionsonthemixedstatecaseforthefollow-

ing.TheproblemisrestrictedtotheHilbertspaceH‖
spannedbythe(normalized)vectors|n〉∝Πn|p0〉3
0withthechoiceofthearbitraryphasessuchthat

〈n|p0〉>0.HencethePOMcanbechosenofthe

blockdiagonalformonH=H‖⊗H⊥,i.e.dµ(φ)=
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onH⊥.FortheoptimizationofthePOMweconsider
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POMwillbeoptimalalsoforstateshavingzeropro-

jectionforsomen∈S.Inthisfashiontheproblem
isreducedtothe“canonical”phaseestimationprob-

lemrestrictedtoH‖:|p0〉→exp(iH‖φ)|p0〉,where
H‖=∑n∈Sn|n〉〈n|and|p0〉=∑n∈Swn|n〉.Nowthe
problemistofindthepositiveoperatorξ‖thatmin-
imizesthecostC̄inEq.(2).Onthe|n〉basisthe
operatorξ‖iswrittenas

ξ‖=∑
n,m∈S

|n〉〈m|ξnm.(9)

Foragenericeven2π-periodicfunctionC(φ)=

−∑∞
l=0clcoslφtheaveragecostisgivenby

C̄=−c0−
1
2

∞∑
l=1

cl∑
|n−m|=l

〈p0|n〉〈m|p0〉ξnm.(10)

PositivityofξimpliesthegeneralizedSchwartzin-
equalities

|ξnm|!√ξnnξmm=1,(11)

wherethelastequalitycomesfromthePOMcom-

pleteness∫dµ‖(φ)=1‖.Onecanwrite

sign(cl)∑
|n−m|=l

〈p0|n〉〈m|p0〉ξnm
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|n−m|=l

|〈p0|n〉||〈m|p0〉|,(12)
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ξnm=sign(c|n−m|)
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1
2
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|n−m|=l
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whereweputsign(0)=1,sincethecostC̄isin-

dependentofξnmforc|n−m|=0.Noticethatpositiv-
ityofξ‖isnotgenerallyguaranteedforanysetof
sign(cl).However,onecaneasilycheckthatξ‖>0

ifsign(c|n−m|)=exp[iπ(εn−εm)],εnbeinganyin-
tegervaluedfunctionofn.Infact,thischoicecorre-
spondstoaunitarytransformationoftheoperatorξ‖
optimizedwithallcl"0∀l"1(theparameterc0
isirrelevant).Theparticularchoicecl"0∀l"1

hasbeenconsideredbyHolevo[6],andincludesa
largeclassofcostfunctionscorrespondingtothemost

popularoptimizationcriteria,as(i)thelikelihoodcri-
terionforC(φ)=−δ2π(φ);(ii)the2π-periodic
“variance”forC(φ)=4sin

2
(φ/2);(iii)thefidelity

optimizationC(φ)=1−|〈p0|e
iĤφ|p0〉|2(herecl=

2∑|n−m|=l|wn|
2
|wm|

2
).FortheHolevoclassofcost

functionstheoptimalPOMbecomes

dµ‖(φ)=
dφ

2π|e(φ)〉〈e(φ)|,(14)

wherethe(Dirac)normalizablevectors|e(φ)〉are
givenby

|e(φ)〉=∑
n∈S

e
inφ

|n〉.(15)

Thevectors|e(φ)〉generalizetheSusskind1
Glogowerrepresentation|e

iφ〉=∑∞
n=0e

inφ|n〉for
genericintegerspectrum.Therefore,theoptimal

POMdµ(φ)istheprojectoronthestate|e(φ)〉in
theHilbertspaceH‖,anditisorthogonalforeither
S=Z,orS=Zq,whereasitisnotforS=N.Notice
thatthePOM(14)isalsooptimalforadensityma-
trixρ0whichisamixtureofstatesinH‖,withthe
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ity of ξ‖ is not generally guaranteed for any set of
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optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
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terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
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is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the

the problem is restricted to       spanned by 
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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onal. The operator Ĥ is generally degenerate, and we
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vectors corresponding to eigenvalue n, ν being a de-
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pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
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0 with the choice of the arbitrary phases such that
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on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-
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lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
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imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as
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|n〉〈m|ξnm. (9)
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l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
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Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
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ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write
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∑
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∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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cost and the corresponding set of optimal states and
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The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the

Hence, choose POVM block-diagonal on 
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-
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POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =
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n∈S n|n〉〈n| and |p0〉 =
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n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
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−∑∞
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Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)
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dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
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where the (Dirac) normalizable vectors |e(φ)〉 are
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n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1
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large class of cost functions corresponding to the most
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terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
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where the (Dirac) normalizable vectors |e(φ)〉 are
given by
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The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
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POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
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ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0
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onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
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and photon number.

radiation field. Number squeezing narrows the pho-

ton number distribution, with the possibility of
² 2: ² :achieving sub-Poissonian statistics DN - N

w xin photon counting 8 . This process has been investi-

gated extensively and can be experimentally achieved
w xby means of self-phase modulation in Kerr media 9 .

