Entanglement Monotones for Multipartite Systems

<u>Andreas Osterloh</u> ITP Universität Hannover

Pisa, December 17th 2004

• J. Siewert (Regensburg & DMFCI, Universitá di Catania)

និងនគរបានថៃ Training និងសេសនៃ 1PPN-00-0014

<u>OUTLINE</u>

- Entanglement in bipartite systems
 - ▲ Qubits (2 x 2)
 - ▲ Approaches to (d1 x d2)
- Mixed states
- Motivation from Spin chain analysis and CKW conjecture
- Approaches to multipartite Entanglement
- Genuine multipartite entanglement: antilinear formulation
 - Combs and Filters
 - Detected maximally entangled states
- Conclusions

Bipartite

Entanglement

Pure States, two Bits

Question :

?

Why is it an interesting question?

• product state: measuring one site

gains no information on the other

Can be created locally

Indicators for

Entanglement

. 11

Look at

Rank = 1 !

rank $M_{\Psi}=2 \implies entangled!$

Measure Candidates

• det M_{Ψ}

- $\tau_1 = \det \rho^{(1)} = \det M_{\Psi}^2$ (one)- tangle
- Tr $\rho^{(1)} \log_2 \rho^{(1)}$ von Neumann entropy
- arbitrary monotonic function of
 ρ⁽¹⁾'s smallest eigenvalue

Example :

↔Schmidt decomposition

р 1 р

Bell states — A A A A

2	det ₁ †2	det M	† <i>p</i>

measures portion of Bell state

Mixed states

t r_s t r_s s

Decomposition of ρ NOT unique

 $\forall \rho$ is product state *iff*

Minimization over all possible reps. necessary

Criteria for separability

• Schmidt decomposition $(d_1 \times d_2)$

• positive partial transpose (2x2, 2x3) otherwise \rightarrow bound entanglement

Entanglement measures

pure statesv.Neumann entropy of reduced density matrix

"Groverian" entanglement (Biham et al '02)

Biham et al. PRA 2002

Mixed states

 relative entropy of entanglement

Vedral & Plenio PRA 1998

 Negativity Vidal&Werner PRA 2002

 Concurrence Hill & Wootters PRL 1997 Wootters PRL 1998 Peres PRL 1996 Horodecki, Horodecki PLA 1996

Different Concepts

distillable entanglement

entanglement of formation

•entanglement cost Bennett et al. PRA 1996

•entanglement of assistance DiVincenzo et al.1998

Concurrence

Hill, Wootters PRL1997, Wootters PRL 1998

Ingredients:

Example -Abouraddy et al. PRA 2001

↔Schmidt decomposition

t p 1 p

Bell states -------

C+2 det $_1+2$ det M $+_p$

measures portion of Bell state

Approaches to (d1 x d2) Entanglement measures

Concurrence vectors

Audenaert et al. PRA 2001 Li, Zhu quant-ph/0308139

Universal state inversion Rungta et al. PRA 2001

Both measures are identical

Multipartite

Entanglement

Different Entanglement Classes

	~~	न व	et		+ <u>8</u> : c ² + c ² + 4
					5 12 18 5
-	GHZ	4.0	let		$+1$; $C_{12}^2 + C_{13}^2 + 0$

Residual entanglement measure (pure states)

, 14 det , $C_{12}^2 = C_{13}^2$

Coffman, Kundu, Wootters PRA 2000

Entanglement

in Spin chains

Anisotropic XY models

- Exactly solved (Jordan-Wigner + Bogoliubov)
- Correlation functions accessible

Lieb, Schulz, Matthis Ann. Phys.NY 16, 407 (1961) Barouch, McCoy, Dresden PRA 2, 1075 (1970) Barouch, McCoy PRA 3, 786 (1971) Pfeuty Ann. Phys.NY 57, 79 (1970)

Approaches to Multipartite Entanglement measures

N-Concurrence σ^{⊗N}_{v w}

Wong, Christensen PRA 2001

- N even only
- factorises

 \rightarrow products of e.g. Bell states judged maximally entangled

- Concurrence vectors
 - detect one-tangle
- Q-mood wallace quant-ph/010810a veraged tangle

Genuine Multipartite

Entanglement Monotones

on an antilinear footing OsterIoh, Siewert quant-ph/0410102

NO entanglement left !

entanglement is still there

• τ_1 or its average take

somewhat care of all types

• C or τ_2 cares for 2-party case

• τ₂ cares for 3-party case ...

A purely n-tangled state ...

- contains no subtangle
- is not a tensor product of whatsoever kind
- rank[ρ_{red}] = 2 \implies maximally mixed Stochastic states: Verstraete, Dehaene, De Moor PRA 2003
- phase independent canonical form
 GHZ states
 Other states?

• Antilinear local operator *filtering out* products in *combing* the local Hilbertspace

A Hairy ball theorem: * only possible for half integer spin

*****2nd condition defined on an embedding; not a Hilbert space

Building blocks: combs

+ diag

ų, į

SL(2,C) invariant !

Convenient choice: a=1, b=0

ct , ,

• time reversal operator is a filter for two qubits

Alternative filter expression found

-Convex roof extension via R-Matrix works

Uhlmann PRA 2000

• Arbitrary filter construction $\equiv \tau_3$

number of independent filters = number of different types of entanglement???

Convex roof extension via R-Matrix worksin some cases

Four qubits

A de la construcción de la constru

Three different states:

n n n

в Ц<u>ь</u>

, t I 2 I2 I3 60

Five qubits

i tGHZ1						

, † 1 2 4 8 16 3 31 3 3 (AA)

Six qubits

straight forward extension to n-tangles

candidates for n-tangled states suggested by the filters

Spin S –2S+1 x 2S+1

bilinear comb no longer unique

S_y is a comb

- SL(2,C) invariant comb on hand
- SL(2S+1,C) invariant comb ...?

Filters ...

- are entanglement monotones by construction
- consider only balanced part of a state
- straight forward manufacturing
- pave the way towards mixed states ...
- ...general subsystems

Summary and Outlook

• Simple ingredient: comb

- Unique comb \rightarrow SL(2,C) invariance \rightarrow filters are monotones
- Efficient way of generating entanglement monotones
- Monotones can be taylored according to the types of entanglement to be taken into consideration
- Well defined starting point for higher local dimension
- Connection with other approaches