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Abstract

These are the notes for a course at the 18th Brazilian School of Probability held from 3th to
9th August 2014 inMambucaba. The aim of the course is to introduce the basic problems of
non�linear PDEswith stochastic and irregular terms. We explain how it is possible to handle
them using two main techniques: the notion of energy solutions [GJ10, GJ13] and that of
paracontrolled distributions, recently introduced in [GIP13]. In order tomaintain a link with
physical intuitions we motivate such singular SPDEs via an homogeneisation problem for a
random potential.
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1 Introduction
The aim of these lectures is to explain how to apply controlled path ideas [Gub04] to solve simple
problems in singular PDEs. The hope is that the insight gained by doing so can inspire new
applications or the construction of other more powerful tools to analyze a wider class of problems.

We discuss some problems involving singular stochastic non�linear parabolic equations from
the point of view of controlled paths. To understand the origin of such singular equations we
have chosen to present the example of an homogeneisation problem of a singular potential in a
linear parabolic equation. This point of view have the added bene�t to be able to track back the
renormalization needed to handle the singularities as e�ects living on other scales than those of
interest. The basic problem is that of having to handle e�ects of the microscopic scales and their
interaction via the non�linearities on the macroscopic behaviour of the solution.

Mathematically this problem translates in the attempt to make coexists Schwartz theory of
distribution with non�linear operations which are notoriously not continuous in the usual topolo-
gies on distributions. This is a very old problem of analysis and has been widely studied. The
additional input which is not present in the usual approaches is that the singularities which force
to treat the problem in the setting of Schwartz's distributions are of a stochastic nature. So we
dispose of two handles on the problem: the analytical one and the probabilistic one. The right mix
of the two will provide an e�ective solution to a wide class of problems.

A �rst and deep understanding of these problems have been obtained starting from the late '90
by T. Lyons [Lyo98] which introduced a theory of rough paths in order to settle the con�icts of
topology and non�linearity in the context of driven di�erential equations or more in general in the
context of the non�linear analysis of time�varying signals. Nowadays there are a lot of expositions
of this theory [LQ02, FV10, LCL07] and we refer the reader to the literature for more details.

In [Gub04, Gub10] the notion of controlled path has been introduced in order to extend the
applicability of the rough path ideas to a larger class of problems which are not necessarily related
to integration of ODEs but which still retained the one�dimensional nature of the directions in
which the irregularity manifest itself. The controlled path approach has been used to de�ne some
evolution of irregular objects like vortex �laments and some SPDEs. Later Hairer understood how
to apply these ideas to the long standing problem of the Kardar�Parisi�Zhang equation [Hai13]
and his insights prompted the researchers to trying more ambitious approaches to extend rough
path ideas to multidimensional setting.

In [GIP13], in collaboration with P. Imkeller, we introduced a notion of paracontrolled dis-
tributions suitable to handle a wide class of SPDEs. At the same time Hairer managed to devise
a vast generalization of the basic construction of controlled rough paths in the multidimensional
and distributional setting which he called the theory of regularity structures [Hai14] and which
subsumes standard analysis based on Hölder spaces and controlled rough path theory but goes well
beyond.

At this date it seems that the theory of regularity structures has a wider range of applicability
than the paracontrolled approach described in [GIP13] but also at the expense of a very deep
conceptual sophistication. There are problems (like the 1d heat equation with multiplicative noise
and general nonlinearity) that cannot be solved via paracontrolled distributions but these problems
seems also quite di�cult (even if doable and work in progress) also via regularity structures.
Moreover equations of more general kind (dispersive equations, wave equations) are still poorly (or
not at all) understood in these approaches.
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Just few days after the lectures at Mambucaba took place it was annouced that Martin Hairer
was awared a Fields Medal for his work on SPDEs and in particular for his theory of regularity
structures [Hai14] for dealing with singular SPDEs. This prize witness the exciting period we
are experiencing: we now understand sound lines of attack to old standing problems and new
opportunities to apply similar ideas to new problems.

The plan of the lectures is the following. We start by explaining the notion of �energy solu-
tions� [GJ10, GJ13] which is a notion of solution to (a particular class of) singular PDEs which has
the advantage to be quite easy to handle but also that has the inconvenient not the have a compre-
hensive uniqueness theory to this date. This will allows us to introduce the readed to SPDEs in a
quite progressive way and also to introduce Gaussian tools (Wick's products, hypercontractivity)
and some of the basic phenomena appearing when dealing with singular SPDEs. Next we set up
the analytical tools we need in the rest of the lectures: Besov spaces and some basic harmonic
analysis via the Littlewood�Paley decomposition. Next, in order to motivate the readers and
provide a physical ground for the intuition to stand on, we discuss the homogeneisation problem for
the linear heat equation with random potential. This will allow us to track the need of the weak
topologies and of irregular objects like white�noise from �rst principles and �concrete� applications.
The homogeneisation problem allows also to see naturally appear the renormalization e�ects into
the picture and track their mathematical meaning. Starting from these problems we introduce the
2d parabolic Anderson model which is the simpler SPDEs in which most of the features of more
di�cult problems are already present and explain how to us paraproducts and the paracontrolled
Ansatz in order to keep under control the non�linear e�ect of the singular data. Then we go on
to discuss the more involved situation of the Stochastic Burgers equation in 1d which is one of the
avatars of the Kardar�Parisi�Zhang equation.

Conventions and notations We write a. b if there exists a constant C> 0, independent of the
variables under consideration, such that a6Cb. Similarly we de�ne &. We write a' b if a. b and
b.a. If we want to emphasize the dependence of C on the variable x, then we write a(x).x b(x).

If i and j are index variables of Littlewood-Paley blocks (to be de�ned below), then i . j is
to be interpreted as 2i. 2j, and similarly for ' and .. In other words, i. j means i6 j+N for
some �xed N 2N that does not depend on i or j.

We use standard multi-index notation: for � 2 N0
d we write j�j = �1 + ::: + �d and @� =

@j�j/@x1
�1:::@xd

�d, as well as x�=x1�:::�xd for x2Rd.
For �>0 we write Cb� for the functions F :R!R which are b�c times continuously di�erentiable

with (�¡b�c)�Hölder continuous derivatives of order b�c.
If we write u 2 C �¡, then that means that u is in C �¡" for all " > 0. The C � spaces will be

de�ned below.

2 Energy solutions
The �rst issue one encounters dealing with singular SPDEs has to do with the not�well posed
character of the equation, even in a weak sense. Typically the non�linearity does not make sense
in the natural spaces were solutions lives and one has to provide a suitable smaller space which
allow to identify the correct meaning to give to �ambiguous quantities� featuring in the equation.

Energy solution [GJ10, GJ13] are a simple tool in order to come up with a well�de�ned non�
linearities. The drawback is that currently the issue of uniqueness, in the interesting cases, is
open. It is not clear if uniqueness of energy solutions holds or even what to do in order to �nd
conditions which ensure uniqueness. On the other hand proving existence of energy solution or
even convergence to energy solutions is usually a quite simple problem, at least compared to the
other approaches like paracontrolled solutions or regularity structures where existence require
already quite a large amount of computations but where uniqueness can be established quite easily
afterwards.
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Our aim is to motivate the ideas leading to the notion of energy solutions. We will not insist
on a detailed formulation of all the available results. The reader can always refer to the original
paper [GJ13] for all the missing details. Applications to the large scale behavior of particle systems
are studied here [GJ10].

We will study energy solutions for the stochastic Burgers equation on T: the unknown u:
R+�T!R satisfy

@tu=�u+ @xu2+ @x�

where �:R+�T!R is a space�time white noise de�ned on a given probability space (
;F ;P)
�xed once and for all. The equation has to be understood as a relation for processes which are
distributions in space with regular enough time dependence. In particular if we test the above
relation with ' 2 S (T), denote with ut(') the pairing of the distribution u(t; �) with ' and
integrate in time in the interval [0; t] we get

ut(')=u0(')+
Z
0

t

us(�')ds¡
Z
0

t

hus2; @x'ids¡
Z
0

t

�s(@x')ds

Let us discuss the various terms in this equation. In order to make sense of ut(') and
R
0

t
us(�')ds

it is enough to assume that for all ' 2S (T) the mapping (t; !) 7! ut(') is a stochastic process
with continuous trajectories. Next, if we denote Mt(')=

R
0

t
�s(@x')ds then, at least by a formal

computation, we have that (Mt('))t>0;'2S (T) is a Gaussian random �eld with covariance

E[Mt(')Ms(')]= (t^ s)h@x'; @x iL2(T)

In particular, for every ' 2 S the stochastic process (Mt('))t>0 is a Brownian motion with
covariance k'kH1(T)

2 = h@x'; @x'iL2(T). We used the notation M in order to stress the fact that
Mt(') is a martingale for its natural �ltration and more in general for the �ltration given by
Ft=�(Ms('): s6 t; '2H1(T)). (The quanti�cation over '2H1(T) is not allowed but we can use
a dense countable ('n)n>0 subset of H1(T)).

The most di�cult term is of course the nonlinear one:
R
0

t hus2; @x'ids. In order to de�ne it
indeed we need to square the distribution ut, operation which is quite dangerous in general. One
natural approach would be to de�ne it as the limit of some regularizations. For example, if we let
�:R!R+ a compactly supported C1 positive function such that

R
R
�=1 and let �"(�)= �(�/")/"

then we can let Nt;"(u)(x)=
R
0

t (�"�us)(x)2ds and de�ne the distribution Nt(u)= lim"!0Nt;"(u)
whenever the limit exists in S 0(T). Which properties u should have in order for this to occur is
the question.

2.1 The Ornstein�Uhlenbeck process

Let us simplify the problem and look at solutions of the linearized equation obtained by
neglecting the non�linear term. Let X be a solution to

Xt(')=X0(')+
Z
0

t

Xs(�')ds+Mt(') (1)

for all t> 0 and '2S (T). This equation has a unique solution (for �xed X0 and M), indeed the
di�erence D between two solutions should satisfy Dt(') =

R
0

t
Ds(�')ds which means that D is

a distributional solution to the heat equation. Taking '(x)= exp(ik x)/ 2�
p

= ek(x) for k 2Z we
get Dt(ek)=¡k2

R
0

t
Ds(ek)ds and by Gronwall Dt(ek)= 0 for all t> 0 which easily implies Dt=0

in S 0 for all t> 0.
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To obtain a solution of the equation observe that

Xt(ek)=X0(ek)¡ k2
Z
0

t

Xs(ek)ds+Mt(ek)

and that Mt(e0) = 0 while for all k =/ 0 the process �t(k) =Mt(ek)/(i k) is a complex Brownian
motion with covariance

E[�t(k)�s(m)]= (t^ s)�k+m=0

and satisfying �t(k)�= �t(¡k) for all k=/ 0 and �t(0)=0. Then Xt(ek) is a 1d Ornstein�Ulhenbeck
process which solves a standard linear 1d SDE and has an explicit representation given by the
variation of constants formula

Xt(ek)= e¡k
2tX0(ek)+ i k

Z
0

t

e¡k
2(t¡s)ds�s(k)

and this is enough to determine completely Xt(') for all t> 0 and ' 2S . In particular X is a
complex Gaussian random �eld with mean

E[Xt(ek)]= e¡k
2tX0(ek)

and covariance

Cov(Xt(ek); Xs(em))= k2�k+m=0
Z
0

t^s
e¡k

2(t¡r)¡k2(s¡r)dr

so that

Xt(ek)�NC(e¡k
2tX0(ek); (1¡ e¡2k

2t)):

Sobolev regularity of X is the object of the following lemma.

Lemma 1. Let "> 0 and assume that X02H¡1/2¡�(T). Then almost surely X 2CH¡1/2¡"(T).

Proof. Let �=¡1/2¡ " and consider that

kXt¡XskH�(T)2 =
X
k2Z

(1+ jk j2)�jXt(ek)¡Xs(ek)j2:

Let us estimate the L2p(
) norm of this quantity for p2N by writing

EkXt¡XskH�(T)
2p =

X
k1;:::;kp2Z

Y
i=1

p

(1+ jkij2)�E
Y
i=1

p

jXt(eki)¡Xs(eki)j2:

By Cauchy�Schwartz

.
X

k1;:::;kp2Z

Y
i=1

p

(1+ jkij2)�
Y
i=1

p

(EjXt(eki)¡Xs(eki)j2p)1/p:

Note now that Xt(eki) ¡ Xs(eki) is a Gaussian random variable, so that there exists a universal
constant Cp for which

EjXt(eki)¡Xs(eki)j2p6Cp(EjXt(eki)¡Xs(eki)j2)p

and that

Xt(ek)¡Xs(ek)= (e¡k
2(t¡s)¡ 1)Xs(ek)+ i k

Z
s

t

e¡k
2(t¡r)dr�r(k)

EjXt(ek)¡Xs(ek)j2=(e¡k
2(t¡s)¡ 1)2EjXs(ek)j2+ k2

Z
s

t

e¡2k
2(t¡r)dr

=(e¡k
2(t¡s)¡ 1)2e¡2k2sjX0(ek)j2+(e¡k

2(t¡s)¡ 1)2k2
Z
0

s

e¡2k
2(s¡r)dr+ k2

Z
s

t

e¡2k
2(t¡r)dr

=(e¡k2t¡ e¡k2s)2jX0(ek)j2+
1
2
(e¡k

2(t¡s)¡ 1)2(1¡ e¡2k2s)+ 1
2
(1¡ e¡2k2(t¡s))

and for any �> 0 and k=/ 0 we have

EjXt(ek)¡Xs(ek)j2. (k2(t¡ s))�(jX0(ek)j2+1)
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while for k=0 we have EjXt(e0)¡Xs(e0)j2=0 then

EkXt¡XskH�(T)
2p .

X
k1;:::;kp2Z0

Y
i=1

p

(1+ jkij2)�
Y
i=1

p

EjXt(eki)¡Xs(eki)j2

.(t¡ s)�p
X

k1;:::;kp2Z0

Y
i=1

p

(1+ jkij2)�(ki2)�(jX0(eki)j2+1)

.(t¡ s)�p
" X
k2Z0

(1+ jk j2)�(k2)�(jX0(ek)j2+1)
#p

.(t¡ s)�p(kX0kH�+�(T)
2p +[

X
k2Z0

(1+ jk j2)�(k2)�]p)

so if �<¡1/2¡ � the sum in the r.h.s. is �nite and we obtain an estimation of the modulus of
continuity of t 7!Xt in L2p(
;H�):

EkXt¡XskH�(T)
2p . (t¡ s)�p[1+ kX0kH�+�(T)

2p ]:

Now, by Kolmogorov lemma, we can conclude that for some small ">0 X 2CH¡1/2¡"(T) almost
surely if X02H¡1/2¡"(T). �

Now note that the regularity of the OU process does not allow to form the quantity Xt
2 point�

wise in time since by Fourier transform we have Xt(x)=
P
k Xt(ek)ek�(x) and we should have

Xt
2(ek)=

X
`+m=k

Xt(e`)Xt(em):

Of course this expression is formal at this point since we cannot guarantee that the in�nite sum
converges. A reasonable thing to try is to approximate the square by regularizing the distribution
via a convolution with a smooth kernel and then try to remove the regularization. Let �N the
projector of a distribution on a �nite number of Fourier modes:

(�N�)(x)=
X
jkj6N

�(ek)ek�(x)

Note that (�N�)(') =
P
jkj6N �(ek)'̂(k). Then �NXt(x) is a nice smooth function of x and we

can consider [(�NXt)2](x) which satis�es

(�NXt)2(ek)=
X

`+m=k

Ij`j6N;jmj6NXt(e`)Xt(em)

and then try to take the limit N!+1. Below for convenience we will do computations already
in the limit N =+1 but one has to come back to the �nite N case in order to make it rigorous.

Now,

E[Xt
2(ek)]= �k=0

X
m2Z0

E[Xt(e¡m)Xt(em)]

=�k=0
X
m2Z0

e¡2m
2tjX0(em)j2+ �k=0

X
m2Z0

m2

Z
0

t

e¡2m
2(t¡s)ds

but X
m2Z0

m2

Z
0

t

e¡2m
2(t¡s)ds= 1

2

X
m2Z0

¡
1¡ e¡2m2t

�
=+1:

This is not really a problem since in the equation only the components with k=/ 0 of ut2(ek) appears.
However Xt

2(ek) is not even a well�de�ned random variable. For a moment let us assume that
X0=0, this will simplify a bit the computation. Next note that if k=/ 0 we have

E[jXt
2(ek)j2] =E[Xt

2(ek)Xt
2(e¡k)]=

X
`+m=k

X
`0+m0=k

E[Xt(e`)Xt(em)Xt(e`0)Xt(em0)]
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and by Wick's theorem the expectation can be computed in terms of the covariances of all possible
pairings of the four Gaussian random variables (3 possible combinations)

E[Xt(e`)Xt(em)Xt(e`0)Xt(em0)]=E[Xt(e`)Xt(em)]E[Xt(e`0)Xt(em0)]

E[Xt(e`)Xt(e`0)]E[Xt(em)Xt(em0)]+E[Xt(e`)Xt(em0)]E[Xt(em)Xt(e`0)]

Since k=/ 0 we have `+m=/ 0 and `0+m0=/ 0 which allow to neglect the �rst term since it is zero,
by symmetry of the summations the two other give the same contribution so we remain with

E[jXt
2(ek)j2] = 2

X
`+m=k

X
`0+m0=k

E[Xt(e`)Xt(e`0)]E[Xt(em)Xt(em0)]

=2
X

`+m=k

E[Xt(e`)Xt(e¡`)]E[Xt(em)Xt(e¡m)]

=1
2

X
`+m=k

¡
1¡ e¡2`2t

�¡
1¡ e¡2m2t

�
=+1

Showing, at least at the heuristic level, that there will indeed problems with Xt
2.