The inverse process, namely phase squeezing, is

the subject of the present Letter. We will consider

isotropic phase squeezing, namely squeezing of the

phase probability distribution independently of the

mean value of the phase. Such a process corresponds

to noise reduction in the measurement of phase, and

it would lead to important results for communica-

tions and measurements, such as improved sensitiv-

ity of interferometric schemes and the achievement

of the capacity of quantum communications based on

phase coding.

In the following we will prove that isotropic
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correspond to reversing the arrow of time. The arrow
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w xirreversible dynamics of open systems 10 . In quan-

tum-mechanical terms, it is associated to a loss of

coherence of the quantum state, e.g. dephasing

mechanism of the laser light, which corresponds to a
w xrandom walk on the phase space 11 . We will prove

that any dynamical process that isotropically reduces

the phase uncertainty can be described only in terms

of a ‘time-reversed dissipative equation’.

In the literature the Heisenberg-like heuristic in-

equality DNDfG1 for the couple number-phase is

often reported. However, its meaning is only semi-

classical, since the quantum phase does not corre-
w xspond to any self-adjoint operator 12–14 . There-

fore, in order to investigate isotropic phase squeez-

ing, we have first to introduce the concepts of phase

measurement and phase probability distribution in a

rigorous way.

The quantum-mechanical definition of the phase

is well assessed in the framework of quantum esti-
w xmation theory 15,16 . In this context the phase of a

quantum state is defined by the shift f generated by

any operator F with discrete spectrum. For example

Fsa†a for the harmonic oscillator, and Fss r2z

for a two-level system, s being the customary Pauliz

operator.

Quantum estimation theory provides a general

description of quantum statistics in terms of POVM’s
Ž .positive operator-valued measures and seeks the

optimal POVM to estimate one or more parameters

of a quantum system on the basis of a cost function

which assesses the cost of errors in the estimates. For

phase estimation, the optimal POVM for pure states
< : < < ix nc with coefficients c s c e /0 on the basisn n

< :n of F eigenvectors is given by

df
< : ² <dm f s e f e f 1Ž . Ž . Ž . Ž .

2p

for the class of Holevo’s cost functions – a large

class including the maximum likelihood criterion, the

2p-periodicized variance, and the fidelity optimiza-
Ž . < Ž .: Ž .tion. In Eq. 1 e f denotes the Dirac normaliz-

able vector

< : iŽnfyx n. < :e f s e n , 2Ž . Ž .Ý
ngS

w xwhere S is the spectrum of F. In Ref. 17 the
Ž . Ž .solution given in Eqs. 1 , 2 has also been proved

for phase-pure states, namely for states described by

a density operator r satisfying the condition

² < < : < < iŽ x nyx m.r ' n r m s r e , 3Ž .ˆnm nm

and for a nondegenerate phase-shift generator F1.

For states that are not of this kind, there is no

1
The set of phase pure states indeed has to be restricted

excluding the states D with D /0 only for iy jsnk, withˆ i j

ngN and k denoting an integer constant G2. In fact, those states

have phase properties that are periodic of 2prk. A simple

example is given by the superposition of two coherent states with

Ž .amplitude "a Schrodinger-cat like states , for which ks2.¨

True also for phase-pure states:  mixture of states in       s.t.  
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the

2π-periodic “variance”
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the

fidelity
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cost and the corresponding set of optimal states and

POM’s.

The solution of the optimization problem is conve-

niently posed in the representation where Ĥ is diag-

onal. The operator Ĥ is generally degenerate, and we

will denote by |n〉ν a choice of (normalized) eigen-
vectors corresponding to eigenvalue n, ν being a de-
generacy index, and by Πn the projector onto the cor-

responding degenerate eigenspace. The problem for

an input generally mixed state ρ0 is too difficult to ad-
dress: therefore, we focus our attention on the case of

pure state ρ0 = |p0〉〈p0|, and we will leave some gen-
eral assertions on the mixed state case for the follow-

ing. The problem is restricted to the Hilbert space H‖
spanned by the (normalized) vectors |n〉 ∝ Πn|p0〉 3
0 with the choice of the arbitrary phases such that

〈n|p0〉 > 0. Hence the POM can be chosen of the

block diagonal form on H = H‖ ⊗H⊥, i.e. dµ(φ) =
dµ‖(φ)⊕dµ⊥(φ) with dµ⊥(φ) any arbitrary POM
on H⊥. For the optimization of the POM we consider

Πn|p0〉 3 0 ∀n ∈ S, as it is clear that the resulting
POM will be optimal also for states having zero pro-

jection for some n ∈ S. In this fashion the problem
is reduced to the “canonical” phase estimation prob-

lem restricted to H‖: |p0〉 → exp(iH‖φ)|p0〉, where
H‖ =

∑
n∈S n|n〉〈n| and |p0〉 =

∑
n∈S wn|n〉. Now the

problem is to find the positive operator ξ‖ that min-
imizes the cost C̄ in Eq. (2). On the |n〉 basis the
operator ξ‖ is written as

