On open 3-manifolds
 School on Geometric Evolution Problems

G. Besson

Université Grenoble Alpes
Centro De Giorgi
June, 23rd 2014

Outline

The question

Post-Perelman Question : what could be a good statement for the classification (geometrization) of open 3-manifolds?

The question

Post-Perelman Question : what could be a good statement for the classification (geometrization) of open 3-manifolds?

Surfaces

The question

Post-Perelman Question : what could be a good statement for the classification (geometrization) of open 3-manifolds?

Surfaces

Topological classification by B. Kerékjártó (1923) and I. Richards (1963).

The question

Post-Perelman Question : what could be a good statement for the classification (geometrization) of open 3-manifolds?

Surfaces

Topological classification by B. Kerékjártó (1923) and I. Richards (1963).

Involves the structure at infinity of non compact surfaces.

Whitehead's " proof " of the Poincaré conjecture
J. H. C. Whitehead suggested in 1934 a proof based on the following scheme:

Whitehead's " proof " of the Poincaré conjecture
J. H. C. Whitehead suggested in 1934 a proof based on the following scheme:

- let X a simply connected closed 3-manifolds, $X \backslash\{*\}$ is contractible.

Whitehead's "proof " of the Poincaré conjecture

J. H. C. Whitehead suggested in 1934 a proof based on the following scheme :

- let X a simply connected closed 3-manifolds, $X \backslash\{*\}$ is contractible.
- The only contractible 3-manifolds is \mathbf{R}^{3}.

Whitehead's "proof " of the Poincaré conjecture

J. H. C. Whitehead suggested in 1934 a proof based on the following scheme:

- let X a simply connected closed 3-manifolds, $X \backslash\{*\}$ is contractible.
- The only contractible 3-manifolds is \mathbf{R}^{3}.
- One-point compactification of \mathbf{R}^{3} is \mathbf{S}^{3}.

Whitehead's "proof " of the Poincaré conjecture

J. H. C. Whitehead suggested in 1934 a proof based on the following scheme:

- let X a simply connected closed 3-manifolds, $X \backslash\{*\}$ is contractible.
- The only contractible 3-manifolds is \mathbf{R}^{3}.
- One-point compactification of \mathbf{R}^{3} is \mathbf{S}^{3}.

In 1935 he realizes the mistake and constructed the first contractible 3-manifold not homeomorphic to \mathbf{R}^{3}

Whitehead's "proof " of the Poincaré conjecture

J. H. C. Whitehead suggested in 1934 a proof based on the following scheme:

- let X a simply connected closed 3-manifolds, $X \backslash\{*\}$ is contractible.
- The only contractible 3-manifolds is \mathbf{R}^{3}.
- One-point compactification of \mathbf{R}^{3} is \mathbf{S}^{3}.

In 1935 he realizes the mistake and constructed the first contractible 3-manifold not homeomorphic to \mathbf{R}^{3}, the so-called Whitehead manifold.

Outline

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is a null-homotopic knot in T_{i-1}, for $i>1$.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is a null-homotopic knot in T_{i-1}, for $i>1$.

Whitehead manifolds

Take $T_{1} \supset T_{2} \supset T_{3} \supset \ldots$ solid tori.

- T_{1} is unknotted in S^{3} and T_{i} is a null-homotopic knot in T_{i-1}, for $i>1$.

On the picture $T_{i+2} \subset T_{i+1} \subset T_{i} \subset T_{i-1}$.

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.
- $X=S^{3} \backslash W \subset S^{3}$ is a (the) whitehead manifold (genus one).

Whitehead manifolds

- $W=\cap T_{i}$ is the Whitehead continuum.
- $X=S^{3} \backslash W \subset S^{3}$ is a (the) whitehead manifold (genus one).

Theorem (J.H.C. Whitehead)
X is contractible and not homeomorphic to \mathbf{R}^{3}.

Whitehead continuum

Whitehead continuum

Hausdorff dimension >1.

Whitehead manifolds : remarks

T_{i} is knotted in T_{i-1} but not in S^{3}, hence

Whitehead manifolds : remarks

T_{i} is knotted in T_{i-1} but not in S^{3}, hence

- $S_{i}=S^{3} \backslash T_{i}$ is diffeomorphic to a solid torus.