The OU process can be decomposed as

Xt(ek)= i k
Z
1

t

e¡k
2(t¡s)d�s(k)¡ i ke¡k

2t

Z
¡1

0

ek
2sd�s(k)

by extending the Brownian motions (�s(k))s>0 to a two sided complex BM via independent copies.
It is not di�cult to show that the second term give rise to a smooth function if t > 0, so all
the irregularity of Xt is described by the �rst one which we call Yt(ek) and then we note that
Yt(ek)�NC(0; 1/2) for all k2Z0 and t2R. The random distribution Yt satisfy then Yt(')�N

¡
0;

k'kL2(T)2 /2
�
that is, it is the white noise on T. It is also possible to deduce that the white noise

on T is really the invariant measure of the OU process and that it is, indeed, the only one and it
is approached quite fast.

So we should expect that, at �xed time, the regularity of the OU process is like that of the
space white noise and this is a way to understand our di�culties in de�ning Xt

2 since this will be,
modulo smooth terms, the square of the space white noise.

A di�erent matter is to make sense of the time�integral of @xXt
2, let us give it a name and call

it Jt(')=
R
0

t
@xXs

2(')ds. For Jt(ek) the computation of its variance gives a quite di�erent result.
Proceeding as above we have now

E[jJt(ek)j2] = 2k2
Z
0

t Z
0

t X
`+m=k

E[Xs(e`)Xs0(e¡`)]E[Xs(em)Xs0(e¡m)]dsds0

and, if s> s0,

E[Xs(e`)Xs0(e¡`)]=
1
2
e¡`

2(s¡s0)¡1¡ e¡2`2s0�
so

E[jJt(ek)j2] =
k2

2

Z
0

t Z
0

t X
`+m=k

e¡(`
2+m2)js¡s0j¡1¡ e¡2`2(s0^s)�¡1¡ e¡2m2(s0^s)�dsds0

6k
2

2

Z
0

t Z
0

t X
`+m=k

e¡(`
2+m2)js¡s0jdsds06 k2t

X
`+m=k

Z
0

1
e¡(`

2+m2)rdr= k2 t
X

`+m=k

1
`2+m2

and now for k=/ 0: X
`+m=k

1
`2+m2

.
Z
R

dx
x2+(x+ k)2

. 1
jk j
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so �nally E[jJt(ek)j2]. jk j t. Redoing a similar computation in the case Jt(ek)¡ Js(ek) we obtain
E[jJt(ek) ¡ Js(ek)j2] . jk j (t ¡ s). From this estimate to a path�wise regularity result of the
distribution (Jt)t, following the line of reasoning of Lemma 1, we need to estimate the p-th moment
of Jt(ek)¡Js(ek). Gaussian hypercontractivity tells us that all the Lp moments of polynomials for
gaussian random variables are equivalent and in particular that

E[jJt(ek)¡ Js(ek)j2p].p (E[jJt(ek)¡ Js(ek)j2])p

so by redoing the estimates of the Lemma we discover that almost surely J 2C1/2¡H¡1/2¡(T).
This shows that @xXt

2 exists as a space�time distribution but not as a continuous function of time
with values in distributions in space. The key point of this computations is the fact that the OU
process decorrelates quite rapidly in time.

The construction of the process J sketched in the computations above does not solve our
problem since we need similar properties for the full solution u of the non�linear dynamics (or for
some approximations thereof) and all we have done relies on explicit computations and the speci�c
Gaussian features of the OU process. But at least give us an hint that indeed there could a way to
make sense of the term @xu(t; x)2 even if only as a space�time distribution and that in doing this
we should exploit some decorrelation properties of the dynamics.

We need a replacement for the Gaussian computations used above. This will be provided, in
our case, by the stochastic calculus along the time direction. Indeed note that for each '2S the
process (Xt('))t>0 is a semimartingale for the �ltration (Ft)t>0.

Before proceeding with these computations we need to develop some tools to describe Itô the
formula along the OU process. This will be also the occasion to set up some analysis of Gaussian
spaces.

2.2 Gaussian computations
For cylindrical functions F :S 0!R of the form F (�)= f(�('1); :::; �('n)) with '1; :::; 'n2S and
f :Rn!R at least Cb2, we have by Itô's formula

dtF (Xt)=
X
i=1

n

Fi(Xt)dXt('i)+
1
2

X
i; j=1

n

Fi; j(Xt)dhX('i); X('j)it

where hit denotes the quadratic covariation of two semimartingales and where Fi(�)=@if(�('1); :::;
�('n)) and Fi; j(�)=@i; j2 f(�('1); :::; �('n)) with @i the derivative with respect to the i-th argument.
Now

dhX('i); X('j)it=dhM('i);M('j)it= h@x'i; @x'jiL2(T)dt
and then

dtF (Xt)=
X
i=1

n

Fi(Xt)dMt('i)+L0F (Xt)dt

Where L0 is the second�order di�erential operator de�ned on cylindrical functions F as

L0F (�)=
X
i=1

n

Fi(�)�(�'i)+
X
i; j=1

n
1
2
Fi; j(�)h@x'i; @x'jiL2(T):

Another way to describe the generator is to give its value on the functions exp(�( )) which is

L0e
�( )= e�( )(�(� )¡ 1

2
h ;� iL2(T)):

If F ; G are two cylindrical functions (which we can take of the form F (�) = f(�('1); :::; �('n))
and G(�)= g(�('1); :::; �('n)) for the same '1; :::; 'n2S ) we can check that

L0(FG)= (L0F )G+F (L0G)+E(F ;G)

8 Section 2



where the quadratic form E is given by

E(F ;G)(�)=
X
i; j

Fi(�)Gj(�)h@x'i; @x'jiL2(T):

Assume that X0= � where ��N (0;k'kL2(T)2 /2) is a space�white noise and recall that we already
established that white noise is invariant for the OU dynamics so that Xt� � for all t> 0.

Lemma 2. (Gaussian integration by parts) Let (Zi)i=1;:::;M be a M-dimensional Gaussian vector
with zero mean and covariance (Ci; j)i; j=1;:::;M. Then for all g 2Cb1(RM) we have

E[Zk g(Z)]=
X
`

Ck;`E

�
@g(Z)
@Z`

�
Proof. Use that E[e�hZ;�i] = e¡h�;C�i/2 and moreover that

E[Zke�hZ;�i] = (¡�) @

@�k
E[e�hZ;�i] = (¡�) @

@�k
e¡h�;C�i/2= �(C�)ke¡h�;C�i/2

=�
X
`

Ck;`�`E[e�hZ;�i] =E[
X
`

Ck;`
@
@Z`

e�hZ;�i]:

The relation is true for trigonometric functions and by Fourier transform for all g 2S . Is then a
matter to take limits to show that we can extend it to any g 2Cb1(RM). �

Note that E[�('i)�(�'j)]=
1

2
h'i;�'jiL2(T) so

E
X
i; j=1

n
1
2
Fi; j(�)h@x'i; @x'jiL2(T)=¡E

X
i; j=1

n
1
2
Fi; j(�)h'i;�'jiL2(T)

=¡1
2

X
i; j=1

n

h'i;�'jiL2(T)E
@

@�('i)
Fj(�)=¡

X
j=1

n

E[�(�'j)Fj(�)]

which gives again that E[L0F ] = 0. And
1
2
E[E(F ;G)(�)]=¡1

2

X
i; j

E(Fi(�)Gj(�))h'i;�'jiL2(T):

=¡1
2

X
i; j

E((F (�)Gj(�))i)h'i;�'jiL2(T)+
1
2

X
i; j

E(F (�)Gij(�))h'i;�'jiL2(T)

=¡
X
j

E(F (�)Gj(�)�(�'j))+
1
2

X
i; j

E(F (�)Gij(�))h'i;�'jiL2(T)

=¡E[(FL0G)(�)]

so E[(FL0G)(�)]=E[(GL0F )(�)], that is L0 is a symmetric operator with respect to the law of �.

Let D be the operator de�ned as DF (�)=
P
i Fi(�)('i) and note that

E[F (�)h ;DG(�)i] +E[G(�)h ;DF (�)i] =
X
i

E[(FG)i(�)h ; 'ii] = 2E[�( )(FG)(�)]
so

E[F (�)h ;DG(�)i] =E[G(�)h ;D�F (�)i]

with D�F (�) = ¡DF (�) + 2� being the adjoint of D for the L2(Law(�)) scalar product. Let
D F = h ;DF i and similarly for D �F =¡D F + 2�( ). Then L0=

1

2

P
k D�1/2ek

� D�1/2ek
for an

orthonormal basis (en)n>1 of L2(T) and [D � ;D�] = 2h ; �iL2(T). Note that

[L0;D � ] =
1
2

X
k

�
D�1/2ek
� D�1/2ek

;D �
�
= 1
2

X
k

D�1/2ek
� [D�1/2ek

;D � ] +
1
2

X
k

�
D�1/2ek
� ;D �

�
D�1/2ek

=¡
X
k

D�1/2ek
� 


 ;�1/2ek
�
L2(T)=¡D� 

�
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so if  is an eigenvector of � with eigenvalue � :

[L0; D 
� ] =¡�D � :

Let now ( n)n>0 be an orthonormal eigenbasis for � with eigenvalues � n=�n and consider the
functions H( i1; :::;  in)=D i1

� ���D in
� 1. Then

L0H( i1; :::;  in)=L0D i1
� ���D in

� 1=D i1
� L0D i2

� ���D in
� 1¡�i1D i1

� ���D in
� 1

=���=¡(�i1+ ���+�in)H( i1; :::;  in)

since L01=0. Then these functions are eigenfunction for L0 and the eigenvalues are all the possible
combinations of �i1 + ��� + �in for i1; :::; in 2 N. We have immediately that these functions are
orthogonal for di�erent n. They are actually orthogonal as soon as the indexes i di�er since in that
case there is an index j which is in one but not in the other and using the fact that D j

� is adjoint
to D j and that D jG = 0 if G does not contain D j

� we get the orthogonality. These functions
are polynomials and they are called Wick polynomials. Note also that

E
¡
F (�) eD 

�
1
�
=E(eD F (�) )=E[F (�+  )]=E

h
F (�)e�( )¡

1
2
k k2

i
so taking  =

P
i �i i we get

e
P
i�i�( i)¡

P
i

�i
2

2
k ik2= eD 

�
1=

X
n>0

(D � )n

n!
=
X
n>0

X
i1;:::;in

�i1����in
n!

H( i1; :::;  in||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n times

)

which is enough to show that any random variable in L2 can be expanded in a series of Wick
polynomials showing that indeed Wick polynomials are an orthogonal basis of L2(Law(�)) (but
they are still not normalized). Indeed assume that Z 2 L2(Law(�)) but Z?H( i1; :::;  in) for all
n> 0, i1; :::; in2N, then

0= e
P
i

�i
2

2
k ik2E

�
Z(�) eD 

�
1
�
= e

P
i

�i
2

2
k ik2E[Z(�)e

P
i�i�( i)¡

P
i

�i
2

2
k ik2] =E[Z(�)e

P
i�i�( i)]

Since the �i are arbitrary this means that Z(�) is orthogonal to any polynomial in � and then that is
orthogonal also to exp(�

P
i �i�( i)). But then take q̂2S (RM) and �i=0 if i>M , and observe that

0=
Z

d�1���d�mq̂(�1; :::; �m)E[Z(�)e�
P
i�i�( i)] =E[Z(�)q(�( 1); :::; �( M))]

which means that Z(�) is orthogonal to all the random variables in L2 which are measurable with
respect to the ���eld generated by (�( n))n>0. This implies Z(�)=0. That is, Wick polynomials
form a basis for L2.

The �rst few (un�normalized) Wick polynomials are

H( i)=D i
� 1=2�( i)= 2�( i)

and

H( i;  j)=D i
� D j

� 1=2D i
� �( j)=¡2�i; j+4�( i)�( j)

H( i;  j ;  k)=D i
� (¡2�j;k +4�( j)�( k))

=¡4�j;k�( i)¡ 4�i; j�( k)¡ 4�i;k�( j)+ 8�( i)�( j)�( k)

and so on.

Some other properties of Wick's polynomials can be derived using the commutation relation
between D and D�. By linearity D'+ � =D'� +D � so

Hn('+  )=H('+  ; :::; '+  )=
X

06k6n

�
k
n

�
H('; :::; '|||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

k

;  ; :::;  |||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
n¡k

)
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Then note that

e�( )¡k k
2/2e�(')¡k'k

2/2= e�('+ )¡k'+ k
2/2+h'; i:

By expanding the exponentials we have

X
n;m

Hn( )
n!

Hm(')
m!

=
X
r;`

Hr('+  )
r!

(h';  i)`
`!

=
X
n;m;`

H('; :::; '
zzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {k

;  ; :::;  
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {m

)
n!m!

(h';  i)`
`!

:

Identifying the terms of the same homogeneity respectively in ' and  we get

Hn( )Hm(')=
X

p+`=n

X
q+`=m

n!m!
p!q!`!

H('; :::; '
zzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {p

;  ; :::;  
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {q

)(h';  i)`

which gives a general formula for the products. By polarization of this multilinear form we can get
also a general formula for the products of general Wick polynomials. Indeed taking  =

P
i=1
n �i i

and '=
P

j=1
m �j'j for arbitrary real coe�cients �1; :::; �n and �1; :::; �m we have

Hn(
X
i=1

n

�i i)Hm(
X
j=1

m

�j'j)=
X

i1;:::;in

X
j1;:::;jm

�i1����im�j1����jmH( i1; :::;  in)H( j1; :::;  jm)

and then deriving this wrt all the �; � parameters and setting them to zero we single out the termX
�2Sn;!2Sm

H( �(1); :::;  �(n))H( !(1); :::;  !(m))= (n!)(m!)H( 1; :::;  n)H('1; :::; 'm)

using symmetry of the Wick polynomials. Doing the same also in the r.h.s. we get

H( 1; :::;  n)H('1; :::; 'm)=
X

p+`=n

X
q+`=m

1
p!q!`!

X
i; j

H('i1; :::; 'ip
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {p

;  j1; :::;  jq
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {q

)
Y
r=1

`

h'ip+r;  jq+ri

where the sum over i; j runs over i1; :::; in permutation of 1; :::; n and similarly for j1; :::; jm.

In particular

E[H( 1; :::;  n)H( 1; :::;  n)]=
1
n!

X
i; j

Y
r=1

n

h ir;  jri=
X
�2Sn

Y
r=1

n

h r;  �(r)i:

Some remarks about complex valued bases. In our problem it will be convenient to take the
Fourier basis as basis in the above computations. Let ek(x) = exp(�k x) / 2�

p
= ak(x) + i bk(x)

where ak; bk with k 2 N are a real ONB for L2(T). Then �(ek)� = �(e¡k) and we will denote
Dk=Dek=Dak+ iDbk and similarly for Dk�=Dak

� ¡ iDbk� =¡D¡k+ �(e¡k). In this way Dk
� is the

adjoint of Dk with respect to the hermitian scalar product on L2(
;C) and the OU generator takes
the form

L0=
X
k2N

D@xak
� D@xak+D@xbk

� D@xbk=
1
2

X
k2Z

k2Dk�Dk

and

E(F ;G)= 1
2

X
k2Z

k2(DkF )�(DkG):

2.3 The Itô trick
We are ready now to start our computations. Recall that we want to analyse Jt(')=

R
0

t
@xXs

2(')ds
using Itô calculus over the OU process. We want to see Jt as a correction term in an Itô formula
so we have to �nd a function F such that 1

2
L0F (Xt)(ek)= @xXt

2(ek).Note that

@xXt
2(ek)= i k

X
`+m=k

Xt(e`)Xt(em)= i k
X

`+m=k

H`;m(Xt)

Energy solutions 11



where H`;m(�)=
1

4
D¡`� D¡m� 1= �(e`)�(em)¡ 1

2
�`+m=0 is a second order Hermite polynomial so that

L0H`;m=¡(`2+m2)H`;m. So it is enough to take

F (Xt)(ek)=¡2 � k
X

`+m=k

H`;m(Xt)
`2+m2

Note that this corresponds to the distribution: F (Xt)(')=¡2
R
0

1
@x(e�sXt)2(')ds. Then

F (Xt)(')=F (X0)(')+MF ;t(')+ Jt(')

where MF ;t(') is a martingale with quadratic variation

hMF ;�(');MF ;�(')it= E(F (�)('); F (�)('))(Xt)dt:

We can estimate

E[jJt(')¡ Js(')j2p].pE[jMF ;t(')¡MF ;s(')j2p] +E[jF (Xt)(')¡F (Xs)(')j2p]

Note moreover that if mt is a martingale we have

dtjmtj2p=(2p)jmtj2p¡1dmt+
1
2
(2p)(2p¡ 1)jmtj2p¡2dhmit

and

E[jmtj2p] =Cp
Z
0

t

E(jmsj2p¡2dhmis)6CpE(jmtj2p¡2hmit)

by Cauchy�Schwartz:

6CpE(jmtj2p)(2p¡2)/2p(E[hmtip])1/p

which implies that E[jmtj2p]6CpE[hmtip]. So

E[jJt(')¡ Js(')j2p].pE
�����Z

s

t

E(F (�)('); F (�)('))(Xr)dr
����p�+E[jF (Xt)(')¡F (Xs)(')j2p]

.p(t¡ s)p¡1
Z
s

t

E[jE(F (�)('); F (�)('))(Xr)jp]dr+E[jF (Xt)(')¡F (Xs)(')j2p]