ξ‖ =
∑
n,m∈S

|n〉〈m|ξnm. (9)

For a generic even 2π-periodic function C(φ) =

−∑∞
l=0 cl cos lφ the average cost is given by

C̄ = −c0 − 1
2

∞∑
l=1

cl
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm. (10)

Positivity of ξ implies the generalized Schwartz in-
equalities

|ξnm| !
√
ξnnξmm = 1, (11)

where the last equality comes from the POM com-

pleteness
∫
dµ‖(φ) = 1‖. One can write

sign(cl)
∑

|n−m|=l
〈p0|n〉〈m|p0〉ξnm

!
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (12)

and the equality is obtained only for

ξnm = sign(c|n−m|)

(notice that we chose 〈p0|n〉 > 0 ∀n ∈ S). The mini-
mum cost is

C̄ = −c0 − 1
2

∞∑
l=1

|cl|
∑

|n−m|=l
|〈p0|n〉||〈m|p0〉|, (13)

where we put sign(0) = 1, since the cost C̄ is in-

dependent of ξnm for c|n−m| = 0. Notice that positiv-
ity of ξ‖ is not generally guaranteed for any set of
sign(cl). However, one can easily check that ξ‖ > 0

if sign(c|n−m|) = exp[iπ(εn− εm)], εn being any in-
teger valued function of n. In fact, this choice corre-
sponds to a unitary transformation of the operator ξ‖
optimized with all cl " 0 ∀l " 1 (the parameter c0
is irrelevant). The particular choice cl " 0 ∀l " 1

has been considered by Holevo [6], and includes a
large class of cost functions corresponding to the most

popular optimization criteria, as (i) the likelihood cri-
terion for C(φ) = −δ2π(φ); (ii) the 2π-periodic
“variance” for C(φ) = 4 sin2(φ/2); (iii) the fidelity
optimization C(φ) = 1 − |〈p0|eiĤφ|p0〉|2 (here cl =
2

∑
|n−m|=l |wn|2|wm|2). For the Holevo class of cost

functions the optimal POM becomes

dµ‖(φ) =
dφ

2π
|e(φ)〉〈e(φ)|, (14)

where the (Dirac) normalizable vectors |e(φ)〉 are
given by

|e(φ)〉 =
∑
n∈S

einφ|n〉. (15)

The vectors |e(φ)〉 generalize the Susskind1
Glogower representation |eiφ〉 =

∑∞
n=0 e

inφ|n〉 for
generic integer spectrum. Therefore, the optimal

POM dµ(φ) is the projector on the state |e(φ)〉 in
the Hilbert space H‖, and it is orthogonal for either
S = Z, or S = Zq, whereas it is not for S = N. Notice
that the POM (14) is also optimal for a density ma-
trix ρ0 which is a mixture of states in H‖, with the

likelihood criterion
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)

Eigenvectors
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)

Take input
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)

Optimal POVM with
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation

for cosine and sine operators,

!Ĉ !Ŝ ! 1
2
|〈[Ĉ , Ŝ]〉| = 1

4
〈|0〉〈0|〉, (25)

as proved in Ref. [15].

4. Phase difference of two-mode fields

In the previous example, Ĥ was bounded from be-

low and S ≡ N, such that the degenerate case is re-
duced to the standard Holevo’s problem. For the dif-

ference operator Ĥ = a†a − b†b one has S ≡ Z, and
the set of eigenvectors |d〉ν can be written in terms of
the joint eigenvector |n〉|m〉 for the number operators
a†a and b†b with eigenvalues n and m as follows,

|d〉ν = |d + ν〉|ν〉,
d ∈ Z , ν ∈ [max(0,−d),+∞). (26)

We consider an initial state |p0〉 of the form

|p0〉 = h0|0〉|0〉+
+∞∑
n=1

(hn|n〉|0〉+ h−n|0〉|n〉), (27)

where the basis has been chosen to have hn ! 0,

∀n. The optimal POM can be written in the form of

Eq. (14) in terms of the vectors |λn〉, n ∈ Z, where
|λn〉 = |n〉0 ≡ |n〉|0〉 , n ! 0,

= |n〉|n| ≡ |0〉||n|〉 , n " 0. (28)

Here, the generalized Susskind1Glogower vector
|e(φ)〉 is given by
|e(φ)〉 =

∑
n∈Z

einφ|λn〉 ≡ |0〉|0〉

+
+∞∑
d=1

(ei dφ |d〉|0〉 + e−i dφ|0〉|d〉). (29)

