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CHAPTER 1

INTRODUCTION

The subject of the lecture is the dynamics of volume preserving torus homeomor-
phisms. We will have successively various points of view on this subject, with a
common technique, the use of periodic approximations, which is the main theme
of this School. One striking feature is that we will mainly use discontinuous peri-
odic approximations to understand the dynamics of continuous systems. The main
reference is a book by Alpern and Prasad, Typical dynamics of volume preserving
homeomorphisms. Another reference that we use is the classical book by Halmos,
Lectures on ergodic theory.

We consider the torus Tn = Rn/Zn. It is equipped with the metric and volume
induced by the usual euclidean metric and volume in Rn. In other words, if Π :
Rn → Tn denotes the projection, we have

dTn(x, y) = inf{dRn(x̃, ỹ)|Π(x̃) = x,Π(ỹ) = y}
and

VolTn(A) = VolRn(Π−1(A) ∩ [0, 1]n)

for any points x, y and borelian subset A of the torus.
We denote by Homeo(Tn,Vol) the set of homeomorphisms of the torus (bi-

jective bicontinuous maps Tn → Tn) that preserve the volume, that is, satisfy
Vol(h−1(A)) = Vol(A) for any borelian set A. Easy examples include transla-
tions x 7→ x + α where α is any element of the torus, and linear automorphisms
T ∈ SL(n,Z).

The group Homeo(Tn,Vol) is endowed with the sup metric,

||f − g|| = sup
x∈Tn

d(f(x), g(x)),

which induces the topology of uniform convergence. It turns this group into a
topological group.(1) The connected component of the identity is denoted by
Homeo0(Tn,Vol); an element h is in Homeo0(Tn,Vol) if and only if there is an
isotopy from the identity to h, i.e. a continuous family (ht)t∈[0,1] with h0 = Id and
h1 = h. On this subgroup there is a fundamental dynamical invariant, called the
mean rotation vector (see chapter 2 for the definition). The set of Homeo0,0(Tn,Vol)
of homeomorphisms whose mean rotation vector is zero is a normal subgroup of
Homeo(Tn,Vol).(2) In dimension two, Patrice Le Calvez proved that any element of
this subgroup has at least three fixed point. This generalized the Arnol’d conjecture,
that involved diffeomorphisms and was proved by Conley and Zehnder, and Franks’
theorem, that stated the existence of one fixed point for homeomorphisms. We will

(1)Note that this metric is right-invariant, i.e. satisfies ||f − g|| = ||fϕ− gϕ||.
(2)Note that it is unknown whether this is a simple group.
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see that periodic approximations provide a nice proof of Franks’ theorem (as shown
by Alpern and Prasad).

Theorem (Franks). — Any volume preserving homeomorphisms of T2, isotopic
to the identity, with vanishing mean rotation vector, has at least one fixed point.

When endowed with the sup metric, the group Homeo(Tn,Vol) is not complete.
But the metric d(f, g) = ||f − g||+ ||f−1 − g−1|| induces the same topology, and is
complete. (The space is not locally compact, though). The Baire category theorem
applies, so we may ask: which properties are generic?

This question was first attacked by Oxtoby and Ulam: in 1941 they proved that
ergodicity is generic. Then in 1970 Katok and Stepin obtained the stronger result
that weak mixing is generic. In the interval between those two results, Halmos
proved that ergodicity and even weak mixing are generic in the setting of ergodic
theory, i. e. for volume preserving bijections. Finally, in 1978 Alpern found a deep
link between the two settings, proving the following theorem.

Theorem. — Any dynamical property which is generic in Auto(Tn, µ) is also
generic in Homeo(Tn, µ).

For a precise definition of genericity in both contexts, see below.
The previous theorem gives a beautiful solution to the problem of generic ergodic

properties. It says that, when you translate the study from topological dynamics to
ergodic theory, no new generic property appears. What about non generic ergodic
properties? Lind and Thouvenot proved that any (finite entropy) ergodic system is
conjugate to a volume preserving torus homeomorphism (topologically conjugate to
a linear map). But it is natural to ask for unique ergodicity, that is, to impose the
statistics of all the orbits. The conjecture is that we should have a similar result:
any automorphism is conjecturally conjugate to a uniquely ergodic volume preserv-
ing torus homeomorphism. This has been proved for a special (non generic!) but
large class of automorphisms, namely those whose L2-operator admits an irrational
eigenvalue.

Theorem (Uniquely ergodic realizations, Béguin-Crovisier-Le Roux)
Any automorphism which is an extension of an irrational circle rotation is conju-

gate to a uniquely ergodic volume preserving homeomorphism of T2.

Note that the conjecture is known to be true if we replace T2 by the Cantor set:
this is the Jewett-Krieger theorem.(3)

Her is what we plan to do in this course. We will deduce the first theorem from
the plane translation theorem of Brouwer (which will be taken for granted). Then
we will give a complete proof of the second theorem. The last one is more technical,
we will only explain a very special but basic case.

Generalizations. — The fixed points results are specific to the dimension 2, and
very dependent on the topology of the manifold.

The genericity result actually holds on any (smooth) manifold, see the book by
Alpern and Prasad. The idea is to prove it on the cube, and then to see any manifold
as a quotient of the cube, obtained by identifying some points on the boundary.

The realization of automorphisms as uniquely ergodic is a special case of a theorem
that holds on many more manifolds.

(3)The theorem also holds for Tn.
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Let us finally note that the generic ergodic properties of C1-diffeomorphisms are
unknown, for example it is conjectured that generic C1-diffeomorphisms on mani-
folds of dimension greater than 1 are ergodic, but this is unknown even in dimen-
sion 2.

Examples in dimension two: hamiltonian dynamics. — We have already mentioned
two families of examples, namely the translations and the linear automorphisms.
The first one is a n-parameter family, while the second one is a discrete family.
These examples do not give a right idea of how large is the group Homeo(Tn,Vol),
which should be thought of as an infinite dimensional analogue of the classical Lie
groups. Here we describe a bigger (infinite dimensional) family on T2. Furthermore,
the construction will provide examples in Homeo0,0(Tn,Vol) (for the time being we
only have the identity...).

In order to define hamiltonian diffeomorphisms, we endow the torus T2 with
its smooth manifold structure, and with the (symplectic) area form dx ∧ dy. Let
H : T2 → R be any smooth function. To this function is associated a vector field
XH , called the hamiltonian vector field associated to H. One practical concrete way
to define this vector field is as follow: at each point x, consider the gradient (dual
of dfx with respect to the euclidean metric dx2 + dy2), and define XH(x) to be the
vector obtained from the gradient of f at x by applying a rotation of π/2. More
abstractly (and this generalizes on T2n), XH(x) is the vector dual to dfx with respect
to the anti-symetric 2-form dx ∧ dy.

We may integrate this vector field into a smooth flow (Φt)t∈R which is a one-
parameter subgroup of Homeo(T2). Then a basic computation shows that the vector
field XH has vanishing divergence, which amounts to saying that the flow Φt pre-
serves the symplectic form dx∧dy. Thus every time of this flow provide an example
of a (smooth) element of Homeo(T2,Vol).

Clearly every element Φt belongs to Homeo0(T2,Vol). Actually, Φt even belongs
to the normal subgroup Homeo0,0(T2,Vol). This fact is linked to the interpretation
of the quantity H(x) − H(y) as the flux of the vector field XH through any curve
from x to y.

An easy generalization consists in considering time-dependent hamiltonian func-
tion Ht, which induce time-dependent divergence free vector fields XH,t. By inte-
grating we again get a one-parameter family (not subgroup) in Homeo0,0(T2,Vol).
Now it can be proved that any C∞ diffeomorphism in Homeo0,0(T2,Vol) may be con-
structed this way. For this reason, the elements of Homeo0,0(T2,Vol) are sometimes
called hamiltonian homeomorphisms.

Exercise Construct a counter-example to Franks’ theorem in dimension 3. Hint:
f may be obtained as the composition of 2 diffeomorphisms. The first one preserves
the x and y coordinates, and rotation each circle {(x, y)} × S1. The second one do
the same for x, z. They both belongs to Homeo0,0(Tn,Vol), and their fixed point
sets are disjoint.
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APPROXIMATION BY PERMUTATIONS

2.1. Lax’s theorem

We denote by Dm the set of dyadic cubes of order m, that is, products of intervals
of the form [k/2m, (k + 1)/2m] (there are 2mn such cubes). A permutation σ of the
set Dm induces a map Tn → Tn, still denoted by σ, and defined by demanding
that on each dyadic cube c, σ is the translation that sends c on σ(c). The map is
not defined on the boundary of the cubes, which does not matter, since we see σ
as an element of Auto(Tn,Vol), the set of bijections of Tn that are bi-measurable
and preserves the volume, where we identify two maps that coincides on a subset
of volume 1. Note that we may see Homeo(Tn,Vol) as a subspace of Auto(Tn,Vol),
and the sup metric extend to a metric on Auto(Tn,Vol), where ||g − h|| is defined
as the essential upper bound of d(g(x), h(x)) (thus ||g − h|| is the least number α
satisfying d(g(x), h(x)) ≤ α for almost every x).