.p(t¡ s)pE[jE(F (�)('); F (�)('))(�)jp] +E[jF (Xt)(')¡F (Xs)(')j2p]

since Xt� �. Now

DmF (�)(ek)=¡2 � k
X

`+m=k

�(e`)
`2+m2

E(F (�)(ek); F (�)(ek))(�)=
X
m

m2D¡mF (�)(e¡k)DmF (�)(ek)

=4k2
X

`+m=k

m2 j�(e`)j2
(`2+m2)2

. k2
X

`+m=k

j�(e`)j2
`2+m2

Which implies that

E[jE(F (�)(ek); F (�)(ek))(�)j]. k2E
X

`+m=k

j�(e`)j2
`2+m2

. k2
X

`+m=k

1
`2+m2

. jk j:

A similar computation gives also that

E[jE(F (�)(ek); F (�)(ek))(�)jp]. jk jp

Note that we have also

E[jF (Xt)(ek)¡F (Xs)(ek)j2]. k2
X

`+m=k

E

�
(H`;m(Xt)¡H`;m(Xs))2

(`2+m2)2

�

.k2jt¡ sj
X

`+m=k

m2

(`2+m2)2
. jk j jt¡ sj
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And �nally, this computation let us recover the result that

E[jJt(ek)¡Js(ek)j2p].p (t¡ s)pjk jp:

The advantage of the Itô trick with respect to the explicit Gaussian computation is that it goes
over to the non-Gaussian case. Note indeed that u satisfy the Itô formula

dtF (ut)=
X
i=1

n

Fi(ut)dMt('i)+LF (ut)dt

where L is now the full generator of the non�linear dynamics given by

LF (�)=L0F (�)+
X
i

Fi(�)h@x�2; 'ii=L0F (�)+BF (�)

where

BF (�)=
X
k

(@x�2)(ek)DkF (�):

The non�linear term is antisymmetric with respect to the invariant measure of L0:X
i

E[G(�)Fi(�)h@x�2; 'ii] =
X
i

E[(GF )i(�)h@x�2; 'ii]¡
X
i

E[Gi(�)F (�)h@x�2; 'ii]

=1
2
E[(GF )(�)h@x�2; �i] =

1
2
E[(GF )(�)h@x�3; 1i] = 0

Moreover if we reverse the process in time letting ût=uT¡t we have

E[F (ût)G(û0)]=E[F (uT¡t)G(uT)]=E[F (u0)G(ut)]:

So if we denote by L̂ the generator of û we have

E
�
L̂F (û0)G(û0)

�
= d
dt

����
t=0

E[F (ût)G(û0)]=
d
dt

����
t=0

E[F (u0)G(ut)]=E[LG(u0)F (u0)]

which means that L̂ is the adjoint of L, that is

L̂=L0F (�)¡
X
k

(@x�2)(ek)DkF (�):

Then the Itô formula gives

dtF (ût)=
X
i=1

n

Fi(ût)dM̂t('i)+ L̂ F (ût)dt:

So

F (uT)(')=F (u0)(')+MF ;T (')+
Z
0

T

LF (us)(')ds

F (u0)(')=F (ûT)(')=F (û0)(')+ M̂F ;T (')+
Z
0

T

L̂F (ûs)(')ds

=F (uT)(')+ M̂F ;T (')+
Z
0

T

L̂F (us)(')ds

summing up these two equalities we get

0=MF ;T (')+ M̂F ;T (')+
Z
0

T

(L̂+L)F (us)(')ds

That is

2
Z
0

T

L0F (us)(')ds=¡MF ;T (')¡ M̂F ;T (')

And as above if L0F (�)= @x�2 we end up withZ
0

T

@xus
2(')ds=¡MF ;T (')¡ M̂F ;T ('):
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A similar computation the allow to establish that even in the non�linear case if we set

NtN(')=
Z
0

t

@x(�Nus)2(')ds

then

E[jNtN(ek)¡NsN(ek)j2p].p (t¡ s)pjk jp:

and moreover, adapting the computation one can also show that lettingNt
N ;M=NtN¡NtM we have

E
���NtN ;M(ek)¡NsN;M(ek)��2p�.p (jk j/N)"p(t¡ s)pjk jp:

for all 16N 6M from which we can derive that¡
E
�

NtN ;M ¡NsN;M

H�2p ��1/2p.p;�N¡"/2(t¡ s)1/2

for all �<¡1¡". Realize that this estimate allows you to prove compactness of the approximations
NN and then convergence to a limit in L2p(
;C1/2¡H¡1¡) which we call N .

2.4 Controlled distributions
Let us cook up a de�nition which will allow us to perform the computations above in a general
setting.

De�nition 3. Let u;A:R+�T!R a couple of generalized process such that

i. For all '2S (T) the process t 7!ut(') is a continuous semi�martingale satisfying

ut(')=u0(')+
Z
0

t

us(�')ds+At(')+Mt(')

where t 7!Mt(') is a martingale with quadratic variation hMt('); Mt( )i= h@x'; @x iL2
and t 7!At(') is a �nite variation process.

ii. For all t > 0 the random distribution ' 7! ut(') is a zero mean space white noise with
covariance k'kL02

2 /2.

iii. For any T > 0 the reverse process ût = uT¡t has again properties i; ii with martingale M̂
and �nite variation part Â such that Ât(')=¡At(').

Any pair of processes (u; A) satisfying these condition will be called controlled by the OU process
and we will denote the set of all these processes with Qou.

Theorem 4. Assume that (u;A)2Qou and for any N > 1, t> 0, '2S let

NtN(')=
Z
0

t

@x(�Nus)2(')ds

Then for any p>1 (NN)N>1 converges in probability to a space�time distribution N 2C1/2¡H¡1¡.

We are now at a point were we can give a meaning to our original equation.

De�nition 5. A pair of random distribution (u;A)2Qou is an energy solution to the stochastic
Burgers equation if it satis�es

ut(')=u0(')+
Z
0

t

us(�')ds+Nt(')+Mt(')

for all t> 0 and '2S . That is if A=N.

Now we are in a relatively standard setting of needing to prove existence and uniqueness of
such energy solutions. Note that in general the solutions are pairs of processes (u;A).
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Remark 6. The notion of energy solution has been introduced in the work of Gonçalves and Jara
on macroscopic �uctuations of weakly asymmetric interacting particle systems.

2.5 Existence of solutions
For the existence the way to proceed is quite standard. We approximate the equation, construct
approximate solutions and then try to have enough compactness to have limiting points which then
naturally will satisfy the requirements for energy solutions. For anyN >1 consider solutions uN to

@tu
N =�uN +@x�N(�NuN)2+@x�

These are generalized functions such that

dutN(ek)=¡k2utN(ek)dt+[@x�N(�NuN)2](ek)dt+ i k d�t(k)

for k 2 Z and t > 0. We take u0 to be the white noise with covariance ut(') � N (0; k'k2 / 2).
The point of our choice of the non�linearity is that this (in�nite�dimensional) system of equa-
tions decomposes into a �nite dimensional system for (vN(k) = �NuN(ek))k:jkj6N and an in�nite
number of one�dimensional equations for each uN(ek) with jk j > N . Indeed if jk j > N we have
[@x�N(�NuN)2](ek) = 0 so ut(ek) = Xt(ek) the OU process with initial condition X0 = u0 which
renders it stationary in time (check it). The equation for (vN(k))jkj6N reads

dvtN(k)=¡k2vtN(k)dt+ bk(vtN)dt+ i k d�t(k); jk j6N; t> 0
where

bk(vtN)= i k
X

`+m=k

Ij`j;jkj;jmj6N vtN(`)vtN(m):

This is a standard �nite�dimensional ODE having global solutions for all initial conditions and
which give rise to a nice Markov process. The fact that solutions do not blow up even if the
interaction is quadratic it can be seen by computing the evolution of the norm

At=
X
jkj6N

jvtN(k)j2

and showing that

dAt=2
X
jkj6N

vt
N(¡k)dvtN(¡k)=¡2k2Atdt+2

X
jkj6N

vt
N(¡k)bk(vtN)dt+2� k

X
jkj6N

vt
N(¡k)d�t(k)

but now X
jkj6N

vt
N(¡k)bk(vtN)= 2 �

X
k;`;m:`+m=k

Ij`j;jkj;jmj6N k vtN(`)vtN(m)vtN(¡k)

=¡2 �
X

k;`;m:`+m+k=0

Ij`j;jkj;jmj6N (k) vtN(`)vtN(m)vtN(k)

but by symmetry of this expression it equals to

=¡2
3
�

X
k;`;m:`+m+k=0

Ij`j;jkj;jmj6N (k+ `+m) vtN(`)vtN(m)vtN(k)= 0

so At=A0+Mt where dMt=2
P
jkj6N Ijkj6N(�k)vtN(¡k)d�t(k). Now

E[MT
2].

Z
0

T X
jkj6N

k2jvtN(k)j2dt.N2

Z
0

T

Atdt

and then by martingales inequalities

E[ sup
t2[0;T ]

(At)2]6 2E[A02] + 2E[ sup
t2[0;T ]

(Mt)2]6 2E[A02] + 2E[MT
2]

62E[A02] +CN2

Z
0

T

E(At)dt
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and by Gronwall inequality

E[ sup
t2[0;T ]

(At)2]. eCN
2TE[A02]:

From which we can deduce (by a continuation argument) that almost surely there is no blowup at
�nite time for the dynamics. From the Galerkin approximations the Itô trick will provide enough
compactness in order to pass to the limit and build an energy solution to the Stochastic Burgers
equation.

3 Distributions and Besov spaces

Here we collect some classical results from harmonic analysis which we will need in the following.
Fix d 2 N and denote by Td = (R / (2�Z))d the d-dimensional torus. We concentrate here on
distributions and SPDEs on the torus, but everything in this Section applies mutatis mutandis on
the full space Rd, see [GIP13]. The only problem is that then the stochastic terms will no longer
be in the Besov spaces C � which we encounter below but rather in weighted Besov spaces. Since
we did not develop paracontrolled distributions on weighted Besov spaces yet, we are currently
unable to solve SPDEs on Rd.

The space of distributions D 0=D 0(Td) is de�ned as the set of linear maps f from C1=C1(Td;
C) to C, such that there exist k 2N and C > 0 with

jhf ; 'ij: =jf(')j6C sup
j�j6k

k@�'kL1(Td)

for all ' 2 C1. In particular, the Fourier transform Ff : Zd!C, Ff(k) = hf ; e¡ik�i, is de�ned
for all f 2 D 0, and it satis�es jFf(k)j 6 jP (k)j for a suitable polynomial P . We will also write
f̂(k)=Ff(k). Conversely, if (g(k))k2Zd is at most of polynomial growth, then its inverse Fourier
transform

F¡1g=(2�)¡d
X
k2Zd

eihk;�ig(k)

de�nes a distribution, and we have F¡1Ff = f as well as FF¡1g= g. To see this, it su�ces to
note that the Fourier transform of '2C1 decays faster than any rational function (we say that it
is of rapid decay). Indeed, for �2N0

d we have jk�ĝ(k)j= jF (@�g)(k)j6 k@�gkL1(Td) for all k2Zd.
As a consequence we get the Parseval formula hf ; 'i=(2�)¡d

P
k f̂(k)'̂(k) for f 2D 0 and '2C1.

Linear maps on D 0 can be de�ned by duality: if A: C1 ! C1 is such that for all k 2 N
there exists n 2 N and C > 0 with supj�j6k k@�(A')kL1 6 C supj�j6n k@�'k, then we set
htAf ; 'i= hf ;A'i. Di�erential operators are de�ned by h@�f ; 'i=(¡1)j�jhf ; @�'i. If ':Zd!C
grows at most polynomially, then it de�nes a Fourier multiplier

'(D)f =F¡1('Ff);

which gives us a distribution '(D)f 2D 0 for every f 2D 0.

Example 7. Clearly Lp=Lp(Td)�D 0 for all p> 1, and also the space of �nite measures on (Td;
B(Td)) is contained in D 0. Another example of a distribution is ' 7!@�'(x) for �2N0

d and x2T.

Exercise 1. Show that for f 2D 0, g 2C1 and for u; v:Zd!C with u of polynomial growth and
v of rapid decay

F (fg)(k)= (2�)¡d
X
`

f̂ (k¡ `)ĝ(`) and F¡1(uv)(x)=
Z
Td

F¡1u(x¡ y)F¡1v(y)dy:

Littlewood-Paley blocks give a decomposition of any distribution on D 0 into an in�nite series
of smooth functions. Of course, we have already such a decomposition at our disposal, namely
f =

P
k (2�)

¡df̂(k)eihk;�i. But it turns out to be convenient not to consider each Fourier coe�cient
separately, but to work with projections on dyadic Fourier blocks.
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De�nition 8. A dyadic partition of unity consists of two nonnegative radial functions �; � 2
C1(Rd; R), where � is supported in a ball B = fjxj 6 cg and � is supported in an annulus
A = fa6 jxj6 bg for suitable a; b; c > 0, such that

1. �+
P

j>0 �(2
¡j�)� 1 and

2. ��(2¡j�)� 0 for j> 1 and �(2¡i�)�(2¡j�)� 0 for all i; j> 0 with ji¡ j j> 1.
We will often write �¡1= � and �j= �(2¡j�) for j> 0.

Dyadic partitions of unity exist, see [BCD11]. The reason for considering smooth partitions
rather than indicator functions is that indicator functions do not have good Fourier multiplier
properties. From now on we �x a dyadic partition of unity (�; �) and de�ne the dyadic blocks

�jf = �j(D)f =F¡1¡�jf̂ �; j>¡1:
We also use the notation

Sjf =
X
i6j¡1

�if:

Every dyadic block has a compactly supported Fourier transform and is therefore in C1. It is easy
to see that f =

P
j>¡1 �jf = limj!1 Sj f for all f 2D 0.

For �2R, the Hölder-Besov space C � is given by C �=B1;1� (Td;R), where for p; q 2 [1;1]
we de�ne

Bp;q
� =Bp;q� (Td;R)=

8<:f 2D 0: kf kBp;q� =
 X
j>¡1

(2j� k�j f kLp)q
!
1/q

<1

9=;;
with the usual interpretation as `1 norm in case q =1. Then Bp;q� is a Banach space and while
the norm k�kBp;q� depends on (�; �), the space Bp;q� does not, and any other dyadic partition of
unity corresponds to an equivalent norm. We write k�k� instead of k�kB1;1� .

If �2 (0;1) nN, then C � is the space of b�c times di�erentiable functions whose partial deriv-
atives of order b�c are (�¡b�c)-Hölder continuous (see page 99 of [BCD11]). Note however, that
for k 2N the space C k is strictly larger than Ck, the space of k times continuously di�erentiable
functions.

Exercise 2. Show that k�k�6 k�k� for �6 �, that k�kL1. k�k� for � > 0, that k�k�. k�kL1 for
�6 0, and that kSj�kL1. 2j�k�k� for �< 0.

Hint: When proving k�k�. k�kL1 for �6 0, you might need to bound kF¡1�jkL1(Td). Here it
may be helpful to use Poisson's summation formula

(2�)¡d
X
k2Zd

�(2¡jk)eihk;xi=(2j)d
X
k2Zd

¡
FRd
¡1�

�
(2j(2�k+x));

where FRd
¡1�(x) = (2�)¡d

R
Rd

eihz;xi�(z)dz, which holds for all Schwartz functions �: Rd ! R.
Alternatively, you can periodically extend f 2L1(Td) to f�2L1(Rd) and note that

�jf�(x): =FRd
¡1(�jFRdf�)(x)=

Z
Rd

FRd
¡1�j(x¡ y)f�(y)dy:

Exercise 3. Let �0 denote the Dirac delta in 0. Show that �02C ¡d.

We will often rely on the following characterization of Besov regularity for functions that can
be decomposed into pieces which are localized in Fourier space.

Lemma 9.

1. Let A be an annulus, let � 2 ℝ, and let (uj) be a sequence of smooth functions such that
Fuj has its support in 2jA , and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:
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2. Let B be a ball, let � > 0, and let (uj) be a sequence of smooth functions such that Fuj
has its support in 2jB, and such that kujkL1. 2¡j� for all j. Then

u=
X
j>¡1

uj 2C � and kuk�. sup
j>¡1

f2j�kujkL1g:

Proof. If Fuj is supported in 2jA , then �iuj=/ 0 only for i� j. Hence, we obtain

k�i ukL16
X
j:j�i

k�i ujkL16 sup
k>¡1

f2k�kukkL1g
X
j:j�i

2¡j�' sup
k>¡1

f2k�kukkL1g 2¡i�:

If Fuj is supported in 2jB, then �i uj=/ 0 only for i. j. Therefore,

k�i ukL16
X
j:j&i

k�iujkL16 sup
k>¡1

f2k�kukkL1g
X
j:j&i

2¡j�. sup
k>¡1

f2k�kukkL1g 2¡i�;

using �> 0 in the last step. �

The following Bernstein inequalities are extremely useful when dealing with functions with
compactly supported Fourier transform.

Lemma 10. Let A be an annulus and let B be a ball. For any k2N0, �> 0, and 16 p6 q61
we have that

1. if u2Lp is such that supp(Fu)��B, then

max
�2Nd:j�j=k

k@� ukLq.k�
k+d

�
1
p
¡1
q

�
kukLp;

2. if u2Lp is such that supp(Fu)��A , then

�kkukLp.k max
�2Nd:j�j=k

k@� ukLp:

It then follows immediately that for � 2R, f 2 C �, � 2N0
d, we have @�f 2 C �¡j�j. Another

simple application of the Bernstein inequalities is the Besov embedding theorem, the proof of which
we leave as an exercise.