Notice that, differently from the usual case of spectrum

S = N, now the POM is orthogonal (in the Dirac
sense),

〈e(φ)|e(φ′)〉 =
+∞∑

n=−∞
ein(φ−φ′) = δ2π(φ − φ′),

(30)

where δ2π(φ) is the Dirac comb. This means that in
this case it is possible to define a self-adjoint phase

operator

φ̂ =

+π∫
−π

dφ|e(φ)〉〈e(φ)|φ, (31)

as already noticed by Hradil and Shapiro [9,10].
We now address the problem of finding the nor-

malized state of the form (27) with a finite mean
photon number that minimizes the average cost evalu-

ated through the ideal POM (14). As a cost function
we choose again C(φ) = 4 sin2(φ/2) (periodicized-
variance criterion), corresponding to the cost operator

Ĉ = 2− e+ − e−, (32)

where

e+ =
∑
n∈Z

|λn+1〉〈λn|, e− = (e+)†. (33)

Introducing the energy operator Ê = a†a + b†b and
an additional Lagrange parameter accounting for finite

mean energy 〈Ê〉, the eigenvalue problem in Eq. (8)
can be rewritten as follows,

[Ĉ − λ′ − µ′(a†a + b†b)]|p0〉 = 0, (34)

where λ′ and µ′ are the Lagrange multipliers for nor-
malization and mean energy, respectively. The follow-

ing recursion relations for the coefficients hn are ob-
tained,

hn+1 + hn−1 − µ(λ + |n|)hn = 0, (35)
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multiplier λ, the eigenvalue equation (8) gives the re-
cursion for the coefficients wn of the form

wn + wn+2 − 2λwn+1 = 0. (23)

The solutions of Eq. (23) can be found in terms of
the Chebyshev’s polynomials, and the corresponding

optimal state written as follows,

|p〉 =
(
2

π

)1/2 ∞∑
n=0

sin[(n+ 1)θ]|n〉sym,

θ = arccosλ. (24)

The state in Eq. (24) is Dirac normalizable. It is for-
mally equivalent to the eigenstate of the cosine oper-

ator Ĉ of the phase of a single mode [14]. The Dirac
normalizability comes from the non-existence of nor-

malizable states that minimize the uncertainty relation
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2
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!Ĉ !Ŝ ! 1
2
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Quantum measurements that 
maximise the likelihood

          Consider arbitrary group transformation
   and look for the optimal strategy according to the       
                   maximum likelihood principle 
  (Chiribella, D’Ariano, Perinotti, Sacchi, PRA 2004)

An abstract scenario

A black box performs on an input state |ψ〉 a random transformation Ug

belonging to some group representation:

Ug|ψ〉 Ug|ψ〉

Problem: We are asked to estimate the parameter g

Rules: Let’s assume that:

• the input state |ψ〉 is perfectly known

• any measurement on the output state |ψg〉
.
= Ug|ψ〉 is allowed.
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Equivalent to a problem of covariant  state estimation

2

using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form

dM(x) = Ug(x) ΞU†
g(x) dx , (1)

where dx denotes the invariant measure on X induced by
invariant measure d g on G [27], and the positive kernel
operator Ξ belongs to the commutant G′

Ψ of the stability
group (i.e. [Ξ, Uh] = 0] , ∀h ∈ GΨ), and satisfies the
completeness constraint∫

X
dxUg(x)ΞU†

g(x) ≡
∫
G

d g UgΞU†
g = I . (2)
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using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form

dM(x) = Ug(x) ΞU†
g(x) dx , (1)

where dx denotes the invariant measure on X induced by
invariant measure d g on G [27], and the positive kernel
operator Ξ belongs to the commutant G′

Ψ of the stability
group (i.e. [Ξ, Uh] = 0] , ∀h ∈ GΨ), and satisfies the
completeness constraint∫

X
dxUg(x)ΞU†

g(x) ≡
∫
G

d g UgΞU†
g = I . (2)
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using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form

dM(x) = Ug(x) ΞU†
g(x) dx , (1)

where dx denotes the invariant measure on X induced by
invariant measure d g on G [27], and the positive kernel
operator Ξ belongs to the commutant G′

Ψ of the stability
group (i.e. [Ξ, Uh] = 0] , ∀h ∈ GΨ), and satisfies the
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g = I . (2)

2

using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form

dM(x) = Ug(x) ΞU†
g(x) dx , (1)

where dx denotes the invariant measure on X induced by
invariant measure d g on G [27], and the positive kernel
operator Ξ belongs to the commutant G′

Ψ of the stability
group (i.e. [Ξ, Uh] = 0] , ∀h ∈ GΨ), and satisfies the
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The optimal POVM is of the form:

2

using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form
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p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
define a function h(ĝ, g) on the group via the relation
h(ĝ, g) ≡ f(ĝx0, gx0) for fixed x0. Then, the function h is
positive (bounded from below), summable, and satisfies
h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫

G
d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
G d g h(g, e)

is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
∑
µ,ν

c∗µcν〈Ψµ|Ξ|Ψν〉 !
∑
µ,ν

|cµ||cν ||ξµν |

!
∑
µ,ν

|cµ||cν |
√

ξµµξνν !
(∑

µ

|cµ|
√

b−1
µ

)2

!
∑

µ

b−1
µ ,

where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ

eiϑµ

√
b−1
µ |Ψµ〉 , (16)

attains the bound (
∑

µ∈MΨ
|cµ|

√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
extended to the whole space H, in order to fulfill the
constraints Tr[IµµΞ] = b−1

µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
the presence of equivalent representations, one also wants

Take into account non-trivial stability group by replacing  
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p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
define a function h(ĝ, g) on the group via the relation
h(ĝ, g) ≡ f(ĝx0, gx0) for fixed x0. Then, the function h is
positive (bounded from below), summable, and satisfies
h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫

G
d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
G d g h(g, e)

is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
∑
µ,ν

c∗µcν〈Ψµ|Ξ|Ψν〉 !
∑
µ,ν

|cµ||cν ||ξµν |

!
∑
µ,ν

|cµ||cν |
√

ξµµξνν !
(∑

µ

|cµ|
√

b−1
µ

)2

!
∑

µ

b−1
µ ,

where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ

eiϑµ

√
b−1
µ |Ψµ〉 , (16)

attains the bound (
∑

µ∈MΨ
|cµ|

√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
extended to the whole space H, in order to fulfill the
constraints Tr[IµµΞ] = b−1

µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
the presence of equivalent representations, one also wants
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p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
define a function h(ĝ, g) on the group via the relation
h(ĝ, g) ≡ f(ĝx0, gx0) for fixed x0. Then, the function h is
positive (bounded from below), summable, and satisfies
h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫
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d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
G d g h(g, e)

is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
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where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ

eiϑµ

√
b−1
µ |Ψµ〉 , (16)

attains the bound (
∑

µ∈MΨ
|cµ|

√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
extended to the whole space H, in order to fulfill the
constraints Tr[IµµΞ] = b−1

µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
the presence of equivalent representations, one also wants
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using many copies of the same quantum system. In this
scenario, it is relevant for experiments to distinguish the
measurements achievable by local operations and classi-
cal communication (LOCC) from more general schemes
that require entanglement. Unfortunately, a useful clas-
sification of LOCC schemes is still missing. Alterna-
tively, one can give just a mathematical categorization
in terms of the POVM of the measurement: i) “indepen-
dent” measurements, corresponding to tensor product
of independent POVM’s; ii) “separable” measurements,
corresponding to POVM’s where each element is separa-
ble; iii) “non separable” or “entangled” measurements,
corresponding to POVM’s where some element is entan-
gled. In the first category measurements are performed
independently on each copy. In the separable class, on
the other hand, the measurement can be performed by
means of separable operations, hence all LOCC schemes
are included in this category. Notice, however, that not
all separable operations can be implemented locally (see,
e.g., the case of nonlocality without entanglement of Ref.
[20]). Finally, the class of entangled POVM’s represents
the most general scheme of measurement, and opens the
exponential growth of the Hilbert space dimension versus
the number of copies N , with the possibility of largely
surpassing the statistical efficiency of the independent
measurement schemes [21–24]. However, as already no-
ticed in Ref. [25], in the case of pure states and for the
maximum likelihood strategy, the optimal schemes can
be surprisingly achieved by separable measurements, and
here we address this issue for covariant measurements.
Under the general assumption of square-summable rep-
resentation we derive a general ”canonical form” for the
optimal measurements for pure input states, correspond-
ing to a POVM which is separable or entangled, depend-
ing on the group representation.

After introducing in Section II the precise formulation
of the covariant state estimation problem, in Section III
we derive some useful mathematical identities for group
integrals which are then used to algebraically character-
ize covariant measurements. This also helps us in deriv-
ing a simple upper bound for the maximum likelihood in
Section IV, along with the canonical form of the optimal
measurement given in terms of the group representation.
Examples of the canonical form are given in Section V in
dimension d < ∞ for the group SU(d)—corresponding
to the estimation of an unknown pure state—and in infi-
nite dimensions for the estimation of displacements on
the phase space. The case of multiple copies is then
analyzed, discussing the occurrence of entangled versus
separable POVM’s. For the estimation of displacements
on the phase space, the case of two copies experienc-
ing opposite shifts in momentum is also analyzed—the
continuous-variables analogue of the measurement of di-
rection of the angular momentum with two antiparallel
spins by Gisin and Popescu [26]. For coherent states it
is shown that such a scheme provides a better estimation
of the displacement as compared to the conventional case
of identical displacements.