According to Lax, the following theorem was motivated by the problem of the
discretisation of a homeomorphism, linked to the use of computers. At the time it
has no applications, but we will see how Alpern and Prasad used it in the study of
homeomorphisms.

Theorem (Lax). — Let h ∈ Homeo(X,Vol), and ε > 0.Then there exists a dyadic
cyclic(1) permutation σ such that ||h− σ|| < ε.

Lemma (Marriage lemma). — Let E,F be two (finite) sets, and ≈ be a relation
between elements of E and F . Under the following condition:

∀E ′ ⊂ E,#E ′ ≤ #{f ∈ F, ∃e ∈ E ′, e ≈ f}
there exists a one-to-one map Φ from E to F , such that, for every e ∈ E, e ≈ Φ(e).

Proof. — Consider a dyadic subdivision. For every cubes C,C ′ of the subdivision,
write C ≈ C ′ if the image of C meets C ′. Note that because of the volume preserving
hypothesis, for any family C1, . . . , Ck of cubes, the image of their union meets at least
k cubes. According to the marriage lemma, there exists a (non necessarily cyclic)
permutation σ of the family of dyadic cubes such that, for every cube C, h(C) meets
σ(C). Then the norm ||h − σ|| is less than the supremum of the diameters of the
images of the cubes under h, plus the diameter of a cube. By uniform continuity of
f , this is certainly less than ε if the order of the subdivision is large enough.

It remains to prove that any permutation is uniformly approximated by a cyclic
permutation. This is a purely combinatorial statement, which essentially amounts
to the following fact (where n is any positive integer). For any permutation σ of
the set {1, . . . , n}, there exists a permutation τ satisfying | τ(k) − k |≤ 2 for every

(1)Remember that a permutation is cyclic if it has a single orbit.
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k, and such that σ′ = τσ is a cyclic permutation. Given the fact, we can order our
dyadic cubes such that any two consecutive cubes are adjacent; then we use the
numbering to see σ as a permutation on the set of numbers, and get a new dyadic
permutation σ′ with ||σ′ − σ|| less than two times the diameter of the cubes.

Let us prove the fact. Remember that the set {1, ..., n} is partitionned by the
orbits (the cycles) of σ. Furthermore, the composition by a transposition has the
following effect on cycles. When k, k+ 1 do not belong to the same cycle of σ, then
the cycles of the permutation (kk+ 1) ◦ σ are the cycles of σ, except that the cycles
of k and k + 1 have been merged into a single cycle.

For simplicity we assume n is even. If 1 and 2 belongs to the same cycle, then we
define r1 as the identity, otherwise r1 is the permutation (12). We now consider the
cycles of the permutation r1σ; if 3 and 4 belongs to the same cycle, r2 is the identity,
otherwise it permutes 3 and 4. We proceed this way to produce a permutation
τ1 = rn/2 . . . r1 such that for every k, the integers 2k− 1 and 2k belongs to the same
cycle of τ1σ. A similar process produces a permutation τ2 such that for every k, the
integers k and k + 1 belongs to the same cycle of τ2τ1σ. Thus this permutation has
only one cycle

Proof of the marriage lemma. — We use the following classical vocabulary. E is
the set of “girls”, F is the set of “boys”, if e ≈ f we say that e “knows” f , and if
e = Φ(f) we say that e is married with f . We prove the lemma by induction on
the number n of girls. Let E be a set of n + 1 girls as in the lemma. First assume
the following stronger hypothesis is satisfied: for every subset of k girls, 0 < k ≤ n,
the number of boys known by some girl of the subset is greater than k. Then the
solution is easy: select any girl, marry her to any boy she happens to know, check
that the remaining sets of girls and boys satisfy the induction hypothesis, so they
can also be married. In the opposite case, there exists a subset of k girls, 0 < k ≤ n,
knowing exactly k boys altogether. Use the induction hypothesis to marry all of
them, then check that the unmarried boys and girls again satisfy the induction
hypothesis, which complete the ceremony.

2.2. Genericity of topological transitivity

We make a small digression to show the genericity of transitivity as an easy
consequence of Lax’s theorem (together with a fundamental extension lemma).

A homeomorphism h is called topologically transitive if for every open sets U, V ,
some iterate of U meets V (in a nice space(2) like a manifold, this is equivalent to the
existence of a dense orbit). The Anosov automorphisms are topologically transitive.
A countable intersection of open sets is called a Gδ-subset. A property is called
generic if it is shared by all the elements of a dense Gδ subset. The Baire category
theorem applies in the complete metric space Homeo(Tn,Vol), so that any countable
intersection of dense open sets is dense (and in particular, the intersection of two
Gδ dense subsets is again a Gδ dense subset). A corollary of Lax’s theorem is the
genericity of transitive homeomorphisms in Homeo(Tn,Vol).

Proposition. — The set of topologically transitive homeomorphisms is a Gδ dense
subset of the space Homeo(T2,Vol) with respect to the uniform topology.(3)

(2)Complete separable with no isolated points.
(3)Definition, completeness.
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Proof. — Let τ1, . . . be an enumeration of all the (open) dyadic cubes of all orders.
Define Ti,j as the set of homeomorphisms for which there exists some k > 0 such that
hk(τi) meets τj. This is an open set. The intersection of all these sets is precisely
the set of transitive homeomorphisms. Thus it remains to see that each set Ti,j is
dense.

Fix i, j and ε > 0. Let h ∈ Homeo(Tn,Vol), and let σ be a cycle dyadic per-
mutation (of sufficiently large order, larger than the order of τi and τj) such that
||h−σ|| < ε. Let p1, . . . , be the centers of the dyadic cubes, enumerated in the order
of the action of σ. Note that for any k, ||h(pk)−pk+1|| < ε. We now make use of the
lemma asserting that the map sending each point h(pk) on pk+1 may be extended
to a volume-preserving homeomorphism ϕ such that ||ϕ|| < ε (see below, extension
of finite maps). Let h′ = ϕh. Then ||h′ − h|| < ε and h′ belongs to Ti,j.

The same proof works in the cube, where the mere existence of a single topologi-
cally transitive homeomorphism is not at all obvious, althoug there is a construction
using Anosov torus maps.

Exercise (may be difficult, or even wrong?...) Prove that a generic h ∈
Homeo(Tn,Vol) is not topologically mixing (h is called topologically mixing if for
every open sets U, V , every iterates of U , but a finite number, meets V .

2.3. A fixed point theorem

Consider an isotopy (ht) in Homeo0(Tn,Vol), with h0 = Id, and the trajectory
(ht(x)) of some point x ∈ Tn. We can lift this trajectory to Rn, that is, consider a
curve γ : [0, 1] → Rn such that π ◦ γ(t) = ht(x) for every t. Note that this curve

joins a lift of x to a lift of h(x). Denote by D(x) the displacement vector ~γ(0)γ(1)
of x (this does not depend on the choice of γ). The mean rotation vector of the
isotopy is

ρ(ht) :=

∫
Tn

D(x)dVol(x).

This vector is also named the mass flow, when interpreted as the quantity of matter
that flows across the hypersurfaces of the torus. When considered modulo Zn, it
does only depend on h1 = h, not on the isotopy.

Let h ∈ Homeo0(Tn,Vol). A homeomorphisms of Rn is called a lift of h if πH =
hπ, that is if any lift of any point x of the torus is sent by H on a lift of h(x). Any
isotopy (ht may be lifted to an isotopy (Ht), with H0 = Id and each Ht a lift of ht
(this is a general result of the theory of covering maps, and of course it has nothing
to do with the volume). The mean rotation vector of the isotopy (ht) is then equal
to the mean translation vector of H = H1,

ρ(ht) :=

∫
Tn

(D(x)) dVol(x)

where D(x) is defined as H(x̃) − x̃ for any lift x̃ of x. Assume in addition that h
belongs to Homeo0,0(T2,Vol), i.e. ρ(h) = 0 (mod Zn). Then there is a unique lift
H with mean vanishing translation vector. We can give the following more precise
version of Franks’ theorem.