Lemma 11. Let 16 p16 p261 and 16 q16 q261, and let �2R. Then Bp1;q1
� is continuously

embedded into Bp2;q2
�¡d(1/p1¡1/p2).

Exercise 4. Let � be a spatial white noise on Td, i.e. � is a centered Gaussian process indexed
by L2(Td), with covariance

E[�(f)�(g)]=
Z
Td

f(x)g(x)dx:

Show that there exists �~ with P(�~(f)= �(f))= 1 for all f 2L2, such that E
�
k�~k¡d/"¡2

p �
<1 for

all p> 1 and "> 0 (so that �~2C¡d/2¡ almost surely).
Hint: De�ne �~=F¡1�̂ = (2�)¡d

P
k e

ihk;�i�
¡
e¡ihk;�i

�
and estimate E

h
k�~kB2p;2p�

2p
i
using Gaus-

sian hypercontractivity (equivalence of moments). Then apply Besov embedding.

When solving SPDEs, we will need the smoothing properties of the heat semigroup. For that
purpose we study functions of time with values in distribution spaces. IfX is a Banach space with
norm k�kX and if T > 0, then we de�ne CX and CTX as the spaces of continuous functions from
[0;1) respectively [0; T ] to X, and CTX is equipped with the supremum norm k�kCTX. If �2 (0;1)
then we write C�X for the functions in CX that are ��Hölder continuous on every interval [0; T ],
and we write

kf kCT�X= sup
06s<t6T

kf(t)¡ f(s)k
jt¡ sj� :

We then de�ne L �=CC �\C�/2L1 for �2 (0; 2). For T > 0 we set L T
� =CTC �\CT

�/2
L1 and

we equip L T
� with the norm

k�kL T
�=max fk�kCTC�; k�k

CT
�/2

L1
g:
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The notation L � is chosen to be reminiscent of the operator L and indeed the parabolic spaces
L � are adapted to L in the sense that the temporal regularity �counts twice�, which is due to
the fact that L = @t¡� contains a �rst order temporal but a second order spatial derivative. If
we would replace � by a fractional Laplacian ¡(¡�)�, then we would have to consider the space
CC �\C�/(2�)L1 instead of L �.

We have the following Schauder estimate on the scale of (L �)� spaces:

Lemma 12. Let � 2 (0; 2) and let (Pt)t>0 be the semigroup generated by the periodic Laplacian,
F (Ptf)(k)= e¡tjkj

2
Ff(k). For f 2CC �¡2 de�ne Jf(t)=

R
0

t
Pt¡sfsds. Then

kJf kL T
�. (1+T )kf kCTC�¡2

for all T > 0. If u2C �, then t 7!Ptu2L � and

kt 7!PtukL T
�. kuk�:

Bibliographic notes For a gentle introduction to Littlewood-Paley theory and Besov spaces
see the recent monograph [BCD11], where most of our results are taken from. There the case of
tempered distributions on Rd is considered. The theory on the torus is developed in [ST87]. The
Schauder estimates for the heat semigroup are classical and can be found in [GIP13, GP14].

4 Di�usion in a random environment
Let us consider the following d-dimensional homogeneisation problem. Fix " > 0 and let u":
R+�T"!R be the solution to the Cauchy problem

@tu
"(t; x)=�u"(t; x)+ "¡�V (x/")u"(t; x); t> 0; x2Td

with u"(0; �)=u0(�), whereT=[0;2�] is the one dimensional torus and where V :T"
d!R is a random

�eld de�ned on the rescaled torus T"
d=Td/". This model describes the di�usion of particles in a

random medium (replacing @t by i@t gives the Schrödinger equation of a quantum particle evolving
in a random potential). For a review of related results the reader can look at the recent paper of
Bal and Gu [BG13]. The limit "!0 corresponds to looking at the long scale behaviour of the model
since it can be understood as the equation for themacroscopic density u"(t;x)=u(t/"2;x/") which
corresponds to a microscopic density u:R+�T"

d!R evolving according to the parabolic equation

@tu(t; x)=�u(t; x)+ "2¡�V (x)u(t; x); t> 0; x2T"
d:

Let V"(x)= "¡�V (x/") and assume that V :T"
d!R is Gaussian and has mean zero and homoge-

neous correlation function C" given by

C"(x¡ y)=E[V (x)V (y)]= ("/2�)d
X
k2"Z0d

eihx¡y;k iR(k)

where Z0d=Zdnf0g. On R:Rd!R+ we make the following hypothesis: for some � 2 (0; d] we have
R(k)= jk j�¡dR~(k) where R~ 2S (Rd) is a smooth bounded function of rapid decrease. When � <d
this is equivalent to require that spatial correlations (in the limit "!0) decay as jxj¡�. When �=d
this hypothesis means that spatial correlations decay in an integrable way. Indeed by dominated
convergence

lim
"!0

C"(x)=
Z

dk
(2�)d

eihx;kiR(k)=
Z

dk
(2�)d

eihx;kijk j�¡dR~(k)=F¡1(j�j�¡d) �F¡1(R~)(x)

Now F¡1(R~)2S (Rd) and F¡1(j�j�¡d)(x)= jxj¡� if 0<�<d so lim"!0C"(x). jxj¡� if jxj!+1.
Let us now compute the variance of the LP blocks of V".

Lemma 13. Assume � ¡ 2�> 0.We have that for any "> 0 and i> 0 and any 06�6 � ¡ 2�:

E[j�iV"(x)j2]. 2(2�¡�)i"�

This estimate implies that if �>2� we have V"!0 in L2(
;B2;2
¡�¡�/2(Td)) as "!0 for some �>0.
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Proof. A spectral computation gives

E[j�iV"(x)j2] = "¡2�
Z
Rd�Rd

Ki(x¡ y)Ki(x¡ z)C"((y¡ z)/")dydz

= ("/2�)d"¡2�
Z
Rd�Rd

Ki(x¡ y)Ki(x¡ z)
X
k2"Z0d

eihy¡z;k/"iR(k)dydz

= ("/2�)d"¡2�
X
k2"Zd

�i(k/")2 eihx;k/"iR(k)

= (2�)d"d¡2�
X
k2"Z0d

�(k/("2i))2R(k)

. "d¡2�2id sup
k2"2iA

R(k):

(2)

Now if "2i6 1 we have E[j�iV"(x)j2]. 2id"d¡2�("2i)�¡d. "�¡2�2i�. The assumption � ¡ 2�> 0
implies that E[j�iV"(x)j2].2(2�+�)i"� for any 06�6 �¡2�. In the case "2i>1, due to the remark
that

R
B(0;1)c

R(k)dk <+1, we can estimate

"d
X
k2"Zd

�(k/("2i))2R(k). "d
X
k2Zd

R("k).
Z
Rd

R(k)dk <+1

and then E[j�iV"(x)j2]. "¡2�. 22�i("2i)� for any small �> 0. �

Note that the computation carried on in eq. (2) implies also that if �¡ 2�<0 then essentially
V" does not converge in any reasonable sense since the variance of the LP blocks explodes.

The previous analysis shows that it is reasonable to take �6 �/2 in order to hope in any well
de�ned limit as "!0. In this case V" stay bounded (at least) in spaces of distribution of regularity
�¡ . This brings us to the problem of obtaining estimates for the parabolic PDE (L =@t¡�)

Lu"(t; s)=V"(x)u"(t; x); t> 0; x2Td;

depending only on negative regularity norms of V". On one side the regularity of u" is then limited
by the regularity of the r.h.s. which cannot be better than that of V". On the other side the product
of V" with u" can cause problems since we try to multiply an (a�priori) irregular object with one
of limited regularity.

Assume that V" 2C 
¡2 with 
 > 0. It is reasonable then to assume also that V"u" 2CTC 
¡2

and that u"2CTC 
 as a consequence of the regularising e�ect of the heat operator. We see then
that the product V"u" is under control only if 
+ 
 ¡ 2> 0, that is if 
 > 1. So if V"! 0 in C¡1+

then it is not di�cult to show that u" converges as "! 0 to the solution u of the linear equation
@tu(t; x)¡�u(t; x)= 0. In this case the random potential will not have any e�ect in the limit.

The interesting situation then is when 
61. To understand what could happen in this case let
us use a simple transformation of the solution. Write u"= exp(X")v" where X" satisfy the equation
LX"=V " with initial condition X"(0; �)= 0. Then

Lu"= exp(X")(v"LX"+Lv"¡ v"(@xX")2¡ @xX"@xv
")= exp(X")v"V"

which implies that v" satis�es

Lv"¡ v"(@xX")2¡@xX"@xv
"=0; (t; x)2 [0; T ]�Td

since exp(X")> 0 on [0; T ]�Td. Parabolic estimates imply that X"2CTC 
 with bounds uniform
in " > 0 so that here the problematic term is (@xX")2 for which this estimate does not guarantee
existence.

Lemma 14. Assume that

�2=
Z

R(k)
k2

dk
(2�)d

<+1:
Then if �=1 we have

lim
"!0

E[(@xX")2(t; x)]=�2

and if �< 1
lim
"!0

E[(@xX")2(t; x)]= 0:
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Moreover if d> 2 we have
Var[�q(@xX")2(t; x)]. "d¡2"4¡4��2:

Proof. A computation similar to that leading to eq. (2) gives

E[(@xX")2(t; x)]=
h
"
2�

i
d
"¡2�

X
k2"Zd

(k/")2
�Z

0

t

e¡(t¡s)(k/")
2
ds
�
R(k)

="2¡2�
h
"
2�

i
d X
k2"Zd

�
1¡ e¡t (k/")2

�
2

k2
R(k)

which as "! 0 tends to

lim
"!0

E[(@xX")2(t; x)]= "2¡2�
Z

R(k)
k2

dk
(2�)d

=�2:

Let us now study the variance of the LP blocks of (@xX")2(t; x). Let us observe that

(@xX")2=2 @xX"� @xX"+@xX"� @xX"

with @xX"� @xX"=
P
ji¡j j61 (@x�iX

")(@x�jX
"). Calling @x�iX

"(t; x)=Yi we have

Var[�q(@xX"� @xX")(t; x)].
X

ji¡j j61;i&q

X
ji0¡j 0j61;i 0&q

jCov(YiYj;Yi0Yj 0)j

.
X

i�i0�j�j 0&q
jE[YiYi0]E[YjYj 0]j

Now as above if i� i0 we have

E[YiYi0] =
h
"
2�

i
d
"¡2�

X
k2"Zd

k2�i(k/")�i0(k/")
�Z

0

t

e¡(t¡s)(k/")
2
ds
�
R(k)

=
h
"
2�

i
d
"¡2�

X
k2"Zd

�i(k/")�i0(k/")
�
1¡ e¡t (k/")2

�
2

(k/")2
R(k)

so

Var[�q(@xX"� @xX")(t; x)].
X
i&q

(h
"
2�

i
d
"¡2�

X
k2"Zd

�i(k/")�i0(k/")
�
1¡ e¡t (k/")2

�
2

(k/")2
R(k)

)
2

.
�h

"
2�

i
d
"¡2�

�
2 X
k2"Zd

Ijkj&"2q

 �
1¡ e¡t (k/")2

�
2

(k/")2
R(k)

!
2

."d+2¡4�
h
"
2�

i
d X
k2"Zd

Ijkj&"2q
R(k)
k2

. "d¡2"4¡4��2

Which goes to zero as "! 0 if d> 2. �

This lemma shows that the interesting situation is when �= 1. Then provided �2<+1 and
d>2 we have (@xX")2!�2 in CTC 0¡ (an additional argument is needed to provide the uniformity
in time of the convergence but this can be done along the lines of the above computations). An
easy consequence of this is that v" converges to the solution of the PDE

Lv=�2v (3)

and since X"! 0 in CTC 
 we �nally obtain the convergence of (u")">0 to the same v.

4.1 The 2d generalized parabolic Anderson model
The case � = 1 and d = 2 remains open in the previous analysis. When d = 2 we cannot expect
�2 to be �nite and moreover from the above computations we see that the variance of (@xX")2

remains �nite and does not go to zero so the limiting object should satisfy a stochastic PDE. If
we let �"2(t) =E[(@xX")2(t; x)] (which depends on time but which is easily shown independent of
x2T2) then we expect that solving the renormalized equation

Lu~"=V"u~"¡�"2u~"
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should give rise in the limit to a well de�ned random �eld u~ satisfying u~= eXv~ where

Lv~= v~�+ @xX@xv~

and X is the limit of X" as "! 0 while � is the limit of (@xX")2¡�"2(t). The relation of u" with

u~" is easily seen to be u~"(t; x) = e¡
R
0
t
�"
2(s)dsu"(t; x). The renormalization procedure is equivalent

then to a time�dependent rescaling of the solution to the initial problem.
We will study the renormalization and convergence problem for a more general equation of the

form
Lu"=F (u")V" (4)

where F :R!R is a general, su�ciently smooth, non�linearity. One possible motivation is that,
if z" solves the linear PDE and we set u"='(z") for some invertible ':R!R such that '0>0 then

Lu"= '0(z")Lz"¡ '00(z")(@xz")2= '0(z")z"V"¡ '00(z")('0(z"))¡2(@xu")2

and u" satis�es in turn the PDE

Lu"=F1(u")V"+F2(u")(@xu")2

where F1(x)='0('¡1(x))'¡1(x) and F2(x)=¡'00('¡1(x))('0('¡1(x)))¡2. In the situation we are
interested in the second term in the r.h.s. it is simpler to treat than the �rst term so, for the time
being, we will drop it and we will concentrate on the equation (4) in d= 2 with �= 1 and short
ranged (�= d) potential V which we refer to as generalized parabolic Anderson model (gpam).

Under these conditions V" converges to the white noise in space which we usually denote with �
and our aim will be to set up a theory in which the non�linear operations involved in the de�nition
of the dynamics of the gpam are well understood, including the possibility of the renormalization
which already appears in the linear case as hinted above.

While the reader should have in mind always a limit procedure from a well de�ned model like
the ones we were considering so far, in the following we will mostly discuss the limit equation. The
speci�c phenomena appearing when trying to track the oscillation of the term F (u")V" as "! 0
will be described by a renormalized product F (u)�� and so we write the gpam as

Lu(t; x)=F (u(t; x))��(x); u(0)=u0: (5)

In the linear case F (u) = u, the problem of the renormalization can be solved along the lines
suggested above. Another possible line of attack comes from the theory of Gaussian spaces and in
particular fromWick products, see for example [Hu02]. However, the de�nition of the Wick product
relies on the concrete chaos expansion of its factors, and since nonlinear functions change the
chaos expansion in a complicated way, there is little hope of directly extending the Wick product
approach to the nonlinear case and moreover the kind of solution which can be obtained using
these non�local (in the probability space) objects can deliver solutions which are not physically
acceptable.

Eq. (5) is structurally very similar to the stochastic di�erential equation

@tv(t)=F (v(t))@tBH(t); v(0)= v0; (6)

where BH denotes a fractional Brownian motion with Hurst index H 2 (0;1). There are many ways
to solve (6) in the Brownian case. Since we are interested in a way that might extend to (5), we
should exclude all approaches based on information and �ltrations; in particular, any approach
that works for H =/ 1/2 might seem promising. Lyons' theory of rough paths [Lyo98] equips us
exactly with the techniques we need to solve (6) for general H. More precisely, if for H > 1/3
we are given

R
0

�
Bs
HdBsH, then we can use controlled rough path integral [Gub04] to make sense

of
R
0

�
fsdBsH for any f which �looks like� BH. The product f@tBH can then again be de�ned

by di�erentiation. So the main ingredients required for controlled rough paths are the integralR
0

�
Bs
HdBsH for the reference path BH, and the fact that we can describe paths which look like

BH. It is worthwhile to note that while we need probability theory to construct
R
0

�
Bs
HdBsH, the

construction of
R
0

�
fsdBsH is achieved using pathwise arguments and it is given as a continuous

map of f and
¡
BH ;

R
0

�
Bs
HdBsH

�
. As a consequence, the solution to the SDE (6) depends pathwise

continuously on
¡
BH ;

R
0

�
Bs
HdBH

�
.
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By the structural similarity of (5) and (6), we might hope to extend the rough path approach
to (5). The equivalent of BH is given by the solution # to L#= �, #(0)=0, so that we should assume
the renormalized product #�� as given. Then we might hope to de�ne f�� for all f that �look like
#�, however this is to be interpreted. Of course, rough paths can only be applied to functions of a
one-dimensional index variable, while for (5) the problem lies in the irregularity of � in the spatial
variable x2T2.

In the following we combine the ideas from controlled rough paths with Bony's paraproduct,
a tool from functional analysis that allows us to extend them to functions of a multidimensional
parameter. Using the paraproduct, we are able to make precise in a simple way what we mean
by �distributions looking like a reference distribution�. We can then de�ne products of suitable
distributions and solve (5) as well as many other interesting singular SPDEs.