Whitehead manifolds : remarks

T_{i} is knotted in T_{i-1} but not in S^{3}, hence

- $S_{i}=S^{3} \backslash T_{i}$ is diffeomorphic to a solid torus.
- X is a limit of solid tori.

Whitehead link

The idea is that the core of T_{i} and the meridian of T_{i-1} form the Whitehead link.

Whitehead link

The idea is that the core of T_{i} and the meridian of T_{i-1} form the Whitehead link.

Whitehead link

Whitehead link is symmetric

Whitehead link

Whitehead link is symmetric \leadsto role of the two curves could be exchanged.

Whitehead link

Whitehead link is symmetric \leadsto role of the two curves could be exchanged．

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

- Define $S_{i}=S^{3} \backslash T_{i}$.

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

- Define $S_{i}=S^{3} \backslash T_{i}$.
- S_{i} is a solid torus,

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

- Define $S_{i}=S^{3} \backslash T_{i}$.
- S_{i} is a solid torus,
- $S_{i} \subset S_{i+1}$ knotted in the same way,

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

- Define $S_{i}=S^{3} \backslash T_{i}$.
- S_{i} is a solid torus,
- $S_{i} \subset S_{i+1}$ knotted in the same way,
- symmetry $\Rightarrow X=\bigcup S_{i}$.

Whitehead manifolds

Whitehead link is symmetric \leadsto consequences.

- Define $S_{i}=S^{3} \backslash T_{i}$.
- S_{i} is a solid torus,
- $S_{i} \subset S_{i+1}$ knotted in the same way,
- symmetry $\Rightarrow X=\bigcup S_{i}$.
- A more general construction.

Whitehead manifolds

Contractibility (easy)

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.
- For any k-sphere \mathbb{S}^{k} in $X, \exists i$ such that $\mathbb{S}^{k} \subset S_{i}$,

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.
- For any k-sphere \mathbb{S}^{k} in $X, \exists i$ such that $\mathbb{S}^{k} \subset S_{i}$,
- $\forall k, \pi_{k}(X)=\{1\} \sim X$ is contractible.

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.
- For any k-sphere \mathbb{S}^{k} in $X, \exists i$ such that $\mathbb{S}^{k} \subset S_{i}$,
- $\forall k, \pi_{k}(X)=\{1\} \sim X$ is contractible.

Non-homeomorphy to \mathbf{R}^{3} (less easy)

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.
- For any k-sphere \mathbb{S}^{k} in $X, \exists i$ such that $\mathbb{S}^{k} \subset S_{i}$,
- $\forall k, \pi_{k}(X)=\{1\} \sim X$ is contractible.

Non-homeomorphy to \mathbf{R}^{3} (less easy)

- X is not simply connected at infinity.

Whitehead manifolds

Contractibility (easy)

- S_{i} is null homotopic in S_{i+1} i.e. it is homotopic to a point.
- For any k-sphere \mathbb{S}^{k} in $X, \exists i$ such that $\mathbb{S}^{k} \subset S_{i}$,
- $\forall k, \pi_{k}(X)=\{1\} \sim X$ is contractible.

Non-homeomorphy to \mathbf{R}^{3} (less easy)

- X is not simply connected at infinity.

Definition

X topological space is simply connected at infinity if $\forall C$ compact, $\exists D$ compact, $D \supset C$ s.t. any loop in $X \backslash D$ is null homotopic in $X \backslash C$.

Whitehead manifolds

What is known :

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm) .

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- S^{3} / W is not a manifold.

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- S^{3} / W is not a manifold.
- Uncountably many examples (McMillan)

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- S^{3} / W is not a manifold.
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- S^{3} / W is not a manifold.
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).
- Uncountably many examples which do not embed in S^{3} (Kister-McMillan).