II. THE PROBLEM

Whenever a quantum system S undergoes a physical
transformation belonging to a group G, its state is trans-
formed according to an appropriate representation of G
on the Hilbert space H of the system S. In the following,
we will consider the case in which the group G is a Lie
group which acts on H by a (projective) unitary repre-
sentation {Ug}, whereas the initial state—also called seed
state—is a pure state |Ψ〉. Notice that the correspon-
dence between transformed states and group elements is
generally not injective, since the state |Ψ〉 may have a
nontrivial stability group, say GΨ (we say that a group
element h belongs to the stability group GΨ of |Ψ〉 when
Uh|Ψ〉 = eiφh |Ψ〉, with φh a real phase). In this way
the transformed states are in one-to-one correspondence
with the cosets gGΨ: in other words the group-orbit man-
ifold (obviously invariant under the group representation
{Ug}) is identified with the coset space X = G/GΨ. We
see that in principle from the output state Ug|Ψ〉 it is pos-
sible to estimate the group element g of the transforma-
tion Ug only if the stability group GΨ of the input state
|Ψ〉 is trivial. Otherwise, we can estimate the coset x ∈ X
which is in one-to-one correspondence with the output
state |Ψx〉 = Ug(x)|Ψ〉, g(x) labeling any element of G in
the coset x. In the following we will denote by x0 ≡ eGΦ

the coset containing the identity element e, and the seed
state is relabeled accordingly as |Ψx0〉 ≡ |Ψ〉. This no-
tation makes explicit the isomorphism between the coset
space X and the homogeneous manifold of states |Ψx〉
x ∈ X, i.e. on which the group acts transitively through
its unitary representation as Ug|Ψx〉 ∝ |Ψgx〉 (apart from
a phase factor). In this way, the estimation of the param-
eter x ∈ X becomes equivalent to a problem of covariant
state estimation, and it was proved [19] that the optimal
probability distribution p(x|x0) of estimating x for in-
put state |Ψx0〉 satisfies the identity p(gx|gx0) = p(x|x0),
namely the probability distribution on the manifold X for
an input state Ug|Ψ〉 is equal to the probability distribu-
tion for input state |Ψ〉 but with the manifold shifted by
g−1. In the following we will suppose for simplicity that
the group G is unimodular (i.e. the left invariant mea-
sure d g on G is also right-invariant) and the stability
subgroup is compact. According to a theorem by Holevo
[19], for square-integrable representations the covariant
estimation is described by a POVM M on the probabil-
ity space X with density of the general form

dM(x) = Ug(x) ΞU†
g(x) dx , (1)

where dx denotes the invariant measure on X induced by
invariant measure d g on G [27], and the positive kernel
operator Ξ belongs to the commutant G′

Ψ of the stability
group (i.e. [Ξ, Uh] = 0] , ∀h ∈ GΨ), and satisfies the
completeness constraint∫

X
dxUg(x)ΞU†

g(x) ≡
∫
G

d g UgΞU†
g = I . (2)

Solution for pure state and arbitrary groups with square-
summable (projective) reps., left-invariant measure and 

compact stability group
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p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
define a function h(ĝ, g) on the group via the relation
h(ĝ, g) ≡ f(ĝx0, gx0) for fixed x0. Then, the function h is
positive (bounded from below), summable, and satisfies
h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫

G
d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
G d g h(g, e)

is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
∑
µ,ν

c∗µcν〈Ψµ|Ξ|Ψν〉 !
∑
µ,ν

|cµ||cν ||ξµν |

!
∑
µ,ν

|cµ||cν |
√

ξµµξνν !
(∑

µ

|cµ|
√

b−1
µ

)2

!
∑

µ

b−1
µ ,

where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ

eiϑµ

√
b−1
µ |Ψµ〉 , (16)

attains the bound (
∑

µ∈MΨ
|cµ|

√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
extended to the whole space H, in order to fulfill the
constraints Tr[IµµΞ] = b−1

µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
the presence of equivalent representations, one also wants
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p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
define a function h(ĝ, g) on the group via the relation
h(ĝ, g) ≡ f(ĝx0, gx0) for fixed x0. Then, the function h is
positive (bounded from below), summable, and satisfies
h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫

G
d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
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is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
∑
µ,ν

c∗µcν〈Ψµ|Ξ|Ψν〉 !
∑
µ,ν

|cµ||cν ||ξµν |

!
∑
µ,ν

|cµ||cν |
√

ξµµξνν !
(∑

µ

|cµ|
√

b−1
µ

)2

!
∑

µ

b−1
µ ,

where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ
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√
b−1
µ |Ψµ〉 , (16)
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∑
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√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
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µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
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h(ĝ, g) = h(g−1ĝ, e), e denoting the identity transforma-
tion. Now, thanks to covariance the average score can be
written as

s̄ =
∫
G

d g h(g, e) Tr[ρUgΞU†
g ]

=
[∫

G
d g h(g, e)

]
LM (ρ)[Ξ]

where

M (ρ) =
∫
G d g h(g, e)U†

gρUg∫
G d g h(g, e)

is a completely positive trace preserving map. Therefore,
the maximization of a goal function can be viewed as
a maximum likelihood scheme on the transformed state
M (ρ), and depending on the form of the function h the
choice of the input state may be restricted to special
states, possibly mixed. Nevertheless, in this paper we
will give a complete solution only for pure input states.