4.2 More singular problems
Keeping the homogeneisation problem as leit�motiv for these lectures we could consider also space�
time varying environments V"(t; x) = "¡�V (t / "2; x/"). The scaling of the temporal variable is
chosen so that it is compatible with the di�usive scaling from a microscopic description where
V (t;x) has typical variation in space and time in scales of order 1. Assume that d=1, then when the
random �eld V is Gaussian, zero mean and with short�range space�time correlations the natural
choice for the magnitude of the macroscopic �uctuations is �=3/2. In this case V" converges as
"!0 to a space�time white noise �. Understanding the limit dynamics of u", solution to the linear
equation Lu"=V"u" as "!0 represents now a more di�cult problem than in the time independent
situation. A Gaussian computation shows that the random �eld X", solution to LX" = V" (e.g.
with zero initial condition) stay bounded in CTC 1/2¡ as "!0. Since L is a second order operator
(if we use an appropriate parabolic weighting of the time and space regularities) then � is expected
to live in a space of distributions of regularity ¡3/2¡ . This is to be compared with the ¡1¡ of
the space white noise which had to be dealt with in the gpam. Renormalization e�ects are then
expected to be stronger in this setting and the limiting object, which we denote with w should
satisfy a (suitably renormalized) linear stochastic heat equation with multiplicative noise (she)

Lw(t; x)=w(t; x)��(t; x); w(0)=w0: (7)

As hinted by the computations in the more regular case, it is useful to consider the change of
variables w=ehwhich is called Cole�Hopf transformation. Here h: [0;1)�T!R is a new unknown
which satisfy now the Kardar�Parisi�Zhang (kpz) equation:

Lh(t; x)= (@xh(t; x))�2+ �(t; x); h(0)=h0 (8)

where the di�culty comes now from the squaring of the derivative but which has the nice feature
to be additively perturbed by the space�time white noise, feature which simpli�es many consider-
ations. Another relevant model in applications is obtained by taking the space derivative of kpz
and letting u(t; x)= @xh(t; x) in order to obtain the stochastic conservation law

Lu(t; x)= @x(u(t; x))�2+ @x�(t; x); u(0)=u0; (9)

which we will refer to as the stochastic Burgers equation sbe. In all these cases, � denotes a suitably
renormalized product.

The kpz equation was derived by Kardar�Parisi�Zhang in 1986 as a universal model for the
random growth of an interface [KPZ86]. For a long time it could not be solved due to the fact
that there was no way to make sense of the nonlinearity (@xh)�2 in (8). The only way to make
sense of (8) was to apply the Cole-Hopf transform [BG97]: start by solving the stochastic heat
equation (7) (which is accessible to Itô integration) and then set h= logw. But there was no was
no interpretation for the nonlinearity (@xh)�2, and in particular there was no intrinsic de�nition
of what it means to solve (8). Finally in 2012, when Hairer [Hai13] used rough paths to solve
give a meaning to the equation and obtain directly solutions at the kpz level. Here we recover
his solution in the paracontrolled setting. Application of the techniques used by Hairer to solve
the kpz problem to a more general homogeneisation problem with general ergodic potentials (not
necessarily Gaussian) have been studied in [HPP13].
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4.3 Hairer's regularity structures
In [Hai14], Hairer introduces a theory of regularity structures which can also be considered a
generalization of the theory of controlled rough paths to functions of a multidimensional index
variable. Hairer fundamentally rethinks the notion of regularity. Usually a function is called smooth
if it can be approximated around every point by a polynomial of a given degree (the Taylor
polynomial). Naturally, the solution to an SPDE driven by �say� Gaussian space-time white noise
is not smooth. So in Hairer's theory, a function is called smooth if locally it can be approximated
by the noise (and higher order terms constructed from the noise). This induces a natural topology
in which the solutions to semilinear SPDEs depend continuously on the driving signal. Hairer's
approach is very general and allows to handle more general problems than the ones that can be
currently treated with the paracontrolled techniques.

Compared with the theory of regularity structures, we can hardly call paracontrolled distribu-
tions a theory . It is just a set of tools which allows us to understand better the multiplication of
distributions and thus to solve some SPDEs. We use classical notions of regularity and only observe
that there exist interesting settings (i.e. beyond the Young integral conditions) where the point-
wise multiplication extends to a bounded operator in a suitable topology. If there is a merit in this
approach, then its relative simplicity, the fact that it seems to be very adaptable so that it can
be easily modi�ed to treat problems with a di�erent structure, and that we make the connection
between rough paths and harmonic analysis.

5 The paracontrolled PAM
As we have tried to motivate in the previous sections we are looking for a theory for the pam which
describes the possible limits of the equation

Lu=F (u)� (10)

driven by su�ciently regular � but as � is converging to the space white noise �. From this point of
view we are looking at a�priori estimates on the solutions u to the above equation which depends
only on distributional norms of � so in the following we will assume that we have at hand only a
uniform control of � in CTC 
¡2 for some 
 > 0, for the application to the 2d space white noise
we could take 
=1¡ but we will not use this speci�c information in order to probe the range of
applicability of our approach and we will assume only that the exponent 
 is such that 3
¡2> 0,
this includes the case 
=1¡ .

Assume for a moment that we are in the simpler situation 
 > 1 and u02C 
. Trying to solve
eq. (10) via Picard iterations (un)n>0 starting from u0 � u0. Since F preserves CC 
-regularity
(which can be seen by identifying CC 
 with the classical space of bounded Hölder-continuous
functions of space), the product F (u0(t))� is well de�ned as an element of C 
¡2 for all t> 0 since
2
 ¡ 2 > 0 and we are in condition to apply Corollary 16 below on the product of elements in
Holder�Besov spaces. Now by Lemma 12, the Laplacian gains two degrees of regularity so that the
solution u1 to Lu1=F (u0)�, u1(0)=u0, is in CC 
. From here we obtain a contraction on CTC 
 for
some small T > 0 whose value does not depend on u0, which gives us global in time existence and
uniqueness of solutions. Note that if we are in one dimension the space�white noise has regularity
C¡1/2¡ (see e.g. Exercise 4) so taking 
 = 3/2 ¡ we have determined that the 1d pam can be
solved globally in time with standard techniques.

When the condition 2
 ¡ 2 > 0 is not satis�ed we still have that if � 2 CTC 
¡2 then u 2
L 
 = CTC 
¡2 \ CT


/2
L1 by the standard parabolic estimates of Lemma 12. However with the

regularities at hand we cannot guarantee anymore the continuity of the operator (u; �) 7! F (u)�
using Corollary 16. Moreover, as already seen in the simpler homogeneisation problems above
this is not a technical di�culty but a real issue of the regime 
 6 1. We expect that controlling
the model in this regime can be quite tricky since limits exists when �! 0 but the limit solution
still feels residual order one e�ects from the vanishing driving signal �. This situation cannot be
improved from the point of view of the standard analytic considerations. What is needed is a �ner
control of the solution u which allows to analyse more in detail the possible resonances between
�uctuations of u and that of �.
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Before going on however we will revise the problem of multiplication of distributions in the
scale of Hölder�Besov spaces introducing the basic tool of our general analysis: Bony's paraproduct.

5.1 The paraproduct and the resonant term
Paraproducts are bilinear operations introduced by Bony [Bon81] in order to linearize a class of
nonlinear hyperbolic PDE problems in order to analyse the regularity of their solutions. In terms
of Littlewood�Paley blocks, a general product f g of two distributions can be (at least formally)
decomposed as

f g=
X
j>¡1

X
i>¡1

�if �jg= f � g+ f � g+ f � g:

Here f � g is the part of the double sum with i < j ¡ 1, f � g is the part with i > j+1, and f � g
is the �diagonal� part, where ji¡ j j6 1. More precisely, we de�ne

f � g= g� f =
X
j>¡1

X
i=¡1

j¡2

�i f �j g and f � g=
X

ji¡j j61
�i f �j g:

Of course, the decomposition depends on the dyadic partition of unity used to de�ne the blocks�j,
and also on the particular choice of the pairs (i; j) in the diagonal part. The choice of taking all
(i; j) with ji¡ j j6 1 into the diagonal part corresponds to the fact that the partition of unity can
be chosen such that suppF (�if�jg)� 2jA if i< j ¡ 1. If ji¡ j j6 1 the only apriori information
on the spectral support of the various term in the double sum is suppF (�if�jg)� 2jB, that is
they are supported in balls and in particular they can have non�zero contributions to very low
wave vectors. We call f � g and f � g paraproducts , and f � g the resonant term.

Bony's crucial observation is that f � g (and thus f � g) is always a well-de�ned distribution.
Heuristically, f � g behaves at large frequencies like g (and thus retains the same regularity), and
f provides only a frequency modulation of g. The only di�culty in constructing f g for arbitrary
distributions lies in handling the diagonal term f � g. The basic result about these bilinear
operations is given by the following estimates.

Theorem 15. (Paraproduct estimates) For any � 2R and f ; g 2D 0 we have

kf � gk�.� kf kL1kgk� ; (11)

and for �< 0 furthermore

kf � gk�+�.�;� kf k�kgk�: (12)

For �+ � > 0 we have

kf � gk�+�.�;� kf k�kgk�: (13)

Proof. There exists an annulus A such that Sj¡1 f �j g has Fourier transform supported in 2jA ,
and for f 2L1 we have

kSj¡1 f �j gkL16 kSj¡1 f kL1 k�j gkL1. kf kL1 2¡j�kgk�:

By Lemma 9, we thus obtain (11). The proof of of (12) and (13) works in the same way, where
for estimating f � g we need �+ � > 0 because the terms of the series are supported in a ball 2jB
and not in an annulus. �

A simple corollary is then the following :

Corollary 16. Let f 2C � and g2C � with �+ �>0, then the product (f ; g) 7! f g is a continuous
bounded bilinear map C ��C � 7!C �^�.

The ill-posedness of f � g for � + � 6 0 can be interpreted as a resonance e�ect since f � g
contains exactly those part of the double series where f and g are in the same frequency range.
The paraproduct f � g can be interpreted as frequency modulation of g, which should become
more clear in the following example.
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Example 17. In Figure 1 we see a slowly oscillating positive function u, while Figure 2 depicts a
fast sine curve v. The product uv, which here equals the paraproduct u� v since u has no rapidly
oscillating components, is shown in Figure 3. We see that the local �uctuations of uv are due to
v, and that uv is essentially oscillating with the same speed as v.

Figure 1. Figure 2.

Figure 3.

As a corollary of Theorem 15, the product f g of f 2C � and g 2C � is well de�ned as soon as
�+ � > 0, and it belongs to C 
 where 
 =min f�; �; �+ �g. Using smooth approximations, we
see that while f � g, f � g, and f � g depend on the speci�c dyadic partition of unity, the product
fg does not.

Example 18. Let BH be a fractional Brownian bridge on T (or simply a fractional Brownian
motion on [0; �], re�ected on [�; 2�]) and assume that H > 1 / 2. We have BH 2 C loc

H¡, and in
particular BH@tBH is well-de�ned. This can be used to solve SDEs driven by BH in a pathwise
sense. In that way we recover exactly the Young integral, and in fact the condition � + � > 0
corresponds to the Young condition 
+�>1: if f 2C 
 and g2C � and we want to construct

R
fdg,

then this is equivalent to constructing f@tg, and since @tg 2 C �¡1 we recover the Bony condition

+(�¡ 1)> 0.

The condition �+ � > 0 is essentially sharp, at least at this level of generality, see [You36] for
counterexamples. It excludes of course the problem of Brownian case: if B is a Brownian motion,
then almost surely B 2C loc

� for all �< 1/2, so that @tB 2C loc
�¡1 and thus B � @tB fails to be well

de�ned. See also [LCL07], Proposition 1.29 for an instructive example which shows that this is
not a shortcoming of our description of regularity, but that it is indeed impossible to de�ne the
product B@tB as a continuous bilinear operation on distribution spaces.

Other counterexamples are given by our discussion of the homogeneisation above. More simply
one can consider the following situation.

Example 19. Consider the sequence of functions fn: T ! C given byfn(t) = ein
2t / n. Then

it is easy to show that kfnk
 ! 0 for all 
 < 1 / 2. However let gn(t) = Re fn(t) Im @tfn(t) =¡
1¡ ei2n2t¡ e¡i2n2t

�
/(2 i). Then gn!1/2 in C 0¡ which shows that the map f 7! (Re f) (@t Im f)

cannot be continuous in C 
 if 
 < 1/2. Pictorially the situation is resumed in Fig. 4 where we
sketched the three dimensional curve given by t 7!

¡
Re fn(t);Im fn(t);

R
0

t
gn(s)ds

�
for various values

of n and in the limit.
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Figure 10. Moving freely in the third direction.

where C2 depends only on C1 and T .
Now, if tnk ! s ! tnk + T2−n−1 ! t ! tnk+1, we get by combining the

previous estimates that

|xn
s,t| ! C0C2‖x‖α((t− T2−n−1)α + (T2−n−1 − s)α)

! 2α−1C0C2‖x‖α(t− s)α.

We have then proved (21) with a constant which is in addition propor-
tional to ‖x‖α. "

Let us come back to the Remark 6 following Lemma 8. For α ∈
(1/3, 1/2], let us consider xt = (0, 0,ϕt) where ϕ ∈ C2α([0, T ]; R), then
one can find xn ∈ C1

p([0, T ]; R) such that xn converges uniformly to 0,
xn = (xn, A(xn; 0, ·)) is uniformly bounded in Cα([0, T ]; A(R2)) and
converges in Cβ([0, T ]; A(R2)) to x for any β < α. For this, one may
simply consider (see Figure 10)

zn
t =

1

n
√

π
(cos(2πtn2)− 1, sin(2πtn2)),

and then set xn
t = zn

ϕt
.

Thus, moving freely in the “third direction” is equivalent to accu-
mulate the areas of small loops. Using the language of differential
geometry, which we develop below, this new degree of freedom comes
from the lack of commutativity of (A(R2), #): a small loop of radius√

ε around the origin in the plane R2 is equivalent to a small displace-
ment of length ε in the third direction. To rephrase Remark 6, even if
ϕ ∈ C1([0, T ]; R), then one has to see x as a path in C1/2([0, T ]; A(R2))
that may be approximated by paths in C1

p([0, T ]; A(R2)) which converge
to x only in ‖ · ‖β for any β < 1/2. Hence, we recover the problem
underlined in Section 3.2.

5.7. Construction of the integral. Let f be a differential form in
Lip(γ; R2 → R) with γ > 1/α− 1.

If x ∈ Cα([0, T ]; A(R2)) with α > 1/2, then from Lemma 8, x =

(x,x3
0 + A(x)) with x = (x1,x2). Hence we set I(x)

def
= I(x) =

∫
x|[0,·]

f

which is well defined as a Young integral.
The next proposition will be refined later.

Figure 4. Resonances give macroscopic e�ects
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5.2 Commutator estimates and paralinearization

The product F (u)� appearing in the r.h.s. of pam can be decomposed via the paraproduct � as
a sum of three terms

F (u)�=F (u)� �+F (u) � �+F (u)� �:

The �rst and the last of these terms are continuous in any topology we choose for F (u) and �. The
resonant term F (u) � � however is problematic. It gathers the products of the oscillations of F (u)
and � on comparable dyadic scales and these products can contribute to the results at any other
higher scale in such a way that microscopic oscillations can build up to a macroscopic e�ect which
does not disappear in the limit (as we already have seen). If the function F is smooth enough these
resonances corresponds to the resonances of u and �.

We use the paraproduct decomposition to write the right hand side of (10) as a sum of the
three terms

F (u)� �||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

¡2

+F (u) � �||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2
¡2

+F (u)� �||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
2
¡2

(14)

(where the quantity indicated by the underbrace corresponds to the expected regularity of each
term). Unless 2
 ¡ 2> 0, the resonant term F (u) � � cannot be controlled using only the CC 
�
norm of u and the CC 
¡2�norm of �.

If F is at least C2, we can use a paralinearization result (stated precisely in Lemma 23 below)
to rewrite this term as

F (u) � �=F 0(u) (u � �)+�F(u; �); (15)

where the remainder �F(u; �)2C 3
¡2 provided 3
 ¡ 2> 0. The di�culty is now localized in the
linearized resonant product u � �. In order to control this term, we would like to exploit the fact
that the function u is not a generic element of CC 
 but that it has a speci�c structure, since Lu
has to match the paraproduct decomposition given in (14) where the less regular term is expected
to be F (u)� � 2CC 
¡2.

In order to do so, we postulate that the solution u is given by the following paracontrolled ansatz:

u=u#�#+u];

for functions u#; #; u] such that u#; # 2 C 
 and the remainder u] 2 CC 2
. This decomposition
allows for a �ner analysis of the resonant term u � �: indeed, we have

u � �=(u#�#) � �+u] � �=u# (# � �)+C(u#; #; �)+u] � �; (16)

where the commutator is de�ned by C(u#; #; �) = (u#� #) � � ¡ u# (# � �). Observe now that the
term u] � � does not pose any further problem, as it is bounded in CC 3
¡2. The key point is now
that the commutator is a bounded multilinear function of its arguments as long as the sum of
their regularities is strictly positive, see Lemma 20 below. By assumption, we have 3
¡2>0, and
therefore C(u#; #; �)2CC 3
¡2.

The only problematic term which remains to be handled is thus the bilinear functional of the
noise given by # � �. Here we need to make the assumption that # � � 2CC 2
¡2 in order for the
product u# (#� �) to be well de�ned. That assumption is not guaranteed by the analytical estimates
at hand, and it has to be added as a further requirement to our construction.

Granting this last step, we have obtained that the right hand side of equation (10) is well de�ned
and a continuous function of (u; u#; u]; #; �; #� �).

It remains to check that the paracontrolled ansatz is coherent with the equation satis�ed by
solutions to pam. The ansatz and the Leibniz rule for the paraproduct imply that (10) can be
rewritten as

Lu=L (u#�#+u])=u#�L #+[L ; u#� ]#+L u]=F (u)� �+F (u) � �+F (u)� �:
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If we choose # such that L #= � and we set u#= F (u), then we can use (15) and (16) to obtain
the following equation for the remainder u]:

L u] =F 0(u)F (u) (# � �)+F (u)� �¡ [L ; F (u)� ]#
+F 0(u)C(F (u); #; �)+F 0(u) (u] � �)+�F(u; �):

(17)

Lemma 25 below ensure that L ¡1[L ; F (u)� ]#2CC 2
 if u2L 
 and we have already seen that
all the other terms in the r.h.s. are in CC 2
¡2 so this equation implies estimates for u]2CC 2
 in
terms of the r.h.s. of eq. (17) . Together with the equation u=F (u)�#+u], this equation gives
an equivalent description of the solution and allows us to obtain an a priori estimate on u and
u] in terms of (u0; k�k
¡2; k# � �k2
¡2). It is now easy to show that if F 2 Cb3, then u depends
continuously on the data (u0; �; #� �), so that we have a robust strategy to pass to the limit in (4)
and make sense of the solution to (10) also for irregular � 2CC 
¡2 as long as 
 > 2/3.