Whitehead manifolds

What is known :

- $X \times \mathbf{R} \simeq \mathbf{R}^{4}$ (Glimm-Shapiro) and $X \times X \simeq \mathbf{R}^{6}$ (Glimm).
- S^{3} / W is not a manifold.
- Uncountably many examples (McMillan) (compare to countably many closed 3-manifolds).
- Uncountably many examples which do not embed in S^{3} (Kister-McMillan).
- Examples that cannot cover non-trivially any manifold (Myers).

Strategy

The idea is to use geometry to understand these spaces and eventually what could be the right statement of geometrization.

Strategy

The idea is to use geometry to understand these spaces and eventually what could be the right statement of geometrization.

- Question 1 : what is the "best" metric on M ?

Strategy

The idea is to use geometry to understand these spaces and eventually what could be the right statement of geometrization.

- Question 1: what is the "best" metric on M ?
- Question 2 : what is the evolution of the Ricci flow (with surgery)?

Whitehead manifolds : known results

Remark
Whitehead manifolds cannot carry a complete metric of non-positive curvature.

Whitehead manifolds : known results

Remark
Whitehead manifolds cannot carry a complete metric of non-positive curvature. They can even not carry a CAT(0) distance.

Whitehead manifolds : known results

Abstract

Remark Whitehead manifolds cannot carry a complete metric of non-positive curvature. They can even not carry a CAT(0) distance.

Theorem (Gromov-Lawson, Chang-Weinberger-Yu)
Whitehead manifolds cannot carry complete metrics of uniformly positive scalar curvature.

Whitehead manifolds : known results

Remark

Whitehead manifolds cannot carry a complete metric of non-positive curvature. They can even not carry a CAT(0) distance.

Theorem (Gromov-Lawson, Chang-Weinberger-Yu)
Whitehead manifolds cannot carry complete metrics of uniformly positive scalar curvature.

Theorem (Gang Liu)
Whitehead manifolds cannot carry complete metrics of nonnegative Ricci curvature.

Higher genus Whitehead manifolds

Outline

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3-manifolds. A manifold M is a connected sum of members of \mathcal{X} if

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3-manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T and $v \mapsto X_{v} \in \mathcal{X}$ defined on vertices of T

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T
and $v \mapsto X_{v} \in \mathcal{X}$ defined on
vertices of T

Manifolds with infinite complexity

$\mathcal{X}=$ a class of closed 3 -manifolds. A manifold M is a connected sum of members of \mathcal{X} if
\exists locally finite simplicial tree T and $v \mapsto X_{v} \in \mathcal{X}$ defined on vertices of T

such that removing 3-balls and gluing $S^{2} \times I$ to the X_{v} 's according to the edges of $T \leadsto M$.

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

\approx

Examples

- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the half-line

\approx

\mathbf{R}^{3}
- $\mathcal{X}=\left\{S^{3}\right\}, T=$ the line $\leadsto S^{2} \times \mathbf{R}$

Graphs versus trees

Graphs versus trees

One result

Definition
(M, g) has bounded geometry if $\exists Q, \rho>0$ such that $\left|\operatorname{Sect}_{g}\right| \leqslant Q$ and inj ${ }_{g} \geqslant \rho$.

One result

Definition
(M, g) has bounded geometry if $\exists Q, \rho>0$ such that $\left|\operatorname{Sect}_{g}\right| \leqslant Q$ and inj ${ }_{g} \geqslant \rho$.

Theorem (Bessières-B.-Maillot)
M has a complete metric of bounded geometry and Scal $\geqslant 1$ iff there is a finite collection \mathcal{F} of spherical manifolds such that M is a (maybe infinite) connected sum of copies of $S^{2} \times S^{1}$ and members of \mathcal{F}.

Remark

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.

Remark

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- Uses a version of the Ricci flow with surgery for non compact manifolds.

Remark

- Compact case due to Perelman + Schoen-Yau or Gromov-Lawson.
- Uses a version of the Ricci flow with surgery for non compact manifolds.
- What if we relax the assumptions?

Space of metrics with positive scalar curvature

Let M be an orientable open 3-manifold and define

Space of metrics with positive scalar curvature

Let M be an orientable open 3-manifold and define
$\mathcal{R}_{1}=$ space of complete metrics with scalar curvature ≥ 1 and bounded geometry.