Theorem. — Let us assume n = 2. In this situation, H has at least one fixed
point.
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P. Le Calvez has proved that is this situation, H has infinitely many periodic
points. Also note that the techniques used to prove the genericity of transitivity
may also be used to prove that generically in Homeo00(Tn,Vol), the favorite lift is
transitive in Rn.

Let us recall the Brouwer plane translation theorem.

Theorem (Brouwer plane translation theorem, baby version)
Let H be a homeomorphism of the plane which is isotopic to the identity. If H

has a periodic point then H has a fixed point.

This is a deep theorem that we will not prove here. The case of a periodic point
of period two has an easy proof (by Morton Brown). The idea of the other cases
is to construct, starting with a (would be) fixed point free homeomorphism with
a periodic point, another fixed point free homeomorphism with a periodic point of
period 2.

We will deduce Franks’ theorem from the plane translation theorem.

Proof. — Let H be as in the theorem. We argue by contradiction, assuming that
H has no fixed point. Let 0 < ε < infx∈R2 d(x,H(x)). Note that any plane home-
omorphism H ′ satisfying ||H ′ − H|| < ε has no fixed point. We assume ε < 1/2.
We apply Lax’s theorem to find a first dyadic permutation σ with ||h − σ|| < ε/3.
Then there exists a unique lift Σ such that ||H −Σ|| < ε/3 (this is because the ball
with radius less than 1/2 in Rn projects one-to-one on the torus). Define the trans-
lation vector ρ(Σ) by the same formula that we used for homeomorphisms. Then we
have |ρ(Σ)| = |ρ(Σ)− ρ(H)| < ε/3. On the other hand the coordinates of ρ(Σ) are
(small) dyadic numbers (the displacement of each x is a multiple of the side of the
dyadic cubes, the displacements are summed and the sum is divide by the number
of cubes, which is a power of 2). The translation of R2, x 7→ x − ρ(Σ), induces a
dyadic permutation σ′ of the torus (maybe of a greater order), and its translation
vector is the opposite of ρ(Σ). Then τ = σ′ ◦ σ has a lift with translation number 0,
and ||τ − h|| < ε.

We can now modify τ , using the same process as in the proof of Lax’s theorem,
in order to get a cyclic permutation υ, close to τ , and thus also close to h. It is easy
to check that the rotation vector of Υ (the unique lift of υ that is close to H) is still
equal to 0.

Now for any point X in the plane we have ΥM(X) = X, where M is the order of
υ (the number of cubes). Indeed, since υM = Id, we get ΥM(X) = X +~v where ~v is
an integer vector; since υ is cyclic, this implies ΥM(Y ) = Y +~v for every Y , so that
~v is the translation vector of Υ, which is zero. Since ||H−Υ|| < ε we may modify H
into a plane homeomorphism H ′ with ||H ′−H|| < ε, having a periodic orbit (using
the extension of finite maps, as in the proof of generic transitivity). By the plane
translation theorem, H ′ must have a fixed point. This contradicts the definition of
ε at the beginning of the proof.

2.4. Extension of finite maps

The following proposition says that the group Homeo(Tn,Vol) acts transitively
on k-uplets of points.

Proposition. — Let x1, . . . , xk; y1, . . . , yk be two sequences of k pairwise distinct
points of X. Then there exists h ∈ Homeo(Tn,Vol) such that for every i = 1, ..., k,
h(xi) = yi.

Furthermore, the map h may be chosen so that
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1. it is equal to a torus translation in a neighborhood of each point xi;
2. if no pair of point (xi, yi) is more than a distance δ apart, then d(h, Id) < δ.

This proposition is used to get a “closing lemma” (approximate a homeomorphism
by another one having a periodic orbit). It will be also more fundamentally used to
get a Lusin-like theorem (in particular, this instance will require the first property).

We need a lemma, which is some kind of infinitesimal version of the transitivity.

Lemma. — Let ε > 0. There exists a continuous map, defined on the tangent
bundle of the torus, with values in the space of C∞ vector fields on the torus,

TTn → Ξ(Tn)
(x,~v) 7→ Xx,~v

such that

1. the vector field Xx,~v, at point x, is equal to ~v, and it is constant on some
neighbourhood of x;

2. this vector field vanishes outside the ball of radius ε around x;
3. ||Xx,~v|| ≤ ||~v||.

Proof. — We deal only with dimension 2, leaving the other dimensions to the reader.
We first define the vector field Xx,~v for x = (0, 0) and ~v = (`, 0). Let H1 be any
hamiltonian function satisfying :

1. ∂H
∂x

(x, y) = 0, ∂H
∂y

(x, y) = 1 for any (x, y) in some neighbourhood of (0, 0);

2. H is supported inside the ball of radius ε around (0, 0);

3. || ~gradH|| ≤ 1 everywhere.

Then define H` = `H1, and let X(0,0,(`,0) be the hamiltonian vector field associated
to the hamiltonian function H`. Now we extend the map, first for x = (0, 0) and
any ~v by rotating X0,(`,0): more precisely, let X0,~v be the image of X0,(`,0), where
` = ||~v||, under the unique (local) rotation with center 0 that sends the vector (`, 0)
on ~v. Finally we extend the map to any couple (x,~v) by defining Xx,~v be the image
of X0,~v under the unique torus translation that sends the point (0, 0) on x.

Lemma (Extension of isotopies). — Let γ1, . . . , γk be k smooth curves in Tn,
such that for every t, for every i 6= j, γi(t) 6= γj(t) (“no collision”).

Then there exists a smooth, time-dependent vector field (Xt)t∈[0,1] on Tn, integrat-
ing into a smooth isotopy (Φt) such that

1. for every i = 1, . . . , k, for every t ∈ [0, 1], Φt(γi(0)) = γi(t), in other words γi
is a trajectory of the vector field Xt; furthermore, in the neighborhood of each
γi(0), the map Φ1 coincides with a translation of the torus;

2. for every t, ||Xt|| ≤ maxi ||γ′i(t)||.

Proof. — Let ε be less than half the infimum of all the distances d(γi(t), γj(t)), i 6=
j, t ∈ [0, 1]. We use the previous lemma and set, for every t,

Xt =
k∑
i=1

Xγi(t),γ′
i(t)
.

Note that, due to the choice of ε, at each time t all the vector fields in the sum have
disjoint support. Thus we get the first condition, and also

||Xt|| ≤ max
i
||Xγi(t),γ′

i(t)
|| ≤ max

i
||γ′i(t)||.
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Proof of the proposition. — For every i, let γi be the curve running at constant
speed on a segment joining xi to yi, of length less than δ. We can avoid collisions
between these curves by changing the speed a little bit if necessary, keeping the
speed less than δ. Then we apply the previous lemma.

Exercise. Write a similar proof in the C0 category. Solution : see the book by
Alpern and Prasad, proof of theorem 2.4.



CHAPTER 3

GENERIC ERGODIC PROPERTIES

3.1. Generic properties in Homeo versus Auto

The aim of this chapter is to prove the following.

Theorem. — A dynamical property which is generic in Auto(Tn,Vol) (with respect
to the weak topology) is also generic in Homeo(Tn,Vol) (with respect to the topology
of uniform convergence). More precisely, let P be a dense Gδ subset of Auto(Tn,Vol)
which is invariant under conjugacies by automorphisms. Then P ∩Homeo(Tn,Vol)
is a dense Gδ subset of Homeo(Tn,Vol).

Remember that Auto(Tn,Vol) is the set of bijections of Tn that are bi-measurable
and preserves the volume, up to equality on a full volume subset. It is equipped
with the weak topology, for which a sequence (hk) converges to h if and only if, for
every measurable set A, the sequence (Vol(hk(A)∆h(A)) converges to 0 (where ∆
denotes the symmetric difference, points that are in one of the sets but not in both).
It is also the topology induced by the weak metric

dweak(f, g) = inf{λ|Vol ({x|d(f(x), g(x)) > λ}) < λ}.

In other words, (hk) converges to h if and only if, for every ε > 0, for every n large
enough, the set {x|d(f(x), g(x)) > ε} has volume less than ε.(1) With this topology
the group Auto(Tn,Vol) is a topological group. It is also a complete metric space.
Note that this topology is weaker than the topology of the (essential) sup metric
used in the previous chapter: two maps f and g are uniformly close if f(x) and g(x)
are close except on a set of measure 0, whereas f and g are weakly close if f(x) and
g(x) are close except on a set of small measure.