In the rest of this section we will prove the results (paralinearization and various key commu-
tators) which we used in this discussion before going on to gather the consequences of this analysis
in the next section. When the time dependence does not play any role we state the results for
distributions depending only on the space variable, the extension to time varying functions will
not add further di�culty.

Lemma 20. Assume that �; �; 
 2R are such that �+ � + 
 > 0 and � + 
 < 0. Then for f ; g;
h2C1 the trilinear operator

C(f ; g; h)= ((f � g) �h)¡ f (g �h)
allows for the bound

kC(f ; g; h)k�+
. kf k�kgk�khk
 ; (18)

and can thus be uniquely extended to a bounded trilinear operator from C ��C ��C � to C �+
.

Proof. By de�nition

C(f ; g; h)=
X
i; j;k;`

�i(�jf�kg)�`h(1j<k¡11ji¡`j61¡ 1jk¡`j61)

=
X
i; j;k;`

�i(�jf�kg)�`h(1j<k¡11ji¡`j611jk¡`j6N ¡ 1jk¡`j61);

where we used that Sk¡1f�kg has support in an annulus 2kA , so that �i(Sk¡1f�kg) =/ 0 only
if ji¡ k j6N ¡ 1 for some �xed N 2N, which in combination with ji¡ `j6 1 yields jk ¡ `j6N .
Now for �xed k, the term

P
` 126jk¡`j6N�kg�`h is spectrally supported in an annulus 2kA , so

that
P
k;` 126jk¡`j6N�kg�`h 2 C �+
 and we may add and subtract f

P
k;` 126jk¡`j6N�kg�`h

to C(f ; g; h) while maintaining the bound (18). It remains to treatX
i; j;k;`

�i(�jf�kg)�`h1jk¡`j6N(1j<k¡11ji¡`j61¡ 1)

=¡
X
i; j;k;`

�i(�jf�kg)�`h1jk¡`j6N(1j>k¡1+1j<k¡11ji¡`j>1): (19)

We estimate both terms on the right hand side separately. For m>¡1 we have





�m

 X
i; j;k;`

�i(�jf�kg)�`h1jk¡`j6N1j>k¡1

!






L1

6
X
j;k;`

1jk¡`j6N1j>k¡1k�m(�jf�kg�`h)kL1.
X
j&m

X
k.j

2¡j�kf k�2¡k�kgk�2¡k
khk


.
X
j&m

2¡j(�+�+
)kf k�kgk�khk
. 2¡m(�+�+
)kf k�kgk�khk
 ;
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using � + 
 < 0. It remains to estimate the second term in (19). For ji¡ `j> 1 and i� k� `, any
term of the form �i()�`() is spectrally supported in an annulus 2`A , and therefore





�m

 X
i; j;k;`

�i(�jf�kg)�`h1jk¡`j6N1j<k¡11ji¡`j>1

!






L1

.
X
i; j;k;`

Ij<k¡1Ii�k�`�mk�i(�jf�kg)�`hkL1

.
X
j.m

2¡j�kf k�2¡m�kgk�2¡m
khk
. 2¡m(�+
)kf k�kgk�khk
:

�

Remark 21. The restriction � + 
 < 0 is not problematic. If � + 
 > 0, then (f � g) � h can be
treated with the usual paraproduct estimates, without the need of introducing the commutator.
If � + 
 = 0, then we can apply the commutator estimate with 
 0< 
 su�ciently close to 
 such
that �+ �+ 
 0> 0.

Our next result is a simple paralinearization lemma for non-linear operators.

Lemma 22. (see also [BCD11], Theorem 2.92) Let �2 (0; 1), � 2 (0; �], and let F 2Cb
1+�/�.

There exists a locally bounded map RF :C �!C �+� such that

F (f)=F 0(f)� f +RF(f) (20)

for all f 2C �. More precisely, we have

kRF(f)k�+�. kF kCb1+�/� (1+ kf k�
1+�/�):

If F 2Cb
2+�/�, then RF is locally Lipschitz continuous:

kRF(f)¡RF(g)k�+�. kF kCb2+�/� (1+ kf k�+ kgk�)
1+�/� kf ¡ gk�:

Proof. The di�erence F (f)¡F 0(f)� f is given by

RF(f)=F (f)¡F 0(f)� f =
X
i>¡1

[�iF (f)¡Si¡1F 0(f)�i f ] =
X
i>¡1

ui;

and every ui is spectrally supported in a ball 2iB. For i < 1, we simply estimate kuikL1 .
kF kCb1 (1+ kf k�). For i> 1 we use the fact that f is a bounded function to write the Littlewood-
Paley projections as convolutions and obtain

ui(x)=
Z
Ki (x¡ y)K<i¡1 (x¡ z) [F (f(y))¡F 0(f(z)) f(y)] d y d z

=
Z
Ki (x¡ y)K<i¡1 (x¡ z) [F (f(y))¡F (f(z))¡F 0(f(z)) (f(y)¡ f(z))] d y d z;

where Ki=F¡1�i, K<i¡1=
P

j<i¡1 Kj, and where we used that
R
Ki(y) d y= �i(0)=0 for i> 0

and
R
K<i¡1(z) d z = 1 for i> 1. Now we can apply a �rst order Taylor expansion to F and use

the �/��Hölder continuity of F 0 in combination with the ��Hölder continuity of f , to deduce

jui(x)j.kF kCb1+�/�kf k�
1+�/�

Z
jKi (x¡ y)K<i¡1 (x¡ z)j � jz¡ y j�+� d y d z

.kF k
Cb
1+�/�kf k�

1+�/� 2¡i(�+�):

Therefore, the estimate forRF(f) follows from Lemma 9. The estimate for RF(f)¡RF(g) is shown
in the same way. �

Let g be a distribution belonging to C � for some � < 0. Then the map f 7! f � g behaves,
modulo smoother correction terms, like a derivative operator:
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Lemma 23. Let �2(0;1), �2(0;�], 
2R be such that �+�+ 
>0 but �+ 
<0. Let F 2Cb
1+�/�.

Then there exists a locally bounded map �F :C ��C 
!C �+�+
 such that

F (f) � g=F 0(f) (f � g)+�F(f ; g) (21)

for all f 2C � and all smooth g. More precisely, we have

k�F(f ; g)k�+�+
. kF kCb1+�/� (1+ kf k�
1+�/�)kgk
:

If F 2Cb
2+�/�, then �F is locally Lipschitz continuous:

k�F(f ; g)¡�F(u; v)k�+�+
.kF kCb2+�/� (1+(kf k�+kuk�)
1+�/�+kvk
) (kf ¡uk�+kg¡vk
):

Proof. Use the paralinearization and commutator lemmas above to deduce that

�(f ; g)=F (f) � g¡F 0(f) (f � g)=RF(f) � g+(F 0(f)� f) � g¡F 0(f) (f � g)
=RF(f) � g+C(F 0(f); f ; g);

so that the claimed bounds easily follow from Lemma 20 and Lemma 22. �

Besides this sort of chain rule, we also have a Leibniz rule for f 7! f � g:

Lemma 24. Let � 2 (0; 1) and 
 < 0 be such that 2 �+ 
 > 0 but �+ 
 < 0 Then there exists a
bounded trilinear operator ��:C ��C ��C 
!C 2�+
, such that

(f u) � g= f (u � g)+u (f � g)+��(f ; u; g)

for all f ; u2C �(R) and all smooth g.

Proof. It su�ces to note that f u= f �u+ f �u+ f �u, which leads to

��(f ; u; g)= (f u) � g¡ f (u � g)+u (f � g)=C(f ; u; g)+C(u; f ; g)+ (f �u) � g: �

Lemma 25. Let f 2L �, G2CC � such that LG2CC �¡2. There exists H =H(f ;G) such that
LH = [L ; f � ]G. Moreover H 2CTC �+� \CT

(�^�)/2L1 and

kHk
CT
(�^�)/2

L1
+ kHk�+�. kf kL �(kGk�+ kLGk�¡2)

Proof. Let f" be a time molli�cation of f such that k@tf"kL1 . "�/2¡1 and kf" ¡ f kL1 .
kf kL �"�/2 for all " > 0, for example we can take f"= �" � f with �"(t) = �(t/")/" and �:R!R
compactly supported, positive, smooth and of unit integral. Consider the decomposition for LH
given by

L�iH =�i[(f ¡ f")�LG¡L ((f ¡ f")�G)]+�i[f"�LH ¡L (f"�H)]
Then

L�i(H +(f ¡ f")�G)=�i[(f ¡ f")�LG] +�i[f"�LG¡L (f"�G)]

=�i[(f ¡ f")�LG] +�i[L f"�G+@xf"� @xG]:

Schauder estimates for L give

k�i(H +(f ¡ f")�G)kL �+�. k�i[(f ¡ f")�LG] +�i[L f"�G+ @xf"� @xG]kCTC�+�¡2

Now choosing "=2¡2i we have

k�i((f ¡ f")�G)k�+�. 2�ik�i((f ¡ f")�G)k�. 2�ikf ¡ f"kL1kGk�. kf kL �kGk�
and

k�i[(f ¡ f")�LG]k�+�¡2. 2�ik�i[(f ¡ f")�LG]k�¡2. 2�ikf ¡ f"kL1kLGk�¡2

.kf kL �kLGk�¡2
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and since � < 1:

k�i[L f"�G+@xf"� @xG]k�+�¡2. 2i(�¡2)k@tf"kL1kGk�+ kf"k�kGk�
.kf kL �kGk�+ kf k�kGk�

Finally

k�iHk�+�. kf kL �(kGk�+ kLGk�¡2)

which implies the thesis since k�iHkL1.2¡(�+�)ik�iHk�+�. The estimate on the time regularity

of H can be deduced similarly by noting that (f ¡ f")�G2CT
(�^�)/2L1 uniformly in ". �

5.3 Paracontrolled distributions
Here we build a calculus of distributions satisfying a paracontrolled ansatz. We start by a suitable
space of such objects.

De�nition 26. Let � 2R, � > 0, and let u 2 C �. A pair of distributions (f ; f 0) 2 C � � C � is
called paracontrolled by g if we have a smoother remainder

f ]= f ¡ f 0�u2C �+�:

In that case we abuse notation and write f 2D�=D�(u), and we de�ne the norm

kf kD�= kf 0k�+ kf ]k�+�:

If u~2C � and (f~; f~0)2D�(u~), then we also write

dD�(f ; f~)= kf 0¡ f 0k�+ kf ]¡ f~]k�+�:

Of course, we should really write (f ; f 0)2D� since given f and g, the derivative f 0 is usually
not uniquely determined. But in the applications there will always be an obvious candidate for the
derivative, and no confusion will arise.

Remark 27. The space D� does not depend on the speci�c dyadic partition of unity. Indeed,
Bony [Bon81] has shown that if �~ is the paraproduct constructed from another partition of unity,
then kf 0�u¡ f 0�~uk�+�. kf 0k�kuk�.

Nonlinear operations As an immediate consequence of Lemma 3, we can multiply paracon-
trolled distributions provided that we know how to multiply the reference distributions.

Theorem 28. Let �; � 2R, 
 < 0, with �+ � + 
 > 0. Let u2C �, v 2C 
, and let � 2C �+
 be
such that there exist sequences of smooth functions (un) and (vn) converging to u and v respectively
for which (un � vn) converges to �. Then

D�(u)3 f 7! f �v := f � v+ f � v+ f ] � v+C(f 0; u; v)+ f 0� 2C 


de�nes a linear operator which admits the bound

k(fv)]k�+
 := kf �v¡ f � vk�+
. kf kD�(kvk
+ kuk�kvk
+ k�k�+
):

The operator does not depend on the partition of unity used to construct it.
Furthermore, there exists a quadratic polynomial P so that if u~; v~; �~ satisfy the same assumptions

as u, v, � respectively, if f~2D�(u~), and if

M :=max
�
kuk�; kvk
 ; k�k�+
 ; ku~k�; kv~k
 ; k�~k�+
 ; kf kD�(u); kf~kD�(u~)

	
;

then

k(fv)]¡ (f~v~)]k�+
6P (M)
¡
dD�(f ; f~)+ ku¡u~k�+ kv¡ v~k
+ k�¡ �~k�+


�
:

Given Lemma 3 (and the paraproduct estimates Theorem 15), the proof is a simple exercise
and we omit it. From now on we will usually write fv rather than f �v.
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To solve equations involving general nonlinear functions, we need to examine the stability of
paracontrolled distributions under smooth functions.

Theorem 29. Let � 2 (0; 1) and � 2 (0; �]. Let u 2 C �, f 2 D�(u), and F 2 Cb
1+�/�. Then

F (f)2D� with derivative (F (f))0=F 0(f)f 0, and

kF (f)kD�. kF k
Cb
1+�/�(1+ kf kD�

2 )(1+ kuk�2 ):

Moreover, there exists a polynomial P which satis�es for all F 2Cb
2+�/�, u~2C �, f~2D�(u~), and

M :=max
�
kuk�; ku~k�; kf kD�(u); kf~kD�(u~)

	
the bound

dD�(F (f); F (f~))6P (M)kF k
CT
2+�/�

¡
dD�(f ; f~)+ ku¡u~k�

�
:

The proof is not very complicated but rather lengthy, and we do not present it here.

Example 30. Let B1 and B2 be two independent Brownian bridges on [0;2�]. From the identi�ca-
tion of C � with the space of ��Hölder continuous functions we get B1;B22C 1/2¡. If

R
0

�
Bs
1�dBs2

denotes the Stratonovich integral, then we can set

B1 � @tB2= @t
Z
0

�
Bs
1 � dB2¡B1�@tB ¡B1� @tB:

In that case the existing results for the Stratonovich integral easily give us B1 � @tB2 2 C 0¡ and
that (B1;n � @tB2;n)n converges to B1 � @tB2 for a wide range of smooth approximations.

Note that while we cannot controlB1;n�@tB2;n using analytical arguments, there are stochastic
cancellations that appear due to the correlation structure of the Brownian bridge. Theorem 28
equips us with a tool to take these cancellations into account when studying objects which �look
like� the Brownian bridge, which is most useful when solving SDEs.

Of course, the theory of rough paths does exactly the same thing. And in the case of SDEs it
actually does a much better job. But the advantage of Theorem 28 is that here the dimensionality
of the index parameter plays no role and therefore it is applicable to SPDEs driven by more
complicated objects, say space-time white noise.

Schauder estimate for paracontrolled distributions The Schauder estimate Lemma 12 is
not quite enough: since we are working on spaces of paracontrolled distributions, we need to
understand how the integration against the heat kernel acts on the paracontrolled structure. For
that purpose let us adapt the notion of paracontrolled distributions to take into account that
solutions to SPDEs will be functions of time with values in distributional spaces. We also restrict
the parameter range for � and �. While one could imagine extending the result to more general
settings, for the equations under consideration here the following de�nition will be su�cient.

De�nition 31. Let �; � > 0 be such that �+ � 2 (0; 2), and let u 2L �. A pair of distributions
(f ; f 0)2L ��L � is called paracontrolled by g if f ]= f ¡ f 0� u2CC �+�: In that case we write
f 2D�=D�(u), and for all T > 0 we de�ne the norm

kf kDT
� = kf 0kL T

� + kf ]kCTC�+�+ kf ]k
CT
(�^�)/2L1

:

If u~2L � and (f~; f~0)2D�(u~), then we also write

dDT
�(f ; f~)=



f 0¡ f~0

L T
� + kf ]¡ f~]kCTC�+�+ kf ]¡ f~]k

CT
(�^�)/2L1

:

Theorem 32. Let �2 (0;1), �2 (0;2¡ �), u2CC �¡2, and let LU=u with U(0)=0. Let f 02L �,
f ]2CC �+�¡2, and g02C �+�. Then (g; f 0)2D�(U), where g solves

L g= f 0�u+ f ]; g(0)= g0;
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and we have the bound

kgkDT
�(U). kg0k�+�+(1+T )(kf 0kL T

�(1+ kukCTC�¡2)+ kf ]kCTC�+�¡2)

for all T > 0. If furthermore u~; U~ ; f~0; f~]; g~0; g~ satisfy the same assumptions as u; U ; f 0; f ]; g0; g
respectively, and if M =max fkf 0kL T

� ; ku~kCTC�¡2; 1g, then

dDT
�(g; g~). kg0¡ g~0k�+�

+(1+T )M(kf 0¡ f~0kL T
� + ku¡u~kCTC�¡2+ kf ]¡ f~]kCTC�+�¡2):

Proof. Let us derive an equation for the remainder g]. We have

L g]= L (f 0�U)¡L g= [L (f 0�U)¡ f 0�LU ] + f 0�LU ¡ [f 0�u+ f ]]
= [L (f 0�U)¡ f 0�LU ]¡ f ]:

We know also that there exists H 2CC �+� such that LH=[L ; f 0� ]U so we can apply standard
Schauder estimates of Lemma 12 to L (g]¡H)=¡f ] to get

kg]kCTC�+�+ kg]k
CT
(�^�)/2L1

. kf 0kL T
�(kU kCTC�+ kLU kCTC�¡2)+ kf ]kCTC�+�¡2:

The estimate for g]¡ g~] can be derived in the same way. �

Bibliographic notes Paraproducts were introduced in [Bon81], for a nice introduction
see [BCD11]. The commutator estimate Lemma 3 is from [GIP13], but the proof here is new
and the statement is slightly di�erent. In [GIP13], we require the additional assumption � 2
(0; 1) under which C maps C � � C � � C 
 to C �+�+
 and not only to C �+
. Theorem 29
is from [GIP13] and relies on a paralinearization result due to Bony.