Space of metrics with positive scalar curvature

Let M be an orientable open 3-manifold and define
$\mathcal{R}_{1}=$ space of complete metrics with scalar curvature ≥ 1 and bounded geometry.

Question
If $\mathcal{R}_{1} \neq \emptyset$, is $\mathcal{R}_{1} / \operatorname{Diff}(M)$ path connected?

Space of metrics with positive scalar curvature

Let M be an orientable open 3-manifold and define
$\mathcal{R}_{1}=$ space of complete metrics with scalar curvature ≥ 1 and bounded geometry.

Question
If $\mathcal{R}_{1} \neq \emptyset$, is $\mathcal{R}_{1} / \operatorname{Diff}(M)$ path connected?

The compact case is a result of F . Codá Marques.

Outline

An alternative question

Another way to ask the question is

An alternative question

Another way to ask the question is
Question
Let $E \subset \mathbf{S}^{3}$ (closed set), what is the "best" complete metric on $\mathbf{S}^{3} \backslash E$?

An alternative question

Another way to ask the question is
Question
Let $E \subset \mathbf{S}^{3}$ (closed set), what is the "best" complete metric on $\mathbf{S}^{3} \backslash E$?

- If E is a link \leadsto Thurston's theory.

An alternative question

Another way to ask the question is
Question
Let $E \subset \mathbf{S}^{3}$ (closed set), what is the "best" complete metric on $\mathbf{S}^{3} \backslash E$?

- If E is a link \leadsto Thurston's theory.
- What if E is a Cantor set or a fractal?

Cantor sets in \mathbf{S}^{3}

Definition

A Cantor set is a compact metrizable set which is totally discontinuous and has no isolated points.

Cantor sets in \mathbf{S}^{3}

Definition

A Cantor set is a compact metrizable set which is totally discontinuous and has no isolated points.

Facts

Cantor sets in \mathbf{S}^{3}

Definition

A Cantor set is a compact metrizable set which is totally discontinuous and has no isolated points.

Facts

- All Cantor sets are homeomorphic.

Cantor sets in \mathbf{S}^{3}

Definition

A Cantor set is a compact metrizable set which is totally discontinuous and has no isolated points.

Facts

- All Cantor sets are homeomorphic.
- The homeomorphism may not extend to \mathbf{R}^{3} or \mathbf{S}^{3}.

Cantor sets in \mathbf{S}^{3}

Facts

Cantor sets in \mathbf{S}^{3}

Facts

- The binary tree of spheres is a triadic Cantor.

Cantor sets in \mathbf{S}^{3}

Facts

- The binary tree of spheres is a triadic Cantor.
- If E has "holes" $\leadsto \mathbf{S}^{3} \backslash E$ is not contractible.

Cantor sets in \mathbf{S}^{3}

Facts

- The binary tree of spheres is a triadic Cantor.
- If E has "holes" $\sim \mathbf{S}^{3} \backslash E$ is not contractible.
- It is simply connected and has no metric of non positive curvature.

Cantor sets in \mathbf{S}^{3}

Facts

- The binary tree of spheres is a triadic Cantor.
- If E has "holes" $\sim \mathbf{S}^{3} \backslash E$ is not contractible.
- It is simply connected and has no metric of non positive curvature.

Theorem (Souto-Stover)
There is a cantor set $E \subset \mathbf{S}^{3}$ such that the complement $\mathbf{S}^{3} \backslash E$ admits a complete hyperbolic metric.

Yamabe problem

Question : Complete metric of constant scalar curvature conformal to the standard one on $\mathbf{S}^{n} \backslash E(n \geq 3)$?

Yamabe problem

Question : Complete metric of constant scalar curvature conformal to the standard one on $\mathbf{S}^{n} \backslash E(n \geq 3)$?

- Loewner-Nirenberg (1974) : constant negative scalar curvature $\Longrightarrow \mathcal{H}^{(n-2) / 2}(E)=+\infty$.

Yamabe problem

Question: Complete metric of constant scalar curvature conformal to the standard one on $\mathbf{S}^{n} \backslash E(n \geq 3)$?