We essentially follow the proof in the book by Alpern and Prasad, with a small
simplification, namely the use of a tower with only two columns.

(1)It may seem odd to make use of the distance on the manifold in the description of the purely
measure-theoretic notion of weak convergence, but this will turn out to be useful! For the equiv-
alence of the two topologies: if dweak(hk, h) tends to 0, then (Vol(hk(c)∆h(c)) converges to 0 for
every cube. Then the cubes generate the σ-algebra of measurable sets, ant the family of sets A
such that (Vol(hk(A)∆h(A)) converges to 0 is a σ-algebra. For the other direction, for a cube c,if
(Vol(hk(c)∆h(c)) tends to zero then for n large enough a proportion bigger than 1−ε of the points
of hk(c) belongs to h(c), and if c is small enough, then h(c) has diameter less than ε, thus all these
points satisfies d(hk(x), h(x)) < ε.
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3.2. Density of conjugacy classes of aperiodic automorphisms

Proposition. — Let f ∈ Auto(Tn, µ). Assume f is aperiodic ( i. e. the set of
periodic points has measure zero). Then the conjugacy class of f in Auto(Tn, µ) is
dense in Homeo(Tn, µ) for the uniform topology (given by the sup metric).

The following is a special case of Alpern’s multiple Rokhlin tower theorem (and
the proof below is due to Eigen and Prasad).

Lemma. — Let f ∈ Auto(Tn,Vol). Assume f is aperiodic. Let p, q be two mutually
prime integers. Then there exists two sets t1, t2 such that the sets

t1, f(t1), . . . , f
p−1(t1)

t2, f(t2), . . . , f
q−1(t2)

constitutes a partition of Tn. Furthermore, t1 and t2 have the same measure.

In other words, the lemma asserts the existence of a full tower with two columns,
of heights p and q. A tower is a (measurable) set t with positive measure, called the
basis of the tower, equipped with a (measurable) partition, such that the return-
time function τt(x) = min{h > 0 | Sh(x) ∈ t} is constant on every set of the
partition. Given an element a of this partition, and h = τt(a), the column over a
is the sequence of sets (a, S(a), . . . Sh−1(a)); the height of the column is the number
h; a is called the basis of the column. The tower is full if the iterates of t cover Tn.
Thus the lemma asserts the existence of a set t = t1 t t2 such that the return-time
function takes is equal to p on t1 and to q on t2, both sets having volume 1/(p+ q).

Remark. — The arithmetic condition is unavoidable, for example any tower with
two columns for an irrational circle rotation R has columns of mutually prime
heights. Indeed, we can reorganize a tower t with two columns of height kp and
kq into a tower t′ with a single column of height k (taking as a basis one level of t
out of k). Thus t′ is a periodic set of period k, which implies that Rk is not ergodic.

Proof of the lemma. — Let m = pq. We begin by applying Rokhlin’s lemma.

Lemma. — There exists a set F such that ∪n∈Zf
n(F ) = Tn, and whose positive

iterates F, f(F ), . . . , fm−1(F ) are disjoint.

Proof of Rokhlin’s lemma. — The proof is easy if we assume f is ergodic : choose
some set F ′ with measure less than 1

m
; then the set F = F ′ \ (f−1(F ′) ∪ · · · ∪

f−(m−1)(F ′)) has positive measure, and is disjoint from its m− 1 first iterates.
Here is a proof when f is not assumed to be ergodic. First note that the property

“∪n∈Zf
n(F ) = Tn” may be replaced by the weaker property “∪n∈Zf

n(F ) has mea-
sure greater than 1/2” (then we will get the original property by applying repeatedly
the lemma, infinitely many times if necessary). Let ε > 0. Fix some positive integer
N , and consider the dyadic subdivision of order N . Let GN be the set of “good”
points x whose iterates x, f(x), . . . , fm−1(x) belongs to distinct cubes of the subdi-
vision. (All along this paragraph, we exclude the points which have some positive
iterates in the boundary of some cube of the subdivision; this is a set of measure 0).
Since f is aperiodic(2), almost every point belongs to GN for some N , thus for N big
enough the set GN has measure greater than 1 − ε/m. Note that for every dyadic

(2)Note that we only make use of the fact that the set of points of period less than m has measure
0.
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cube C of order N , the set GN ∩ C is disjoint from its m first iterates (3) Then we
apply the following process, where the dyadic cubes are denoted by C1, . . . , Cd.

F0 := ∅
for i = 0 to d
Fi := Fi−1 ∪ ((Ci ∩G) \ (f−m−1(Fi−1) ∪ · · · ∪ fm−1(Fi−1))) .

We set F := Fd. Note that the family (Fi) is increasing, and that F is disjoint from
its m first iterates. Then it can be checked that the set ∪n∈Zf

n(F ) cover the set
G ∩ · · · ∩ fm−1(G), whose measure is greater than 1− ε.

Note that the sets ∪n∈Zf
n(F ) and ∪n∈Nf

n(F ) coincides up to measure 0. Consider
the Kakutani tower over F , that is, partion F according to the return-time function.
Every column has height greater than or equal to m. Now any integer k ≥ pq may
be written αp + βq with α, β ≥ 0. Thus we may partitionned each column into
subcolumns of height p or q. Let t1 be the union of the first levels of all the columns
of height p, and t2 be the union of the first levels of all the columns of height q. The
tower over t1 t t2 suits our needs, except that the basis do not necessarily have the
same measure.

Here are the modifications in order to get this additional property. Let α be the
smallest of p

p+q
and q

p+q
, and let N be alagre integer (more precisely, we will need

2/(N − 1) < α, see below). We begin with a much higher tower, of height greater
than Npq (instead of pq). For every height h ≥ Npq, we write the euclidean division
h = Apq +B = (A− 1)pq + (B + pq) (avec 0 ≤ B < pq). At the top of the column
we consider the subcolumn of height B+pq and we subdivide it as before into pieces
of length p and q. For the time being the remaining part is not attributed. Since
B + pq < 2pq, the volume ratio of the part that is attributed and the total volume
of the column is less than

2pq

Npq
<

2

N
< α.

Now the remaining part can be subdivided into columns of height pq. Gathering
our pieces, we get an intermediary tower with three columns, of respective heights
p, q and pq. Note that the first two bases have volume less than 1/(p+ q). The last
column might be subdivided into q columns of height p that will increase the volume
of the first column, and then its basis would be too big. Similarly the volume could
be entirely attributed to the second column, which would then be too big. Thus
there exists a good ratio according to which we may divide vertically our last column
into two columns of height pq, the first is divided into q columns of height p added to
the first column, the second into p columns of height q added to the second column,
so that the basis have exactly the wanted volume 1

p+q
.

Proof of the proposition. — Let h ∈ Homeo(Tn, µ), and ε > 0. We consider a dyadic
subdivision of Tn into cubes; let ε denotes the diameter of the cubes, which may
be chosen arbitrarily small. We apply Lax’s theorem to find an automorphism
T ∈ Auto(Tn, µ) which is a cyclic permutation of the dyadic cubes, and such that
||T − h|| ≤ ϕ(ε).

Fact: there exist two adjacent dyadic cubes C1, C2 = T n(C1) such that the
transition time n is odd.

Let us prove the fact, by contradiction. Let C1 be any cube, and C ′1 = T (C1).
The integers n such that C ′1 = T n(C1) are odd (since the order of the permutation

(3)For an easy proof using transfinite induction from this point, see Halmos 56.
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T is even). Consider a sequence of successively adjacent cubes from C1 to C ′1. If all
the transition times from one cube to the following one are even, then we find an
even transition time from C1 to C ′1, which is a contradiction.

We go back to the proof of the proposition. Let σ be the automorphism which
permutes two adjacent dyadic cubes with odd transition time (and is the identity
everywhere else). Let T ′ = σ ◦T . We get ||T ′−h|| ≤ ||T −h||+ ||T ′−T || ≤ ϕ(ε)+ε.
Furthermore, the permutation T ′ decomposes into two disjoint cycles of odd order
p and q. Since p+ q is the number of cubes, thus a power of 2, p and q are mutually
prime. the two adjacent cubes C1, C2 belongs to different cycles, to fix idea we
assume the order of C1 is p and the order of P2 is q.

We now apply the above lemma, and get a tower for the automorphism f , with
basis t1 ∪ t2, where t1 is the basis of a column of height p and t2 is the basis of a
column of height q. Furthermore, the sets t1 and t2 have the same mass, namely

1
p+q

, which is also the mass of the dyadic cubes. Let Φ be any automorphism(4) of

(Tn, µ) sending fk(t1) on T ′k(C1) and f `(t2) on T ′`(C2), for each 0 ≤ k ≤ p and
0 ≤ ` ≤ q. Let f ′ = ΦfΦ−1.