Theorem 32 is new, but it is implicitly used in [GIP13, GP14]. The estimates presented here
will only allow us to consider regular initial conditions. More general situations can be covered by
working on �explosive spaces� of the type

ff 2C((0;1);C �): sup
t2(0;T ]

kt¡
f(t)kC�<1 for all T > 0g

and similar for the temporal regularity. This is also done in [GIP13, GP14].
Of course it is easily possible to replace the Laplacian by more general pseudo-di�erential

operators. We only used two properties of �: the fact that �(f 0�U)¡ f 0� (�U) is smooth, and
that the semigroup generated by � has a su�ciently strong regularization e�ect. This is also true
for fractional Laplacians and more generally for a wide range of pseudo-di�erential operators.

5.4 Fixpoint
Let us now give the details of the solution to pam in the space of paracontrolled distributions.
Assume that F :R!R is in Cb

2+" for some "> 0 such that (2+ ")
 > 2.
We know from Theorem 29 that if X 2 CC 
 and u 2 D
(X), then F (u) 2 D 
(X). So if

X � � 2 CC 2
¡2 is given, then Theorem 28 shows that F (u)� = (F (u)�)] + F (u) � � with
(F (u)�)] 2 CC 2
¡2. Integrating against the heat kernel and assuming that u0 2 C 2
, we obtain
from Theorem 32 that the solution v to Lv=F (u)�, v(0)=u0, is in D 
(#), where # solves L#= �
and #(0)=0. So for all T > 0 we can de�ne a map

¡T :DT

 (X)!DT


 (#); ¡(uj[0;T ])= v j[0;T ]:

We want to set up a Picard iteration using ¡T , so domain and image space should coincide which
means we should take X=#. Re�ning the analysis, we obtain a scaling factor T � when estimating
the DT


 (#)�norm of v. This allows us to show that for small T >0, ¡T leaves suitable balls in DT

 (#)

invariant, and therefore we obtain the (local in time) existence of solutions to the equation under
the assumption # � � 2CC 2
¡2.
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To obtain uniqueness , it su�ces to note that by Theorem 29 the map u 7! F (u) is locally
Lipschitz continuous from DT


 (#) to DT
"
(#) (recalling that F 2 Cb

2+"), while Theorem 28 and
Theorem 32 show that multiplication with � in concatenation with integration against the heat
kernel de�nes a Lipschitz continuousmap fromDT

"
(#) to DT

 (#) (it is here that we use "
+2
¡2>

0). Again we can obtain a scaling factor T �, so that ¡T de�nes a contraction from DT

 (#) to DT


 (#)
for some small T > 0.

Even better, ¡T not only depends locally Lipschitz continuously on u, but also on the extended
data (u0; �,# � �), and therefore the solution to (10) depends locally Lipschitz continuously on
(u0; �; #� �).

5.5 Renormalization
So far we argued under the assumption that #� � exists and has a su�cient regularity. This should
be understood via approximations as the existence of a sequence of smooth functions (�n) that
converges to �, such that (#n � �n) converges to # � �. However this hypothesis is questionable
and, recalling our homogeneisation setting, actually not satis�ed at all. More concretely this can
be checked on some approximation sequence when for example �= � is the 2d space white noise.
Indeed, if ' is a Schwartz function on R2 and if 'n=n'(n�) and

�n(x)= 'n � �(x)=
Z
R2

'n(x¡ y)�(y)dy=
X
k2Z2

h�; 'n(x+2�k¡ �)i;

then we will see below that there exist constants (cn) with limncn=1, such that (#n � �n ¡ cn)
converges in CTC 2
¡2 for all T > 0.

This is not a problem with this speci�c approximation. The homogeneisation setting shows that
even when �! 0 there are cases where the limiting equation is nontrivial. In the paracontrolled
setting we have continuous dependence on data so this non�triviality of the limit can only mean
that is # � � which does not converge to zero.

Another way to see that there is indeed a problem consider the following representation of the
resonant term: use L#= � to write

# � �=# �L#= 1
2
L (# �#)+ 1

2
@x# � @x#=

1
2
j@x#j2+

1
2
L (# �#)¡ @x#�@x#:

Integrating this equation over the torus and over t2 [0; T ] we getZ
0

T Z
T

# � �= 1
2

Z
0

T Z
T

j@x#j2+
1
2

Z
T

(#(T ) �#(T ))¡
Z
0

T Z
T

(@x#� @x#)

but now if #� �2CTC 2
¡2 and #2CTC 
 then all the terms should be well de�ned and �nite but
this is cannot be since would mean that

R
0

T R
T
j@x#j2<+1. By direct computation however we

can check that Z
T

j@x#(t; �)j2=+1

for any t>0 almost surely if � is the space white noise. Note also that the problematic term j@x#j2
is exactly the correction term (@xX(t; x))2 appearing in the analysis of the linear homogeneisation
problem above.

In order to obtain convergence of the smooth solutions in general, we should introduce correc-
tions to the equation to remove the divergent constant cn. Let us see where the resonant product
# � � appears. We have

(F (u)�)]=F (u)� �+(F (u))] � �+C((F (u))0; #; �)+ (F (u))0(# � �):

Now (F (u))0=F 0(u)u0 by Theorem 29, and if u solves the equation, then u0=F (u) by Theorem 32.
So we should really consider the renormalized equation

Lun=F (un)��n=F (un)�n¡F 0(un)F (un)cn
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and in the limit

Lu=F (u)�� := (F (u)��)]+F (u)� �; (22)

where the paracontrolled product (F (u)��)] is calculated using #��= limn (#n� �n¡ cn). Formally,
we also denote this product by F (u)��=F (u)�¡F 0(u)u0�1, so that the solution u will satisfy

Lu=F (u)¡F 0(u)F (u) �1:

Note that the correction term has exactly the same form as the Itô/Stratonovich corrector for
SDEs and indeed we should consider (22) as the �Itô form� of the equation: one can show that for
F (u)=u and for the right choice of the constants (cn), our solution agrees with the Wick product
solution of [Hu02].

Remark 33. The convergence properties of (#n � �n) are in stark contrast to the case of ODEs:
If we replace �n by @tBn, then we should replace #n by Bn. In one dimension we then have
Bn � @tBn=1/2@t(Bn �Bn) for smooth data, so that convergence of the term Bn� @tBn comes for
free with the convergence of Bn (which is of course false in higher dimensions). This comes from
the Leibniz rule for the �rst order di�erential operator @t. For L we have di�erent rules and as
we have discussed

(#n � �n)= (#n�L#n)=
1
2

L (#n �#n)+ (@x#n � @x#n):

Since convergence of (@x#n � @x#n) is equivalent to the convergence of the positive term j@x#nj2,
we cannot hope to have simple cancellation properties and this is the reason why we need to
introduce an additive renormalization when considering the parabolic Anderson model while this
renormalization is not needed in the 1d ODE setting.

These considerations lead us to give the following de�nition.

De�nition 34. (Rough distribution) Let 
 2 (2/3; 1) and let

Ypam�C 
¡2�CC 2
¡2

be the closure of the image of the map

�pam:C1�C([0;1);R)!Ypam;
given by

�pam(�; f)= (�;���): =(�;� � �¡ f); (23)

where � = J�, that is L� = � and �(0) = 0. We will call �pam(�; f) the renormalized PAM-
enhancement of the driving distribution �. For T > 0 we de�ne Ypam(T )=Ypamj[0;T ] and we write
kYkYpam(T ) for the norm of Y 2 Ypam(T ) in the Banach space C 
¡2� CTC 2
¡2. Moreover, we
de�ne the distance dYpam(T )(Y;Y~ )= kY¡Y~ kYpam(T ).

Remark 35. It would be more elegant to renormalize � � � with a constant and not with a time-
dependent function (and indeed this is what we need to do to recover the Wick product solution in
the linear case). But since we chose �(0)=0, we have �(0) � �=0 and therefore (�n(0) � �n¡ cn)
diverges for any diverging sequence of constants (cn). A simple way of avoiding this problem is to
consider the stationary version �~ given by

�~(x)=
Z
0

1
Pt�=/0�(x)dt;

where �=/0 denotes the projection on the non-zero Fourier modes, �=/0u= u ¡ û(0). But then �~
does not depend on time and in particular �~(0) =/ 0, so that we have to consider irregular initial
conditions in the paracontrolled approach, which require �explosive� Besov spaces and complicate
the presentation. Alternatively, we could observe that in the white noise case there exist constants
(cn) so that (#n(t) � �n¡ cn) converges for all t > 0, and while the limit (#(t)��) diverges as t! 0,
it can be integrated against the heat kernel. Again, this would complicate the presentation and
here we choose the simple (and cheap) solution of taking a time-dependent renormalization.
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Theorem 36. Let 
 2 (2/3; 1) and "> 0 be such that (2+ ")
 > 2. Let Y2Ypam, F 2Cb2+", and
u02C 2�. Then there exists a unique solution u2D
(�) to the equation

Lu=F (u)��; u(0)=u0;

up to the (possibly �nite) explosion time � = �(u)= inf ft> 0: kukDt
�=1g> 0.

Moreover, u depends on (u0;Y)2C 2
�Ypam in a locally Lipschitz continuous way: if M;T >0
are such that for all (u0;Y) with ku0k2
 _ kYkYpam(T )6M, the solution u to the equation driven
by (u0;Y) satis�es �(u)>T, and if

¡
u~0;Y~

�
is another set of data bounded in the above sense by

M, then there exists C(F ;M)> 0 for which

dDT
�(u; u~)6C(F ;M)(ku0¡u~0k2
+ dYpam(T )(Y;Y~ )):

Remark 37. It is not necessary to assume F 2Cb2+", for the local in time existence it su�ces if
F 2 C2+". This can be seen by considering a ball containing u0(x) for all x 2Td, by considering
F~2Cb2+" which coincides with F on this ball, and by stopping u upon exiting the ball.

In the linear case F (u) = u we actually have global in time solutions. In the general case, we
only have local in time solutions because we pick up a quadratic estimate when applying the
paralinearization result Theorem 29. This step is not necessary if F is linear, and all the other
estimates are linear in u. When F 2 Cb3 a more re�ned argument can get rid of the quadratic
estimate and estabilish global existence in full generality. For the details see [GIP13].

Proof. It is an easy exercise to turn the formal discussion above into rigorous mathematics to
obtain existence and uniqueness on a small time interval. It remains to show three things: how
to pick up the scaling factor T � from the map ¡T , how to iterate the construction so that we get
existence up to the explosion time, and how to obtain the local Lipschitz continuity.

As for the scaling factor, note that in the estimate of Theorem 28 we have considerable space
in the parameter �, so that we can estimate

k¡T(u)kDT

 6CF ;Y(1+ ku0k2
+ kukDT

�
2 )

for all � with 2
 + � > 0, with a constant CF ;Y depending only on kF kCb2 and kYkYpam(T ). But
now any �xed point u for ¡T will satisfy u0(0)=F (u0) and u](0)=u0 (since #(0)=0), so that we
may restrict our attention to those u. Then we can use the estimate

ku0kL T
� . ku0(0)k�+T (
¡�)/2ku0kL T




for all � 2 (0; 
), and similarly for ku]kCTC 
+� + ku]k
CT
(�^�)/2

L1
, to show that for small T =

T (M) > 0 and suitable C(M) > 0, the map ¡T leaves the set fu 2 DT

 : (u0; u])(0) = (F (u0); u0);

kukDT

 6 C(M)g invariant. In the same way we can show that ¡T de�nes a contraction on a

comparable set, possibly after further decreasing T .
Now let us assume that we constructed the solution u on [0;T0] for some T0>0. Then we slightly

have to adapt our arguments to extend u to [T0; T0+ T ]: Now we no longer have #(T0) = 0, and
also the initial condition u(T0) is no longer in C 2
. But we only used that #(0) = 0 to derive the
initial conditions for u0 and u]. Since we already know u on [0; T0], we do not need this anymore.
And we used u0 2C 2
 only to obtain smooth initial conditions for u]. But again, u](T0)2C 2
 is
already �xed.

Let us come to the continuity in (u0; Y). If (u~0; Y~ ) is another set of data also bounded
by M , then we know that the solutions u and u~ both are bounded in DT


 by some constant
C = C(F ; M) > 0. So by the continuity properties of the paracontrolled product (and the other
operations involved), we can estimate

dDT
�(u; u~)6P (C)

¡
ku0¡u~0k2
+ dYpam(T )(Y;Y~ )+T (
¡�)/2dDT


(u; u~)
�

for suitable � < 
 and for a polynomial P . The local Lipschitz continuity on [0; T ] immediately
follows if we choose T >0 small enough. This can be iterated to obtain the local Lipschitz continuity
on �macroscopic� intervals. �
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5.6 Construction of the extended data
In order to apply Theorem 36 to eq. (10) with white noise perturbation, it remains to show that
if � is a spatial white noise on T2, then � de�nes an element of Ypam. In other words, we need to
construct #��.

Since Pt � is a smooth function for every t> 0, the resonant term Pt � � � is a smooth function,
and therefore we could formally set # � � =

R
0

1 (Pt � � �) d t. But we will see that this expression
does not make sense.

We will need that (�̂(k))k2Z2 is a complex valued, centered Gaussian process with covariance

E[�̂(k)�̂(k 0)]= (2�)2 1k=¡k 0; (24)

and such that �̂(k)= �̂(¡k).

Lemma 38. For any x2T2 and t > 0 we have

gt=E[(Pt � � �)(x)]=E[�¡1 (Pt � � �)(x)]= (2�)¡2
X
k2Z2

e¡tjkj
2
:

In particular, gt does not depend on the partition of unity used to de�ne the � operator, andR
0

t
gsd s=1 for all t > 0.

Proof. Let x2T2, t > 0, and `�¡1. Then

E[�` (Pt � � �)(x)]=
X

ji¡j j61
E[�` (�i (Pt �)�j �)(x)];

where exchanging summation and expectation is justi�ed because it can be easily veri�ed that the
partial sums of �` (Pt � � �)(x) are uniformly Lp�bounded for any p� 1. Now Pt= e¡tj�j

2
(D), and

therefore we get from (24)

E[�` (�i (Pt �)�j �)(x)]
= (2�)¡4

X
k;k 02Z2

eihk+k
0;xi �` (k+ k 0) �i(k) e¡tjkj

2
�j(k 0)E[�̂(k)�̂(k 0)]

= (2�)¡2
X
k2Z2

�`(0) �i(k) e¡tjkj
2
�j(k)= (2�)¡21`=¡1

X
k2Z2

�i(k) �j(k) e¡tjkj
2
:

For ji¡ j j> 1 we have �i(k) �j(k)= 0. This implies, independently of x2T2, that

gt=E[(Pt � � �)(x)]= (2�)¡2
X
k2Z2

X
i; j

�i(k) �j(k) e¡tjkj
2
=(2�)¡2

X
k2Z2

e¡tjkj
2
;

while E[(Pt � � �)(x)¡�¡1 (Pt � � �))(x)] = 0. �

Exercise 5. Let ' be a Schwartz function on R2 and set

�n(x)= ((n2'(n � )) � �)(x)=
Z
R2

n2'(n(x¡ y))�(y)dy=
X
k2Z2

h�; n2'(n(x+2�k¡ �))i

for x2T2. Write FR2'(z)=
R

R2 e
¡ihz;xi'(x)dx. Show that

E[(Pt �n � �n)(x)]=E[�¡1 (Pt �n � �n)(x)]= (2�)¡2
X
k2Z2

e¡tjkj
2 jFR2' (k/n)j2:

Hint: Poisson summation yields
P
k  (x ¡ y + 2�k) = (2�)¡2

P
k FR2 (k)eihk;x¡yi for any

Schwartz function  .