- Loewner-Nirenberg (1974) : constant negative scalar curvature $\Longrightarrow \mathcal{H}^{(n-2) / 2}(E)=+\infty$.
- Schoen-Yau (1988) : non-negative scalar curvature \leadsto other results by ... Mazzeo-Pacard, Byde, Almir Silva Santos.

Yamabe problem

Question : Complete metric of constant scalar curvature conformal to the standard one on $\mathbf{S}^{n} \backslash E(n \geq 3)$?

- Loewner-Nirenberg (1974) : constant negative scalar curvature $\Longrightarrow \mathcal{H}^{(n-2) / 2}(E)=+\infty$.
- Schoen-Yau (1988) : non-negative scalar curvature \leadsto other results by ... Mazzeo-Pacard, Byde, Almir Silva Santos.
- D. Labutin ('05) :
constant negative scalar curvature $\Longleftrightarrow E$ is not thin.

Labutin's criterion

$E \subset S^{n}$ is not thin means that

Labutin's criterion

$E \subset S^{n}$ is not thin means that

$$
\forall p \in E, \quad \int_{0}^{1 / 2}\left(\frac{\mathcal{C}(B(p, r) \cap E)}{\mathcal{C}(B(p, r))}\right)^{(2 / n-2)} \frac{d r}{r}=+\infty
$$

Labutin's criterion

$E \subset S^{n}$ is not thin means that

$$
\forall p \in E, \quad \int_{0}^{1 / 2}\left(\frac{\mathcal{C}(B(p, r) \cap E)}{\mathcal{C}(B(p, r))}\right)^{(2 / n-2)} \frac{d r}{r}=+\infty
$$

- \mathcal{C} is a Bessel capacity.

Labutin's criterion

$E \subset S^{n}$ is not thin means that

$$
\forall p \in E, \quad \int_{0}^{1 / 2}\left(\frac{\mathcal{C}(B(p, r) \cap E)}{\mathcal{C}(B(p, r))}\right)^{(2 / n-2)} \frac{d r}{r}=+\infty
$$

- \mathcal{C} is a Bessel capacity.
- $\mathcal{C}\left(E_{1}\right) \geq \mathcal{C}\left(E_{2}\right)$ if $E_{1} \supset E_{2}$.

Labutin's criterion

$E \subset S^{n}$ is not thin means that

$$
\forall p \in E, \quad \int_{0}^{1 / 2}\left(\frac{\mathcal{C}(B(p, r) \cap E)}{\mathcal{C}(B(p, r))}\right)^{(2 / n-2)} \frac{d r}{r}=+\infty
$$

- \mathcal{C} is a Bessel capacity.
- $\mathcal{C}\left(E_{1}\right) \geq \mathcal{C}\left(E_{2}\right)$ if $E_{1} \supset E_{2}$.
- Criterion satisfied if E submanifold of $\operatorname{dim}>(n-2) / 2$.

Labutin's criterion

$E \subset S^{n}$ is not thin means that

$$
\forall p \in E, \quad \int_{0}^{1 / 2}\left(\frac{\mathcal{C}(B(p, r) \cap E)}{\mathcal{C}(B(p, r))}\right)^{(2 / n-2)} \frac{d r}{r}=+\infty
$$

- \mathcal{C} is a Bessel capacity.
- $\mathcal{C}\left(E_{1}\right) \geq \mathcal{C}\left(E_{2}\right)$ if $E_{1} \supset E_{2}$.
- Criterion satisfied if E submanifold of $\operatorname{dim}>(n-2) / 2$.
- Satisfied for $E=$ Whitehead continuum.

Conical singularities

Question : Constant scalar curvature metrics with conical singularities on E ?

Conical singularities

Question : Constant scalar curvature metrics with conical singularities on E ?

- What does that mean?

Conical singularities

Question : Constant scalar curvature metrics with conical singularities on E ?

- What does that mean?
- Start with $n=2$.

Antoine＇s necklace

[^0]Antoine＇s necklace birth

Antoine＇s necklace birth

Antoine＇s necklace birth

4ロ $\downarrow 4$ 岛 $>4 \equiv>4 \equiv \Rightarrow$ 引

[^0]: 4ロ（4気〉