Note that almost all the dyadic cubes of the decomposition has the same image
under f ′ and h. The only exception are the two cubes T ′p−1(C1) and T ′q−(C2) : T ′

send them respectively on C1 and C2, whereas f ′ send both of them into C1 ∪ C2.
Since the two cubes are adjacent, we get that for every x, the points f ′(x) and T ′(x)
either belong to the same cube or to adjacent cubes. Thus ||f ′ − T ′|| ≤ 2ε. Finally
||T ′ − h|| ≤ ϕ(ε) + 3ε.

Remark. — . We have implicitly and repeatedly used the following “obvious” result.

Lemma. — For any measurable sets E,F in Tn having the same measure, there
exists an automorphism Φ such that Φ(E) = F (mod 0).

Exercise Write a proof. Solution : use the existence of an ergodic automorphism,
and a transfinite induction, see Halmos p74. Does anybody know a proof without
transfinite induction??

3.3. Lusin-like theorem: density of homeomorphisms in automorphisms

Bε denotes the set of g such that ||g|| < ε.

Proposition. — The space Homeo(Tn,Vol) is dense in the space Auto(Tn,Vol) for
the weak topology. More precisely, for every ε > 0, the space Bε ∩ Homeo(Tn,Vol)
is dense in the space Bε.

Note that, as a consequence, for any f ∈ Homeo, the space Bε(f)∩Homeo(Tn,Vol)
is dense in the space Bε(f) = Bε ◦ f .

Proof. — Three steps :
– Approximation of automorphisms by permutations,
– (purely combinatorics) Approximation by uniformly small permutations,
– Approximation of (uniformly small) permutations by (uniformly small) homeo-

morphisms.
We combine the first two steps into a single lemma.

(4)See the remark below.
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Lemma. — Let Φ ∈ Auto. Then there exists a dyadic permutation σ ∈ Auto
arbitrarily close to Φ in the weak topology. Furthermore, if ||Φ|| < ε then σ may be
chosen such that ||σ|| < ε.

Proof. — We fix δ > 0 (which says how close we want σ to be to Φ). We consider
a dyadic subdivision such that the diameter of the cubes is smaller than δ. For
each cube Ci, by regularity of the Lebesgue measure, there exists a compact set Ki

included in the inverse image Φ−1(Ci), whose volume is more than a proportion 1−δ
of the volume of Ci. The compact sets Ki’s are pairwise disjoint, thus we may find
another dyadic subdivision, by cubes so small that no cube meets two different Ki’s.
Let Oi be the union of the new cubes that meet Ki. If the order of the subdivision
is sufficiently large, then for every i the volume of Oi is less than the volume of Ci.
We can now find a permutation σ of the new dyadic subdivision that sends each
Oi into a subset of Ci (to start with we impose no condition on the image of the
cubes that are not in the Oi’s). Then for each point x in some Ki, the images σ(x)
and Φ(x) belongs to the same cube Ci and so are less than δ apart, and the union
of the Ki’s cover in volume more than 1 − δ of the torus: in other words we have
dweak(σ,Φ) < δ.

Idea for uniform smallness. — It remains to get σ uniformly small when Φ is
supposed uniformly small, so from now on we assume ||Φ|| < ε. We can have chosen
δ so small that we still have ||Φ|| < ε − 3δ, and then a point x in Ki still satisfies
dTn(x, σ(x)) < ε − 2δ. Observe that because σ is a dyadic permutation, the set
of points satisfying this inequality is a union of cubes of the dyadic subdivision
permuted by σ, so it includes all the points of the Oi’s. We call the remaining cubes
the “bad cubes”. We will now slightly modify σ into a permutation σ′ meeting the
condition ||σ′|| < ε; for this the idea is to decide that σ′ will fix all the bad cubes,
and try to rearrange the images of the good cubes to fit this decision. Of course the
new image must not be too far from the old image if we want to keep the properties
dweak(σ,Φ) < δ and get ||σ′|| < ε.

Number of bad cubes. — Until now we have considered two dyadic subdivisions.
Let us denote by M be the number of cubes in the first subdivision, and by NM
be the number of cubes in the second one. In the previous construction the sets
Ki’s are chosen after the first dyadic subdivision, so we can require that their union
covers a proportion of the torus larger than 1− 1

M
. Thus the proportion of bad cubes

(in the second subdivision) is less than 1
M

, that is, the number of bad cubes is less
than N , which is precisely the number of cubes of the second subdivision contained
in any cube of the first.

Numbering. — We now need to number the (big) cubes of the first subdivision, and
we do so in order that two consecutive cubes are adjacent. Then we also number
the (small) cubes in the second subdivision: we attribute the numbers 1 to N to
the N small cubes contained in the first big cube, then the N small cubes in the
second big cube are labelled from N + 1 to 2N , and so on. As a consequence, note
that two small cubes whose numbering differs by less than N are either included in
the same big cube or in two adjacent big cubes, and in any case their points are a
distance less than 2δ apart in the torus.

Modification of σ. — We will now construct σ′ as the composition τ ◦ σ. As we
said we impose that σ′ fixes the bad cubes, that is, τ sends each σ-image of a bad
cube C back to itself. It remains to define τ : F → F ′, where F is the family of
the σ-images of the good cubes, and F ′ is the family of the good cubes (with the
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condition that it does not moves the cubes too much). For this we just define τ as
the unique order-preserving bijection between F and F ′, where the order is given by
the numbering of the small cubes. To see that the cubes are not moved too much by
τ , observe that the families F and F ′ contains all the cubes but the (at most N) bad
cubes, so that, seeing τ as a permutation of the numbering, we have |τ(i)− i| ≤ N
for every i. Which means that every small cube in F is moved by τ a distance less
than 2δ. Thus, according to the above estimate on σ, we get

||σ′|| ≤ sup {d(σ(x), x)|x in a good cube}+ 2δ < ε.

Finally we note that the good cubes fill a volume 1− δ and a point x in a good cube
satisfies d(σ′(x),Φ(x)) < 3δ, so that dweak(σ′,Φ) < 3δ.

The last lemma says that (small) dyadic permutations may be approximated by
(small) homeomorphisms.

Lemma. — Let σ ∈ Auto be a dyadic permutation. Then there exists h ∈ Homeo
arbitrarily close to σ for the weak topology. Moreover, if ||σ|| < ε, then h may be
chosen such that ||h|| < ε.

Proof. — We fix δ > 0 (which says how close we want h to be to σ). Let x1, . . . , xk
be the centers of the dyadic cubes Ci permuted by σ, and y1, . . . , yk be their images
under σ. According to the proposition allowing the extension of finite maps, there
exists g ∈ Homeo such that g(xi) = yi = σ(xi) for every i. Furthermore, g coincides
with σ in some neighborhood of each xi (see point 1 of the proposition), say in a
small cube ci included in the dyadic cube Ci, with the same center. We assume all
the ci’s have the same size. Now choose a homeomorphism Ψ : C1 → C1 such that

– on c1, Ψ is a homothetic transformation, and Ψ(c1) is a cube that fills a pro-
portion 1− δ of C1,

– Ψ has constant jacobian on C1 \ c1,
– Ψ fixes every point of the boundary of C1.

Extend Ψ to a homeomorphism of the whole torus, such that on each cube Ci,
Ψ is the conjugate of Ψ|C1 by the translation that takes C1 to Ci. Consider the
map h = ΨgΨ−1. Since Ψ has constant jacobian outside the union of the ci’s, h
preserves the volume, and thus belongs to Homeo(Tn,Vol). Since the conjugate of a
translation under a homothetic transformation is a translation, h coincides with σ
on each cube Ψ(ci). The union of these cubes has measure greater than 1− δ, thus
for the weak distance we certainly have d(h, σ) < δ.

It remains to check that the construction can be done so that ||h|| < ε. If
||σ|| < ε′ < ε, then the second point of the extension proposition says that we
can choose g such that ||g|| < ε′. Furthermore ||Ψ|| and ||Ψ−1|| are less than the
diameter of the dyadic cubes, which may be assumed to be arbitrarily small (less
than (ε − ε′)/2), up to considering a finer dyadic subdivision right from the start.
Then we get that ||h|| < ||g||+ ||Ψ||+ ||Ψ−1|| is less than ε.

Of course, the combination of both lemmas gives the proposition.