The diverging time integral motivates us to study the renormalized product # � � ¡
R
0

�
gsds,

where
R
0

�
gsds is an �in�nite function�:

Lemma 39. Set

(# � �)(t)=
Z
0

t

(Ps � � � ¡ gs) ds:
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Then E[k# � �kCTC 2
¡2(T2)
p ]<1 for all 
 < 1, p� 1, T > 0. Moreover, if ' is a Schwartz function

on R2 which satis�es
R
'(x)dx = 1, and if �n = 'n � � with 'n = n2'(n � ) for n 2 N, and

#n(t)=
R
0

1
Pt �ndt, then

lim
n!1

E[k# � � ¡ (#n � �n¡ fn)kCTC 2
¡2(T2)
p ] = 0

for all p� 1, where for all x2T2

fn(t)=E[#n(t; x)�n(x)]=E[(#n(t) � �n)(x)]

= (2�)¡2
X

k2Z2nf0g

jFR2' (k/n)j2
jk j2

¡
1¡ e¡tjkj2

�
+(2�)¡2t:

Proof. To lighten the notation, we will only show that E[k#��kCTC 2
¡2
p ]<1. The convergence of

(#n� �n¡ fn) to #�� is shown using similar arguments, and we leave it as an exercise. Let t>0 and
de�ne �t=Pt � � �¡ gt. Using Gaussian hypercontractivity, we will be able to reduce everything to
estimating E[j�`�t(x)j2] for `>¡1 and x2T2. Lemma 38 yields �` gt=0=E[�` (Pt � � �)(x)] for
`�0 and x2T2, and �¡1 gt= gt=E[�¡1(Pt� � �)(x)], so that E[j�`�t(x)j2]=Var(�`(Pt� � �)(x)),
where Var denotes the variance. We have

�`(Pt� � �)(x)= (2�)¡2
X
k2Z2

eihk;xi�`(k)F (Pt � � �))(k)

=(2�)¡4
X

k1;k22Z2

X
ji¡j j61

eihk1+k2;xi �`(k1+ k2)�i(k1)e¡tjk1j
2
�̂(k1) �j(k2)�̂(k2):

Hence

Var(�`(Pt� � �)(x))
= (2�)¡8

X
k1;k2

X
k1
0;k2
0

X
ji¡j j61

X
ji0¡j 0j61

eihk1+k2;xi�`(k1+ k2)�i(k1)e¡tjk1j
2
�j(k2)

� eihk10+k20;xi�`(k10 + k20)�i0(k10)e¡tjk1
0j2�j 0(k20)cov(�̂(k1)�̂(k2); �̂(k10)�̂(k20));

where exchanging summation and expectation can be justi�ed a posteriori by the uniform Lp�
boundedness of the partial sums, and where cov denotes the covariance. Now Wick's theorem
([Jan97], Theorem 1.28) gives us

cov(�̂(k1)�̂(k2); �̂(k10)�̂(k20))=E
�
�̂(k1)�̂(k2)�̂(k10)�̂(k20)

�
¡E

�
�̂(k1)�̂(k2)

�
E
�
�̂(k10)�̂(k20)

�
=E
�
�̂(k1)�̂(k2)

�
E
�
�̂(k10)�̂(k20)

�
+E

�
�̂(k1)�̂(k10)

�
E
�
�̂(k2)�̂(k20)

�
+E
�
�̂(k1)�̂(k20)

�
E
�
�̂(k2)�̂(k10)

�
¡E

�
�̂(k1)�̂(k2)

�
E
�
�̂(k10)�̂(k20)

�
=(2�)4(1k1=¡k101k2=¡k20+1k1=¡k201k2=¡k10);

and therefore

Var(�`(Pt� � �)(x)) =
X
k1;k2

X
ji¡j j61

X
ji0¡j 0j61

1`.i1`.i0�`2(k1+ k2)�i(k1)�j(k2)

�
�
�i0(k1)�j 0(k2)e¡2tjk1j

2
+ �i0(k2)�j 0(k1)e¡tjk1j

2¡tjk2j2
�
:

There exists c>0 such that e¡2tjkj
2.e¡tc22i for all k2 supp(�i) and for all i�¡1. In the remainder

of the proof the value of this strictly positive c may change from line to line. If ji¡ j j6 1, then we
also have e¡tjkj

2. e¡tc22i for all k 2 supp(�j). Thus

Var(�` (Pt� � �)(x))
.

X
i; j;i 0;j 0

1`.i1i�j�i0�j 0
X
k1;k2

1supp(�`)(k1+ k2)1supp(�i)(k1)1supp(�j)(k2)e
¡2tc22i

.
X
i:i&`

22i22`e¡tc2
2i. 22`

t

X
i:i&`

e¡tc2
2i. 22`

t
e¡tc2

2`
;
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where we used that t22i. et(c¡c0)22i for any c0<c.
Consider now #��(t)=

R
0

t �sds. We have for all 06 s< t

E
h
k#��(t)¡#��(s)k

B2p;2p
2
¡2

2p
i
=
X
`

22p`(2
¡2)
Z
T2

E[j�`(#��(t)¡#��(s))(x)j2p]dx:

Since the random variable �`(#��(t) ¡ #��(s))(x) lives in the second non-homogeneous chaos
generated by the Gaussian white noise �, we may use Gaussian hypercontractivity (see [FV10],
Appendix D.4) to obtain

E[j�`(#��(t)¡#��(s))(x)j2p].E[j�`(#��(t)¡#��(s))(x)j]2p6
�Z

s

t

E[j�`�r(x)j]dr
�
2p

:

But we just showed that

E[j�`�r(x)j]6E[j�`�r(x)j2]1/2. r¡1/22`e¡
1
2
rc22`6 r¡1/22`e¡rc22`

(changing again the value of c), and therefore

E
h
k#��(t)¡#��(s)k

B2p;2p
2
¡2

2p
i
.
X
`

22p`(2
¡2)
�Z

s

t

r¡1/22`e¡rc2
2`
dr
�
2p

6
 X

`

Z
s

t

r¡1/22`(2
¡1)e¡rc22`dr

!
2p

.
�Z

s

t

r¡1/2
Z
¡1

1
(2x)2
¡1e¡rc2

2x
dxdr

�
2p

:

The change of variable y= r
p

2x leads to

.
�Z

s

t

r¡1/2r¡(2
¡1)/2
Z
0

1
y2
¡2e¡cy

2
dydr

�
2p

:

For �> 1/2, the integral in y is �nite and we end up with

.
�Z

s

t

r¡
dr
�
2p

. jt¡ sj2p(1¡
)

provided that 
 2 (1/2; 1). So for large enough p we can use Kolmogorov's continuity criterion to

deduce that E
h
k#��k

CTB2p;2p
2
¡2

2p
i
<1 for all T >0. The claim now follows from the Besov embedding

theorem, Lemma 11. �

Combining Theorem 36 and Lemma 39, we are �nally able to solve (10).

Corollary 40. Let " > 0 and let F 2Cb2+" and assume that u0 is a random variable that almost
surely takes its values in C 2
 for some � with (2 + ")
 > 2. Let � be a spatial white noise on T2.
Then there exists a unique solution u to

Lu=F (u)��; u(0)=u0;

up to the (possibly �nite) explosion time � = �(u) = inf ft> 0: kukDt
�=1g which is almost surely

strictly positive.
If ('n) and (�n) are as described in Lemma 39, and if (un;0) converges in probability in C 2


to u0, then u is the limit in probability of the solutions un to

Lun=F (un)��n; un(0)=un;0:

Remark 41. We even have a stronger result: We can �x a null set outside of which #�� is regular
enough, and once we dispose of that null set we can solve all equations for any regular enough u0
and F simultaneously, without ever having to worry about null sets again. This is for example
interesting when studying stochastic �ows.
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The pathwise continuous dependence on the signal is also powerful in several other applications,
for example support theorems and large deviations. For examples in the theory of rough paths
see [FV10].

6 The stochastic Burgers equation
Let us now get to our main example, the �KPZ family� of equations. We concentrate here on the
Burgers equation sbe, but essentially the same analysis works for the kpz equation. We can also
treat the heat equation in the same way, although in that case we need to set up the equation in
the right way. We will indicate how to do this after we treat Burgers equation.

Recall that Burgers equation is

Lu=@xu2+ @x�; u(0)=u0; (25)

where u: [0;1)�T!R, � is a space-time white noise, and @x denotes the spatial derivative. To
begin with let us analyze the di�culty for this equation. As we argued before, the solution u cannot
be expected to behave better than the solution X of the linear equation

LX =@x�

(for example with zero initial condition at time 0). Arguing similarly as in Exercise 4, one can show
that almost surely X 2CC¡1/2¡. In particular, u2 is the square of a distribution, and therefore a
priori it does not make sense.

But what raises some hope though is that if Xn denotes the solution to the linear equation
with regularized noise �n, then (@xXn

2)n converges to a space�time distribution @xX2 . So as in the
previous examples there are stochastic cancellations going into @xX2, and Theorem 28 will allow
us to take these cancellations into account in the full solution u.

6.1 Structure of the solution
In this discussion we consider the case of zero initial condition and smooth noise �, and we analyze
the structure of the solution. Let us expand u around the solution X to the linear equation
LX =@x�, X(0)=0. Setting u=X +u>1, we have

Lu>1= @x(u2)=@x(X2)+ 2@x(Xu>1)+@x((u>1)2):

Let us de�ne the bilinear map

B(f ; g)=J@x(f g)=
Z
0

�
P�¡s@x(f(s)g(s))ds:

Then we can proceed by performing a further change of variables in order to remove the term
@x(X2) from the equation by setting

u=X +B(X;X)+u>2: (26)

Now u>2 satis�es

Lu>2 = 2@x(XB(X;X))+ @x(B(X;X)B(X;X))
+2@x(Xu>2)+ 2@x(B(X;X)u>2)+@x((u>2)2):

(27)

We can imagine to make a similar change of variables to get rid of the term

2@x(XB(X;X))=LB(X;B(X;X)):

As we proceed in this inductive expansion, we generate a number of explicit terms, obtained by
various combinations of X and B. Since we will have to deal explicitly with at least some of these
terms, it is convenient to represent them with a compact notation involving binary trees. A binary
tree � 2T is either the root � or the combination of two smaller binary trees � =(�1�2), where the
two edges of the root of � are attached to �1 and �2 respectively.

Then we de�ne recursively

X�=X; X(�1�2)=B(X�1; X�2);
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giving

X =B(X;X); X =B(X;X ); X =B(X;X ); X =B(X ;X )

and so on, where

(��)= , ( �)= , (� )= , ( )= , :::

In this notation, the expansion (26)-(27) reads

u=X +X +u>2; (28)

u>2=2X +X +2B(X;u>2)+ 2B(X ;u>2)+B(u>2; u>2): (29)

Remark 42. We observe that formally the solution u of equation (25) can be expanded as an
in�nite sum of terms labelled by binary trees:

u=
X
�2T

c(�)X� ;

where c(�) is a combinatorial factor counting the number of planar trees which are isomorphic
(as graphs) to � . For example c(�) = 1, c( ) = 1, c( ) = 2, c( ) = 4, c( ) = 1 and in general
c(�) =

P
�1;�22T 1(�1�2)=� c(�1)c(�2). Alternatively, we may truncate the summation at trees of

degree at most n and set

u=
X

�2T ;d(�)<n
c(�)X� +u>n;

where we denote by d(�) 2 N0 the degree of the tree � , given by d(�) = 0 and then inductively
d((�1�2))=1+d(�1)+d(�2). For example d( )=1, d( )=2, d( )=3, d( )=3. We then obtain
for the remainder

u>n=
X

�1;�2:d(�1)<n;d(�2)<n
d((�1�2))>n

c(�1)c(�2)X(�1�2)+
X

� :d(�)<n

c(�)B(X� ; u>n)+B(u>n; u>n): (30)

Our aim is to control the truncated expansion under the natural regularity assumptions in the
white noise case, where we have X 2CC¡1/2¡. Since (30) contains the term B(X; u>n) which in
turn contains the paraproduct J@x(u>n�X), the remainder u>n will be at best in CC 1/2¡. But
then the sum of the regularities of X and u>n is negative, and the term B(X;u>n) is a priori not
well de�ned. We therefore continue the expansion up to the point (turning out to be u>3) where
we can set up a paracontrolled Ansatz for the remainder, which will allow us to make sense of
X � u>n and thus of B(X;u>n).

6.2 Paracontrolled solution
Inspired by the partial tree series expansion of u, we set up a paracontrolled Ansatz of the form

u=X +X +2X +uQ; uQ=u0�Q+u]; (31)

where the functions u0; Q and u] are for the moment arbitrary, but we assume u0; Q 2 L � and
u]2L 2�, where from now on we �x �2 (1/3;1/2). For such u, the nonlinear term takes the form

@xu
2= @x(X2+2X X +(X )2+4X X)+ 2@x(uQX) (32)

+2@x(X (uQ+2X ))+ @x((uQ+2X )2):

As a consequence, we derive the following equation for uQ:

LuQ=@x((X )2+4X X)+ 2@x(uQX)+ 2@x(X (uQ+2X ))+ @x((uQ+2X )2) (33)

=LX +4LX +2@x(uQX)+ 2@x(X (uQ+2X ))+ @x((uQ+2X )2):

The stochastic Burgers equation 41



If we formally apply the paraproduct estimates Theorem 15 (which is of course not possible since
the regularity requirements for the resonant term are not satis�ed), we derive the following natural

regularities for the driving terms: X 2 CC ¡1/2¡, X 2 CC 0¡, X 2 L 1/2¡, X 2 L 1/2¡, and

X 2L 1¡. In terms of �, we can encode this as

X 2CC �¡1; X 2CC 2�¡1; X 2L �; X 2L �; X 2L 2�:

Under these regularity assumptions, the term 2@x(X (uQ+X ))+ @x((uQ+X )2) is well de�ned
and the only problematic term in (33) is @x(uQX). Using the paracontrolled structure of uQ, we
can make sense of @x(uQX) as a bounded operator provided that Q � X 2 CC 2�¡1 is given. In
other words, the right hand side of (33) is well de�ned for paracontrolled distributions.

Next, we should specify how to choose Q and which form u0 will take for the solution uQ. We
have formally

LuQ=LX +4LX +2@x(uQX)+ 2@x(X (uQ+2X ))+ @x((uQ+2X )2)

=4@x(X X)+ 2@x(uQX)+CC 2�¡2=4X � @xX +2uQ� @xX +CC 2�¡2;

where we assumed that not only LX 2 CC �¡2, but that @x(X �X) 2 CC 2�¡1 (which implies

LX 2 CC �¡2, but also the stronger statement LX ¡X � @xX 2 CC 2�¡2). By Theorem 32,
this shows that uQ is paracontrolled by J(@xX), in other words we should set Q= J(@xX). The
derivative u0 of the solution uQ will then be given by u0=4X +2uQ.

Unlike for the parabolic Anderson model, here we do not need to introduce a renormalization.
This is due to the fact that we di�erentiate after taking the square: to construct u2, we would have
to subtract an in�nite constant and formally consider u�2=u2¡1. But then

@xu
�2=@x(u2¡1)=@xu2:

So we obtain the following set of driving data for Burgers equation:

De�nition 43. (Rough distribution) Let �2 (1/3; 1/2) and let

Xrbe�CC �¡1�CC 2�¡1�L ��L 2��CC 2�¡1�CC 2�¡1

be the closure of the image of the map �rbe:C(R+; C1(T))!Xrbe given by

�rbe(�)= (X(�); X (�); X (�); X (�); (X �X)(�); (Q�X)(�)); (34)

where
X(�) = J(@x�);

X (�) = B(X(�); X(�));

X (�) = B(X (�); X(�));

X (�) = B(X (�); X (�));
Q(�) = J(@xX(�)):

(35)

We will call �rbe(�) the RBE-enhancement of the driving distribution �. For T > 0 we de�ne
Xrbe(T ) = Xrbej[0;T ] and we write kXkXrbe(T ) for the norm of X in the Banach space CTC �¡1�
CTC 2�¡1 � L T

� � L T
2� � CTC 2�¡1 � CTC 2�¡1. Moreover, we de�ne the distance dXrbe(T )(X;

X~ )=


X¡X~




Xrbe(T ).

Naturally, the acronym rbe stands for rough Burgers equation . For every X2Xrbe, there is an
associated space of paracontrolled distributions:

De�nition 44. Let X 2 Xrbe and let � 2 (0; �] be such that 2� + � > 1. Then the space of
paracontrolled distributions D�(X) is de�ned as the set of all (u; u0)2CC �¡1�L � with

u=X +X +2X +u0�Q+u];
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where u]2L �+�. For T > 0 we de�ne

kukDT
� = ku0kL T

� + ku]kCTC�+�:

If X~ 2Xrbe and (u~; u~0)2D�
¡
X~
�
, then we also write

dDT
�(u; u~)= ku0¡u~0kL T

� + ku]¡u~]kCTCT
�+�:

We now have everything in place to solve the rough Burgers equation driven by some X2Xrbe.

Theorem 45. Let � 2 (1/3; 1/2). Let X 2Xrbe, write @x�=LX, and let u0 2C 2�. Then there
exists a unique solution u2D�(X) to the equation

Lu= @xu2+@x�; u(0)=u0; (36)

up to the (possibly �nite) explosion time � = �(u)= inf ft> 0: kukDt
�=1g> 0.

Moreover, u depends on (u0;X)2C 2��Xrbe in a locally Lipschitz continuous way: if M;T > 0
are such that for all (u0;X) with ku0k2� _ kXkXrbe(T )6M, the solution u to the equation driven
by (u0;X) satis�es �(u)>T, and if

¡
u~0;X~

�
is another set of data bounded in the above sense by

M, then there exists C(M)> 0 for which

dDT
�(u; u~)6C(M)

¡
ku0¡u~0k2�+ dXrbe(T )

¡
X;X~

��
:

Proof. By de�nition of the term @xu
2, the distribution u 2 D�(X) solves (36) if and only if

uQ=u¡X ¡X ¡ 2X solves

LuQ=LX +4@x(X X)+ 2@x(uQX)+ 2@x(X (uQ+2X ))+ @x((uQ+2X )2)

with initial condition uQ(0) = u0. This equation is structurally very similar to the parabolic
Anderson model (10) and can be solved using the same arguments, which we do not reproduce
here. �

Of course, to be of any use we still have to show that if � is the space-time white noise, then
there is almost surely an element of X associated to @x�. While for the parabolic Anderson model

we needed to construct only one term, here we have to construct �ve terms: X ;X ;X ;X �X;
Q�X . This construction will be included in [GP14], alternatively we may simply di�erentiate the
extended data which Hairer constructed for the KPZ equation in Chapter 5 of [Hai13].

The same approach allows us to solve the KPZ equation Lh=(@xh)�2+ �, and if we are careful
how to interpret the product w��, then also the linear heat equation Lw=w��. In both cases, the
solution will depend continuously on some suitably extended data that is constructed from � in a
similar way as described in De�nition 43. Moreover, the formal links between the three equations
can be made rigorous. These results will be included in [GP14].
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