The problem is now to find a positive operator Ξ which
maximizes the likelihood functional Lρ[Ξ] = Tr[Ξρ], and,
at the same time, satisfies the completeness constraints
(2). Once an optimal Ξ is found, the presence of a non-
trivial stability group GΨ for |Ψ〉 can be taken into ac-
count by replacing Ξ with its group average over GΨ

Ξ =

∫
GΨ

d g UgΞU†
g∫

GΨ
d g

. (13)

Notice that the value of the likelihood functional remains
unchanged after this replacement, and the group average
is still optimal (it is easy to show that the same occurs
with M (ρ) in the case of a general goal function). As a
consequence of the Wedderburn decomposition (12), the
completeness constraint (2) for Ξ can be written as

Tr[IµνΞ] = δµνb−1
µ ∀µ ∼ ν . (14)

It is now convenient to decompose the input state |Ψ〉
over the invariant subspaces Hµ of the representation as
|Ψ〉 =

∑
µ cµ|Ψµ〉. This allows us to simply derive the

following chain of inequalities

LΨ[Ξ] =
∑
µ,ν

c∗µcν〈Ψµ|Ξ|Ψν〉 !
∑
µ,ν

|cµ||cν ||ξµν |

!
∑
µ,ν

|cµ||cν |
√

ξµµξνν !
(∑

µ

|cµ|
√

b−1
µ

)2

!
∑

µ

b−1
µ ,

where the sums range in the set MΨ of all invariant sub-
spaces which are nonorthogonal to |Ψ〉, LΨ[Ξ] denotes
the likelihood functional defined by the pure state |Ψ〉,
and ξµν denotes the matrix element 〈Ψµ|Ξ|Ψν〉. The
first inequality can be saturated by the choice ξµν =
ei(ϑµ−ϑν)|ξµν | where ϑµ is the phase of cµ. The second
inequality is a necessary condition for positivity of Ξ,
and saturates for |ξµν | =

√
ξµµξνν (notice that this in-

equality is not also a sufficient condition for positivity,
whence the positivity of the optimal Ξ must be checked
a posteriori). The third inequality is due to the fact that
ξµµ ! Tr[IµµΞ] = b−1

µ . Finally, the last Schwartz in-
equality sets the following general upper bound for the
maximum likelihood of covariant measurements

LΨ[Ξ] ≤
∑

µ∈MΨ

b−1
µ . (15)

In the case of a compact group the inequality (15) implies
that the likelihood is always less than the sum of dimen-
sions of invariant subspaces supporting |Ψ〉. For infinite
dimensions, on the other hand, the bound (15) and the
likelihood itself may diverge. One can see now that the
following choice of the operator Ξ

Ξ = |η〉〈η|, |η〉 =
∑

µ∈MΨ

eiϑµ

√
b−1
µ |Ψµ〉 , (16)

attains the bound (
∑

µ∈MΨ
|cµ|

√
b−1
µ )2 for the likelihood

functional. Note that, if |Ψ〉 has no component in some
irreducible subspace Hν , then the operator Ξ must be
extended to the whole space H, in order to fulfill the
constraints Tr[IµµΞ] = b−1

µ for all µ. Obviously, such
extension is generally not unique, e.g. one can take

Ξ = |η〉〈η| +
∑

ν $∈MΨ

b−1
ν |Φν〉〈Φν |, (17)

where |Φν〉 is any normalized vector in Hν , which both
guarantees Ξ ≥ 0 and satisfies the constraints Tr[IµµΞ] =
b−1
µ for all µ. Notice that the presence of equivalent rep-

resentations in Eq. (17) generally improves the likelihood
(this feature was missed in Refs. [15–17]).

If there are no equivalent representations in the de-
composition of |Ψ〉, then the kernel (17) averaged over
the stability subgroup GΨ of |Ψ〉 is optimal. However, in
the presence of equivalent representations, one also wants

with

4

p(x|x) of having the outcome equal to the true value for
any x. Because of covariance this optimality criterion is
equivalent to maximize the likelihood functional Lρ[Ξ] =
Tr[Ξρ] with ρ = |Ψ〉〈Ψ|, |Ψ〉 being the input state.

