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The question

Post-Perelman Question : what could be a good statement for
the classification (geometrization) of open 3-manifolds ?

Surfaces

Topological classification by B. Kerékjártó (1923) and I. Richards
(1963).

Involves the structure at infinity of non compact surfaces.
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Whitehead’s ”proof ” of the Poincaré conjecture

J. H. C. Whitehead suggested in 1934 a proof based on the
following scheme :

I let X a simply connected closed 3-manifolds, X \ {∗} is
contractible.

I The only contractible 3-manifolds is R3.

I One-point compactification of R3 is S3.

In 1935 he realizes the mistake and constructed the first
contractible 3-manifold not homeomorphic to R3, the so-called
Whitehead manifold.
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Whitehead manifolds

Take T1 ⊃ T2 ⊃ T3 ⊃ . . . solid tori.

I T1 is unknotted in S3 and Ti is a null-homotopic knot in
Ti−1, for i > 1.

On the picture Ti+2 ⊂ Ti+1 ⊂ Ti ⊂ Ti−1.
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I W = ∩Ti is the Whitehead continuum.

I X = S3 \W ⊂ S3 is a (the) whitehead manifold (genus one).

Theorem (J.H.C. Whitehead)
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⋃
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I A more general construction.
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Whitehead manifolds

Contractibility (easy)

I Si is null homotopic in Si+1 i.e. it is homotopic to a point.

I For any k-sphere Sk in X , ∃i such that Sk ⊂ Si ,

I ∀k , πk(X ) = {1}; X is contractible.

Non-homeomorphy to R3 (less easy)

I X is not simply connected at infinity.

Definition
X topological space is simply connected at infinity if ∀C compact,
∃D compact, D ⊃ C s.t. any loop in X \ D is null homotopic in
X \ C .
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Whitehead manifolds

What is known :

I X × R ' R4 (Glimm-Shapiro) and X × X ' R6 (Glimm).

I S3/W is not a manifold.

I Uncountably many examples (McMillan) (compare to
countably many closed 3-manifolds).

I Uncountably many examples which do not embed in S3

(Kister-McMillan).

I Examples that cannot cover non-trivially any manifold
(Myers).
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I Question 1 : what is the ”best” metric on M ?

I Question 2 : what is the evolution of the Ricci flow (with
surgery) ?
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Remark
Whitehead manifolds cannot carry a complete metric of
non-positive curvature.

They can even not carry a CAT (0)
distance.

Theorem (Gromov-Lawson, Chang-Weinberger-Yu)

Whitehead manifolds cannot carry complete metrics of uniformly
positive scalar curvature.

Theorem (Gang Liu)

Whitehead manifolds cannot carry complete metrics of nonnegative
Ricci curvature.
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Manifolds with infinite complexity

X = a class of closed 3-manifolds. A manifold M is a connected
sum of members of X if

∃ locally finite simplicial tree T
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such that removing 3-balls and gluing S2 × I to the Xv ’s according
to the edges of T
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One result

Definition
(M, g) has bounded geometry if ∃Q, ρ > 0 such that | Sectg |6 Q
and injg > ρ.

Theorem (Bessières-B.-Maillot)

M has a complete metric of bounded geometry and Scal > 1 iff
there is a finite collection F of spherical manifolds such that M is
a (maybe infinite) connected sum of copies of S2 × S1 and
members of F .
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I Uses a version of the Ricci flow with surgery for non compact
manifolds.

I What if we relax the assumptions ?
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Space of metrics with positive scalar curvature

Let M be an orientable open 3-manifold and define

R1 = space of complete metrics with scalar curvature ≥ 1 and
bounded geometry.

Question
If R1 6= ∅, is R1/Diff (M) path connected ?

The compact case is a result of F. Codá Marques.
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An alternative question

Another way to ask the question is

Question
Let E ⊂ S3 (closed set), what is the ”best” complete metric on
S3 \ E ?

I If E is a link ; Thurston’s theory.

I What if E is a Cantor set or a fractal ?
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Facts

I The binary tree of spheres is a triadic Cantor.

I If E has ”holes” ; S3 \ E is not contractible.

I It is simply connected and has no metric of non positive
curvature.

Theorem (Souto-Stover)

There is a cantor set E ⊂ S3 such that the complement S3 \ E
admits a complete hyperbolic metric.
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Yamabe problem

Question : Complete metric of constant scalar curvature
conformal to the standard one on Sn \ E (n ≥ 3) ?

I Loewner-Nirenberg (1974) :
constant negative scalar curvature =⇒ H(n−2)/2(E ) = +∞.

I Schoen-Yau (1988) : non-negative scalar curvature ; other
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Labutin’s criterion

E ⊂ Sn is not thin means that

∀p ∈ E ,

∫ 1/2

0

(C(B(p, r) ∩ E )

C(B(p, r))

)(2/n−2) dr

r
= +∞.

I C is a Bessel capacity.

I C(E1) ≥ C(E2) if E1 ⊃ E2.

I Criterion satisfied if E submanifold of dim > (n − 2)/2.

I Satisfied for E = Whitehead continuum.
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