3.4. Proof of the genericity theorem

Let P be a dense Gδ subset in Auto, as in the statement of the theorem. We first
note that P contains an aperiodic automorphism. Indeed:

Lemma. — The set of aperiodic automorphisms is a Gδ-dense subset of
Auto(Tn,Vol).
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Proof. — Let An be the set of automorphisms Φ such that the set of fixed points
of Φn has measure less than 1/n. Clearly, the set of aperiodic automorphisms is the
intersection of the An’s.

Each An is open. Indeed, given Φ ∈ An, the Rokhlin lemma provides a set E
such that E ∩Φn(E) = ∅ and E ∪Φn(E) has measure greater than 1− 1/n (and the
measure of E is half of this). If Ψ is close to Φ in the weak topology, then the set
E ′ = E \Ψn(E) has still measure greater than (1− 1/n)/2, and is disjoint from its
image under Ψn, which proves that Ψ ∈ An.

Each An is dense: we prove that aperiodic automorphisms are dense. Let Ψ be
any automorphism. Let E1 be the fixed point set of Ψ. Subdivide E into small
subsets, and replace Ψ on each subset by a fixed point free automorphism. Thus
we get Φ, close to Ψ in the weak topology (or even such that ||Φ − Ψ|| is small),
with no periodic point. We apply Rokhlin’s lemma for the set of periodic points
of period 2, getting a set E2 such that E2 ∩ Ψ(E2) = ∅, and any period-2 point is
in E2 ∩ Ψ(E2) = ∅. Again on E2 we compose Ψ by a small automorphism with
no periodic point. Proceeding this way successively with all the periods, we get an
aperiodic automorphism close to Ψ.

By density of conjugacy classes of aperiodic automorphisms, P is uniformly dense
in Homeo. Now write P = ∩Pk with each Pk an open and dense subset of Auto. If a
sequence of homeomorphisms converges uniformly then it certainly converges for the
weak topology, thus the set Pk ∩Homeo is open in Homeo for the uniform topology.
We want to prove that Pk ∩ Homeo is dense in Homeo. Let ε > 0 and f ∈ Homeo.
Since Pk is dense for the uniform topology, Bε(f)∩Pk contains some automorphism
g. We apply Lusin-like theorem: the set Bε(f)∩Homeo is (weakly) dense in Bε(f),
thus we can approximate weakly g by a homeomorphism g′ in Bε(f)∩Pk, as wanted.
This completes the proof.

3.5. Example one: strong mixing

Now we can reap what we sow: we prove that some ergodic property is generic in
Auto, and we conclude that it is also generic in Homeo.

History: Halmos, 1944, In general a measure-preserving transformation is mixing ;
Rokhlin, 1948, In general a measure-preserving transformation is not mixing. Con-
cerning homeomorphisms, Oxtoby-Ulam proved the genericity of ergodicity, then
Katok Steppin proved weak-mixing, then Alpern proved the general theorem that
provides the link between Halmos and Katok-Steppin theorems.

An automorphism T ∈ Auto(Tn,Vol) is said to be strongly mixing if for every
borelian sets A,B, the volume of T−n(A)∩B converges to the product Vol(A)Vol(B).

Proposition. — Generically in Auto (and in Homeo), the elements are not
strongly mixing.

Proof. — We follow Halmos explaining Rokhlin proof. We have seen that dyadic
permutation are dense in Auto(Tn,Vol) for the weak topology. Using the technique
of the proof of Lax’s theorem, we even get the density of cyclic dyadic permutations
of arbitrarily high order: for every n, the set

∪k≥nPk
is dense, where Pk is the set of cyclic dyadic permutation T such that T k = Id.

Let A be a dyadic cube, say A = [0, 1/2]n. Let Mk be the set of automorphisms
T such that the measure of T k(A) ∩ A belongs to [1/22n ± 1/24n]. It is a closed set
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for the weak topology. Furthermore the set

∪n≥0 ∩k≥nMk

contains all the strongly mixing automorphisms.
Now clearly Pk is disjoint from Mk. Thus ∪k≥nPk is disjoint from ∩k≥nMk. The

first set is dense, thus the second one has empty interior (is nowhere dense). Finally
the strong mixing automorphisms are included in a countable union of nowhere
dense closed sets.

3.6. Example two: weak mixing

Here we follow Halmos. There are several definitions of weak mixing. Equiva-
lently:

1. for every borelian sets A,B, the sequence |Vol(T−n(A) ∩B − Vol(A)Vol(B)|
tends to 0 in the sense of Cesaro, or equivalently outside a subset of the integers
of density 0;

2. the cartesian square T × T is ergodic;
3. the only proper vectors for the unitary L2 operator f 7→ f ◦T are the constant

functions, in other words the only eigenvalue of this operator is 1, and it is
simple (this is called continuous spectrum).

Proposition. — Generically in Auto (and in Homeo), the elements are not
strongly mixing.

Proof. — We use the existence of at least one weakly mixing automorphism (Anosov
linear automorphisms are strongly mixing). Since such a transformation is clearly
aperiodic, the set of weakly mixing elements is dense. Thus it is enough to prove
that it is a Gδ set.

Let (fi) be a countable dense family in L2(Tn). Then an element T ∈
Auto(Tn,Vol) is weakly-mixing if and only if lim inf |

∫
fi ◦ T nfj −

∫
fi
∫
fj| = 0

for every i and j, that is,

∀i, j∀k∃n
∣∣∣∣∫ fi ◦ T nfj −

∫
fi

∫
fj

∣∣∣∣ < 1

k
.

This gives an expression of the set of weakly mixing elements as a Gδ subset of
Auto(Tn,Vol).

How to prove the above equivalence? The characterization in terms of convergence
outside a set of density 0 gives the direct implication. Now if T is not weakly mixing,
then there exists an eigenfunction f ∈ L2 and a constant c such that f ◦T = cf . By
density of our family there exists fi very close to f . Then one can see that T does
not satisfy the property

∃n
∣∣∣∣∫ fi ◦ T nfi −

∫
fi

∫
fi

∣∣∣∣ < 1

2
.

Thus T does not satisfy the above criterion.



CHAPTER 4

REALIZATION OF ERGODIC SYSTEMS ON
THE TWO-TORUS

This chapter is extracted from my paper with François Béguin and Sylvain Cro-
visier, Realisation of measured dynamics as uniquely ergodic minimal homeomor-
phisms on manifolds which you can find on ArXiv or Hal.

4.1. General outline

A natural problem in dynamical systems is to determine which measured dynamics
admit topological or smooth realisations. Results in this direction include:

– constructions of smooth diffeomorphisms on manifolds satisfying some specific
ergodic properties,

– general results about topological realisations on Cantor sets (Jewett-Krieger
theorem and its generalisations).

In this paper, we tackle the following question: given a manifoldM, which measured
dynamical systems can be realised as uniquely ergodic minimal homeomorphisms on
M? Our main result asserts that this class of dynamical systems is stable under
extension.

Theorem. — Let M be a compact topological manifold of dimension at least two.
Assume we are given

– a uniquely ergodic minimal homeomorphism F on M, with invariant mea-
sure m;

– an invertible ergodic dynamical system (Y, ν, S) on a standard Borel space,
which is an extension of (M,m, F ).

Then there exists a uniquely ergodic minimal homeomorphism G onM, with invari-
ant measure v, such that the measured dynamical system (M, v, G) is isomorphic to
(Y, ν, S).

Let us recall the classical definitions. A measured dynamical system is given by
(X,µ,R) where (X,µ) is a probability space and R : X → X is a bi-measurable
bijective map for which µ is an invariant measure. Given two such systems (X,µ,R)
and (Y, ν, S), the second is an extension of the first through a measurable map
Φ : Y0 → X0 if X0, Y0 are full measure subsets of X, Y , the map Φ sends the
measure ν to the measure µ, and the conjugacy relation ΦS = RΦ holds on Y0. If, in
addition, the map Φ is bijective and bi-measurable, then the systems are isomorphic.
A measurable space (X,A) is called a standard Borel space ifA is the Borel σ-algebra
of some topology on X for which X is a Polish space (i.e. a metrizable complete
separable space). Throughout the text all the topological spaces will be implicitly
equipped with their Borel σ-algebra, in particular all the measures on topological
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spaces are Borel measures. Note that if some measured dynamical system (Y, ν, S)
satisfies the conclusion of theorem 4.1, then it is obviously isomorphic to a dynamical
system on a standard Borel space, thus it is reasonable to restrict ourselves to such
systems. We say that a homeomorphism F on a topological space M, with an
invariant measure m, is a realisation of a measured dynamical system (X,µ,R) if
the measured dynamical system (M,m, F ) is isomorphic to (X,µ,R).