Notice that the general solution to the maximum likeli-
hood problem, which at first sight may appear of limited
value, is actually equivalent to the solution of any quan-
tum estimation problem with positive summable ”goal”-
function f(x̂, x) (the ”goal”-function is the opposite of
the customary ”cost”-function −f(x̂, x) [2]). This con-
sists in associating to each measurement outcome x̂ a
”score” f(x̂, x), with the function f(x̂, x) increasing ver-
sus x̂ for x̂ approaching the true value x. Then, the op-
timal measurement is the one which maximizes the aver-
age score. In a covariant estimation problem a mean-
ingful goal function must satisfy the invariance prop-
erty f(x̂, x) = f(gx̂, gx) ∀g ∈ G, and this allows to
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Solution
Take an input state |ψ〉 ∈ H

H = ⊕µ(Hµ ⊗ C
mµ)

Decompose       into irreducible subspaces with its multiplicitiesH

“The component of        on equivalent reps. are bi-orthogonal”|ψ〉

and  

such that |ψ〉 =

∑

µ

cµ|ψµ〉

〈ψµ|I
(µ)
m,m′ |ψµ〉 ∝ δm,m′

connects equivalent reps.I
(µ)
m,m′ = I

(µ) ⊗ |m〉〈m′|

Each           is of the Schmidt form |ψµ〉 |ψµ〉 =

rµ∑
i=1

√
σ

(µ)
i |i〉µ ⊗ |i〉



The optimal measurement

dµ = dimHµFor compact groups:

The value of the likelihood is given by  

∑

µ,i

|cµ|

√
dµσ

(µ)
i
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The likelihood is maximised by the POVM Mg = Ug|η〉〈η|U
†
g

with |η〉 =

∑

µ

ei arg cµ

√
dµ|φµ〉 , |φµ〉 =

rµ∑

i=1

|i〉µ ⊗ |i〉

 



Ingredients of the proof 

All inequalities leading to 〈ψ|Ξ|ψ〉 ≤


∑

µ,i

|cµ|

√
dµσ

(µ)
i
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are saturated
∫

dg UgOU†
g =

∑
µ,i,j

1

dµ

Tr[O I
(µ)
j,i ] I(µ)

i,jFrom Schur’s lemma 

〈ψµ|I
(µ)
m,m′ |ψµ〉 ∝ δm,m′ and the condition

the completeness                               of the POVM is proved
∫

dg UgΞU†
g = I



The optimal state

|cµ|
√

σ
(µ)
i =

√
dµ

d

 

the use of equivalent reps.  
improves the likelihood !

rµ ≤ min(dµ, mµ) # useful equivalent reps. at most dµ

Use maximal entanglement between 
 representation and multiplicity spaces


∑

µ,i

|cµ|

√
dµσ

(µ)
i
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We can optimise the likelihood                               

over the input states         |ψ〉 =

∑
µ

rµ∑
i=1

cµ

√
σ

(µ)
i |i〉µ ⊗ |i〉



Absolute alignment of reference frames

• Two distance parties (Alice and Bob) want to 
align their Cartesian reference frames

• Without “fixed stars” Alice has to send gyros 
to Bob

x
y

z

x'

y'

z'



The protocol
•  Idea: use spins that can carry information about                   
   the rotation g* that connects the two frames

•  Alice prepares N spins in
|Ag∗〉 = U

⊗N
g∗ |A〉

and sends them to
Bob who receives

|A〉

• Bob performs a measurement to infer g* and  
rotates his frame by the estimated rotation g

〈e〉 =

∫
dg∗

∫
dg p(g|g∗) e(g, g∗)

deviation

•  The state and the measurement should be chosen 
   to minimize the average transmission  error 



BUT... equivalent irreducible representations cannot be 
neglected, and their use dramatically increases 

the efficiency of the protocol

 

• It was argued that equivalent  reps.  are useless, 
and this led to false claim of optimality: 

                 asymptotic  sensitivity ∝ 1/N
         (Bagan, Baig, Munoz-Tapia, PRL 2001) 

•  Then, a non-covariant strategy was shown to do better, 
and this led to claim that covariant quantum measurements 
may not be optimal !!

                (Peres & Scudo, JMO 2002)



H⊗N
≡ ⊕

J
j=0Hj ⊗ Mj J = N/2

Write the Clebsch-Gordan decomposition

The solution

|A〉 = AJ |JJ〉 +

J−1∑

j=0

Aj |Ij〉〉

with |Ij〉〉 =
1√

2j + 1

j∑

m=−j

|jm〉 ⊗ |m〉

•  Choose a state of the form

•  Entanglement between representation and
 multiplicity space, but no shared entanglement 
 between Alice and Bob  

               •  Bob uses the POVM that  maximises the likelihood

(Chiribella, D’Ariano, Perinotti, Sacchi, PRL 2004)



Comparison of the protocol exploiting equivalent representation

with the optimal one without equivalent representations

Number of spins 〈e〉with 〈e〉without

N= 3 1.6114 1.8138

N= 5 0.9136 1.3292

Asymptotic behavior for large N :

〈e〉with ∼ 8π2

N2 〈e〉without ∼ 8
N

Note remarkable increase of transmission efficiency due to equivalent

representations.
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• We gave the solution of the general problem of phase 
estimation for arbitrary shift generator  and Holevo’s 
cost functions with phase-pure input states

• We provided the optimal covariant measurement 
according to the ML principle for arbitrary groups, 
showing the relevance of equivalent representations   

• We gave a covariant protocol for absolute alignment 
of reference frames using N spins that achieves 
sensitivity ∝ 1/N2

Conclusion
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