Independently of theorem 4.1 we will prove the following result.

Theorem. — Any irrational rotation of the circle admits a uniquely ergodic mini-
mal realisation on the two-torus.

The proof of this result relies on a rather classical construction. The realisation is
a skew-product F (x, y) = (x + α,A(x).y) where A : S1 → SL(2,R) is a continuous
map. It will be obtained as the limit of homeomorphisms conjugated to the “trivial”
homeomorphism (x, y) 7→ (x+ α, y).

Theorems 4.1 and 4.1 can be associated to provide a partial answer to the re-
alisation problem on the two-torus. Remember that a measured dynamical system
(X,µ,R) is an extension of some irrational circle rotation if and only if the spectrum
of the associated operator on L2(X,µ) has an irrational eigenvalue. Therefore, as
an immediate consequence of theorem 4.1 and 4.1, we get the following corollary.

corollary. — If an ergodic measured dynamical system on a standard Borel space
has an irrational eigenvalue in its spectrum, then it admits a uniquely ergodic min-
imal realisation on the two-torus.

This result is known not to be optimal: indeed there exist uniquely ergodic min-
imal homeomorphisms of the two-torus that are weakly mixing.Actually, it might
turn out that every aperiodic ergodic system admits a uniquely ergodic minimal
realisation on the two-torus; at least no obstruction is known to the authors. For
instance, we are not able to answer the following test questions:

– does an adding machine admit a uniquely ergodic minimal realisation on the
two-torus?

– what about a Bernoulli shift?

Our original motivation for studying realisation problems was to generalise Denjoy
counter-examples in higher dimensions, that is, to construct (interesting) examples
of homeomorphisms of the n-torus that are topologically semi-conjugate to an ir-
rational rotation. The proof of the first theorem actually provides a topological
semi-conjugacy between the maps G and F .Thus another corollary of our results is:
any ergodic system which is an extension of an irrational rotation R of the two-torus
can be realised as a uniquely ergodic minimal homeomorphism which is topologically
semi-conjugate to R. For more comments on realisation problems and generalisa-
tions of Denjoy counter-examples, we refer to the introduction of our previous work
(Construction of curious minimal uniquely ergodic homeomorphisms on manifolds:

the Denjoy-Rees tech- nique. Ann. Sci. École Norm. Sup. 40 (2007), 251–308).
The reader interested in the smooth version can consult the paper by Bassam Fayad
and Anatole Katok, (Constructions in elliptic dynamics. Ergod. Th. Dyn. Sys. 24
(2004), 1477–1520) and especially the last section.



4.2. REALIZATION OF CIRCLE ROTATIONS ON THE TORUS 25

4.2. Realization of circle rotations on the torus

In this section, we prove the easy part of the announced results, namely the
existence of uniquely ergodic minimal realisations of circle rotations on the two-
torus. The construction has some additional properties that requires the following
definition. If ϕ : S1 → S1 is a measurable function, then the set {(x, ϕ(x)), x ∈ S1}
is called a measurable graph. If ϕ is continuous then this set is called a continuous
graph. Remember that the group SL(2,R) acts projectively on the circle. We will
prove the following statement.

Theorem. — For every α ∈ R\Q, there exists a continuous map A : S1 → SL(2,R)
homotopic to a constant such that the skew-product homeomorphism f : T2 → T2

defined by f(x, y) = (x+ α,A(x).y) has the following properties:

– f is minimal;
– f is uniquely ergodic and the invariant measure µ is supported on a measurable

graph.

If f is a map given by theorem 4.2 then the first coordinate projection π1 : T2 →
S1 induces an isomorphism between (T2, µ, f) and (S1,Leb, Rα), where Rα is the
rotation x 7→ x + α. Therefore, the realization of circle irrational rotations on the
torus will follow from theorem 4.2. The core of the proof of theorem 4.2 is the
following technical lemma.

Lemma. — For every α ∈ R \Q, and every ε > 0, there exists a homeomorphism
g : T2 → T2 with the following properties.

1. There exists a continuous map m : S1 → SL(2,R) homotopic to a constant,
such that

g = M−1 ◦ (Rα × Id) ◦M
where M(x, y) = (x,m(x).y). In particular, the homeomorphism g is a skew-
product over the circle rotation Rα, and is conjugated to Rα × Id.

2. The homeomorphism g is ε-close to Rα × Id in the C0-topology.
3. Every g-invariant continuous graph C is ε-dense in T2.
4. There exists a horizontal open strip Γ = {(x, y) ∈ T2 | y ∈ Vx} of width ε (by

such we mean that Vx is an interval of length ε depending continuously on x)
such that, for every g-invariant continuous graph C = {(x, ϕ(x)) | x ∈ S1},
one has

Leb (π1(C ∩ Γ)) = Leb
(
{x ∈ S1 | ϕ(x) ∈ Vx}

)
≥ 1− ε.

Proof of the lemma. — The following fact, which is a refinement of the classical
Rokhlin lemma, will be applied to the circle rotation Rα.

Fact. — Let us consider a compact manifold X, a homeomorphism h of X and
a h-invariant probability measure µ which has no atom. Let N, k be any positive
integers and ε be any positive real number. Then there exist some compact sets
D1, . . . , Dk ⊂ X such that:

1. the sets hi(Dj) for 0 ≤ i ≤ N and 1 ≤ j ≤ k are pairwise disjoint;
2. the union of the hi(Dj) for 0 ≤ i ≤ N and 1 ≤ j ≤ k has µ-measure larger

than 1− ε;
3. for any j0 ∈ {1, . . . , k}, the µ-measure of the union

⋃N
i=0 h

i(Dj0) is smaller
than k−1.
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Proof. — Rokhlin lemma ensures the existence of a measurable set A ⊂ X such that
the iterates hi(A) for 0 ≤ i ≤ N are pairwise disjoint and their union has µ-measure
larger than 1− ε. Then, using the fact that the measure µ is regular, we can find a
compact set B ⊂ A such that these properties are is still satisfied when we replace A
by B. One can assume that B is the union of disjoint compact sets with arbitrarily
small measure: this allows to decompose B as a disjoint union D1 ∪ · · · ∪ Dk of
compact sets whose µ-measure is close to µ(B)/k. These sets satisfy the conclusion
of the fact.

Let us come to the proof of the lemma. We see the torus T2 as the product of
two copies of S1. For sake of clarity, we shall distinguish between these two copies,
denoting them respectively by S1

h and S1
v (where “h” and “v” stand for “‘horizontal”

and “vertical”). The rotation Rα acts on S1
h, whereas the elements of SL(2,R)

defined below act on S1
v.

Construction of the homeomorphism g.— According to the first item of the lemma
we have to construct a continuous map m : S1

h → SL(2,R) homotopic to a constant.
We proceed step by step.

– We first choose a finite collection of intervals A1, . . . , Ak ⊂ S1
v such that

• for every j, the length of the interval Aj is less than ε/2;
• the union A1 ∪ · · · ∪ Ak covers the whole circle S1

v.
Note that in particular one has kε/2 ≥ 1.

– We choose some pairwise disjoint intervals R1, . . . , Rk ⊂ S1
v such that, for each

j ∈ {1, . . . , k}, the interval Rj is disjoint from the interval Aj.
– For each j ∈ {1, . . . , k}, we choose a hyperbolic map Sj ∈ SL(2,R) whose

attractive fixed point is included in the interior of Aj and whose repulsive fixed
point is included in the interior of Rj, and which is ε-close to the identity of
S1
v (for the C0 topology). Note that Sj maps Aj into itself. Then we choose an

integer `j such that S
`j
j maps S1

v \ Rj into Aj. We set ` := max
j∈{1...k}

`j. So, for

every j, the homeomorphism S`j maps S1
v \Rj into Aj.

– We choose an integer N > 8`/ε large enough so that for every x ∈ S1
h, the orbit

segment x,Rα(x), . . . , RN−2`
α (x) is (ε/2)-dense in S1

h.
– We choose by the above fact a finite number of compact sets D1, . . . , Dk ⊂ S1

h

such that:
• the sets Ri

α(Dj) for j = 1, . . . , k and i = 0, . . . , N are pairwise disjoint;

• the Lebesgue measure of the union
⋃k
j=1

⋃N
i=0R

i
α(Dj) is larger than 1 −

ε/4;

• for each j0 ∈ {1, . . . , k}, the measure of
⋃N
i=0R

i
α(Dj0) is smaller than

k−1 ≤ ε/2.
– For j ∈ {1, . . . , k} and i ∈ {0, . . . , N} we define the map m on Ri

α(Dj) by

m :=


Sij if 0 ≤ i ≤ `
S`j if ` ≤ i ≤ N − `
SN−ij if N − ` ≤ i ≤ N.

Note that m(x + α)−1m(x) is ε-close to the identity for every x ∈⋃k
j=1

⋃N−1
i=0 Ri

α(Dj). Now, we extend continuously the map m on S1
h with

the constraints that m is homotopic to a constant and m(x + α)−1m(x) is
ε-close to the identity for every x ∈ S1

h. This can be done as follow. For
each j ∈ {1, . . . , k}, we choose a small neighbourhood Uj of Dj and a contin-
uous map ϕ : Uj → SL(2,R), ε-close to the identity of S1

v, equal to Sj on Dj,
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and that coincides with the identity on the boundary of Uj. Then we set for
x ∈ Ri

α(Uj),

m(x) :=

 (ϕ(R−iα (x)))i if 0 ≤ i ≤ `
(ϕ(R−iα (x)))` if ` ≤ i ≤ N − `
(ϕ(R−iα (x)))N−i if N − ` ≤ i ≤ N.

If the neighbourhoods Uj are chosen small enough then the sets Ri
α(Uj) for

0 ≤ i ≤ N, 1 ≤ j ≤ k are pairwise disjoint and the above formulae do make
sense. For the points x that do not belong to one of these sets, m(x) is defined
to be the identity map of S1

v.
– We choose an open interval Vx ⊂ S1

v of length ε which depends continuously
on x ∈ S1

h and such that for every 1 ≤ j ≤ k it contains Aj whenever x
belongs to Ri

α(Dj) for some 0 ≤ i ≤ N . Then we consider the horizontal strip
Γ := {(x, y) | y ∈ Vx}.

Properties of the homeomorphism g.— Let us check that the maps g and M asso-
ciated to m as in the statement of the lemma satisfy the required properties:

1. The first item of the lemma is a consequence of the definition of g.
2. Since the map x 7→ m(x+α)−1m(x) is ε-close to the identity map of the circle

S1
v, the homeomorphism g : (x, y) 7→ (x + α , m(x + α)−1m(x).y) is ε-close to
Rα × Id.

3. Let C be a g-invariant continuous graph. Then M(C) is a (Rα × Id)-invariant
continuous graph. Hence there exists a point y ∈ S1

v such that C = M(S1
h×{y}).

Let j ∈ {1, . . . , k} be an integer such that y /∈ Rj. We claim that C is ε/2-
dense in S1

h×Aj. Indeed consider a point x in Dj. On the one hand, for every
i ∈ Z, the point M(Ri

α(x), y) belongs to the graph C. On the other hand, for
i ∈ {`, . . . , N − `}, by our choice of x we have

M
(
Ri
α(x), y

)
=
(
Ri
α(x),m

(
Ri
α(x)

)
.y
)

=
(
Ri
α(x), S`j .y

)
and this point belongs to {Ri

α(x)} × Aj by our choice of Sj and since y 6∈ Rj.
Now remember that the length of the interval Aj is less than ε/2 and that the
integer N was chosen in such a way that the sequence R`

α(x), . . . , RN−`
α (x) is

ε/2-dense in S1. This shows the claim.
Since the intervals Rj are pairwise disjoint, there is at most one integer

j0 ∈ {1, . . . , k} such that y ∈ Rj0 . By construction the union
⋃
j 6=j0 Aj is

ε/2-dense in S1
v. Therefore the graph C is ε-dense in T2 = S1

h × S1
v.

4. Let us once again consider a g-invariant continuous graph C = M(S1
h × {y}).

As above for every i ∈ {`, . . . , N − `} and j ∈ {1, . . . , k} such that y /∈ Rj, the
point M (Ri

α(x), y) belongs to the set {Ri
α(x)} × Aj which is included in the

strip Γ. There is at most one j0 ∈ {1, . . . , k} such that y ∈ Rj0 . Hence,

π1(C ∩ Γ) ⊃
⋃
j /∈j0

N−`⋃
i=`

Ri
α(Dj).

As a consequence, we get

Leb (π1(C ∩ Γ)) ≥ N − 2`

N

(
Leb

(
k⋃
j=1

N⋃
i=1

Ri
α(Dj)

)
− Leb

(
N⋃
i=1

Ri
α(Dj0)

))
≥ (1− ε/4)(1− ε/4− ε/2) ≥ 1− ε

(the second inequality follows from the definition of the intervals D1, . . . , Dk

and the integer N).
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This completes the proof of the lemma.

Proof of the theorem. — We will use the lemma to construct inductively a
sequence of homeomorphisms (Mk)k≥0. This will give rise to the sequences (Φk)k≥0

and (fk)k≥0 defined by

Φk = M0 ◦ · · · ◦Mk and fk = Φk ◦ (Rα × Id) ◦ Φ−1
k .

We set M0 = Id. Assuming that the sequence M0, . . . ,Mk has been constructed,
we consider a small positive number εk+1 (the conditions on εk+1 will be detailed
below) and we apply the lemma to ε = εk+1. The lemma provides the maps gk+1

and Mk+1, and we have

fk+1 = Φk ◦Mk+1 ◦ (Rα × Id) ◦M−1
k+1 ◦ Φ−1

k = Φk ◦ gk+1 ◦ Φ−1
k .

By the second item of the lemma the homeomorphisms gk+1 and Rα × Id are εk+1-
close, so if εk+1 has been chosen small enough, then fk+1 is 2−k-close to fk = Φk ◦
(Rα× Id) ◦Φ−1

k . One can thus assume that the sequence (fk) is a Cauchy sequence.
It converges to a homeomorphism f of the two-torus, which will be a skew-product
of the form required by the theorem (because of the first item of the lemma and
since SL(2,R) is closed in the space of circle homeomorphisms). It remains to check
that, as soon as the sequence (εk) decreases sufficiently fast, the map f satisfies the
conclusions of the theorem.

Let us address the minimality. By item 3 of the lemma, at step k every gk-
invariant continuous graph is εk-dense in T2. Consequently we can choose εk small
enough so that every fk-invariant graph is 1/k-dense in T2. Since fk is conjugate to
Rα× Id, every orbit is dense in an invariant circle, and there exists a positive integer
Nk such that every piece of orbit p, fk(p), . . . , f

Nk(p) is again 1/k-dense in T2. This
last property is open: the sequence (ε`)`>k can be chosen so that this property is
shared by the limit map f , namely, every piece of f -orbit of length Nk is 1/k-dense.
This entails the minimality of f .

We now turn to the ergodic properties. Let Γ be the horizontal strip given by
item 4 of the lemma when applied at step k and let Γk := Φk−1(Γ). Then Γk is a
horizontal strip: the intersection of Γk with any circle {x}×S1

v is an interval, whose
length is less than 1/k if εk is small enough. Furthermore, for every fk-invariant
continuous graph C, the set π1(C∩Γk) is an open subset of the circle whose Lebesgue
measure is bigger than 1− εk. Then the unique ergodicity of the rotation Rα entails
the following fact.

Fact. — There exists a positive integer Nk with the following property: every fk-
orbit of length Nk spends more than a ratio (1− εk) of its time within the strip Γk,
in other words for every point p,

Card({0 ≤ n < Nk, f
n
k (p) ∈ Γk}) > (1− εk)Nk.

Since Γk is open, every point p has a neighbourhood Vp such that this inequality
remains true when we replace p by any point p′ ∈ Vp and fk by any map which is
εp-close to fk (for some positive εp). Thus, by compactness, the property expressed
in the fact is open, and shared by the map f as soon as the sequence (ε`)`>k tends
to 0 fast enough. As a consequence, for any f -invariant measure µ one has

µ(Γk) ≥ 1− εk.
For any positive integer k0 we set

Ck0 =
⋂
i≥k0

Γi and C =
⋃
k0≥0

Ck0 .
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For any f -invariant measure µ, the measure of Ck0 is bounded from below by 1 −∑
k≥k0 εk and is positive if the sequence (εk) goes to 0 fast enough; hence C has

measure 1. Remember also that Γk is a strip of thickness less than 1/k. Thus the
intersection of C with any vertical circle is empty or reduced to a point: C is a
measurable graph over a set of full Lebesgue measure. The unique ergodicity of the
rotation Rα implies that f is also uniquely ergodic, the only invariant measure being
the measure µ defined by the formula

µ(E) = Leb(π1(E ∩ C)).
This completes the proof of the theorem.
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