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1. Complex Projective Surfaces

1.1 Notation and preliminaries

In this section we fix some notations and some basic results (we do not prove: good references are
[Bea78] and [BPV84]) we will use in these lectures.

Definition 1.1.1 A surface (resp. curve) is a complex projective surface (resp. curve), that
is an irreducible and reduced algebraic variety of dimension 2 (resp. 1) over the field of the
complex numbers. We will mostly deal with smooth surfaces.

Definition 1.1.2 A curve C in a smooth surface S is a subscheme of codimension 1, so locally
defined by one equation. In other words, curves in smooth surfaces are effective Cartier divisors.
So a curve in a surface can be both reducible and not reduced.

To each curve (or more generally to each Cartier divisor) C corresponds a line bundle OS(C)
on S, and therefore a class in H1(O∗S ); we will usually identify C with the image of that class by
the map c1 : H1(S,O∗S )→ H2(S,Z) in the long cohomology exact sequence associated to the short
exact sequence 0→ Z→ OS→ O∗S .

Definition 1.1.3 The cup product on a smooth projective surface S give a symmetric bilinear
form H2(S,Z)×H2(S,Z)→ Z.

The submodule Imc1 ⊂ H2(S,Z) is the Neron-Severi group of S, and denoted by NS(S).
The intersection product of two curves (or more generally two effective divisors) C and D is
the cup product of their classes in NS(S). We will denote it by CD or C ·D.

Definition 1.1.4 Let S be a smooth surface, and let A and B be two divisors on it. Then A and B
are numerically equivalent if their classes in NS(S)⊗ZR are equal (equivalently: if AC = BC
for every curve C in S).

To compute it in most cases one needs only to know that
• if C and C′ are linearly equivalent divisors, then they define the same class in H2(X ,Z) and

therefore they are also numerically equivalent;
• If f : S→ B is a morphism of a surface onto a smooth curve, ∀p ∈ B we define by Fp the
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fibre f ∗p. Then ∀p, p′, c1(Fp) = c1(Fp′) and therefore Fp and F ′p are numerically equivalent.
In this case we will usually write F for the class of each Fp in H2(X ,Z): note F2 = 0;
• if C and D are irreducible distinct curves, they intersect in finitely many points and CD =

∑p∈C∩D µ(p,C,D), where µ(p,C,D) ∈ N, µ(p,C,D)≥ 1 and µ(p,C,D) = 1 if and only if
C and D are smooth in p and transversal; in particolar if C and D are curves with no common
components, then CD≥ 0 and CD = 0 if and only if C∩D = /0;
• if C is an ample divisor, then CD > 0 for every curve D.

and then argue by linearity.
A key tool in the study of projective surfaces is the following

Theorem 1.1.1 — Hodge Index Theorem. Let S be a smooth surface and consider V :=
NS(S)⊗ZR endowed with the quadratic form induced by the intersection pairing. Define the
Picard number of S as ρ(S) := dimRV . Then the signature of this quadratic form in (1,ρ−1).

Recall that on smooth varieties there are divisors KX (the canonical divisors) such that ωX :=
OX(KX) is a dualizing sheaf for X .

Theorem 1.1.2 — Adjunction formula. If X is a Cohen-Macaulay variety and D is an effective
Cartier divisor on X then ωD = ωX(D)⊗OD is a dualizing sheaf for D.

We will need the following classical result for surfaces

Theorem 1.1.3 — Riemann-Roch for surfaces. If S is a smooth surface and D is a divisor on
S, then

χ(OS(D)) = χ(OS)+
D(D−KS)

2

which implies the genus formula.

Definition 1.1.5 If C is a curve on a surface S, we denote by pa(C) the arithmetic genus
pa(C) = 1−χ(OC)

Note that if C is smooth irreducible, then this is exactly the genus of C.

Corollary 1.1.4 — Genus formula. If C is a curve on a smooth surface then KSC +C2 =
2pa(C)−2

Proof. By the exact sequence 0→OS(−C)→OS→OC→ 0 follows χ(OC)= χ(OS)−χ(OS(−C)).
�

1.2 Minimal surfaces
1.2.1 The blow-up

Consider Cn+1×Pn with the affine coordinates (t0, t1, . . . , tn) on the first factor and projective
coordinates (x0,x1, . . . ,xn) on the second factor. Then

(Cn+1)′ = {tix j = t jxi}

is a smooth complex manifold containing the divisor E = {(0, . . . ,0}×Pn ∼= Pn, and the projection
on the first factor give a birational morphism. π1 : (Cn+1)′→Cn+1, contracting E to the origin, and
mapping biregularly (Cn+1)′ \E onto Cn+1 \{(0, . . . ,0)}.

Then (Cn+1)′ and the pair ((Cn+1)′,π1) are the blow-up of Cn+1 at {0}.
By glueing charts, one immediately generalizes this procedure to the blow-up of smooth

algebraic variety (or complex manifold) X at any point p, getting a new smooth algebraic variety
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X ′, the blow-up of X at p, containing a smooth effective divisor E ∼= PdimX−1, the exceptional
divisor and a morphism π : X ′→ X contracting E to p and mapping biregularly X ′ \E to X \ p.

Theorem 1.2.1 If X is projective, then X ′ is projective too.
If moreover dimX = 2, then
• ∀m≥ 0, |mKX ′ |= π∗|mKX |+mE;
• every divisor in S′ is linear equivalent to a divisor of the form π∗C+λE, λ ∈ Z so that we

can write
NS(X ′)∼= NS(X)⊕⊥ZE;

• for every pair of divisors C and D on X (π∗C) · (π∗D) =C ·D, Eπ∗C = 0;
• E2 = KX ′E =−1.

Definition 1.2.1 Let π : Y → X be the blow up in a point with exceptional divisor E, let D be a
curve in X . Then π∗D can be written uniquely as π∗D = D̃+dE for some d ≥ 0 so that D̃ is
effective and E is not a component of D̃. D̃ is the strict transform of D.

It can be shown (see Exercises 1.1 and 1.2) that
1) pa(D̃)≤ pa(D);
2) pa(D̃) = pa(D) if and only if p 6∈ D or p is a smooth point of D: in both cases π|D̃ : D̃→ D

is an isomorphism;
3) if D is reduced, then after finitely many suitable blow-ups its strict transform is smooth.
These results togheter give

Corollary 1.2.2 Let C be an irreducible curve in a smooth surface S. Then pa(C)≥ 0 (equiv-
alently KSC+C2 ≥ −2). If moreover KSC+C2 = −2, then C is smooth and rational (that is
C ∼= P1).

Blow-up’s are often use to transform rational maps in morphisms as follows.

Theorem 1.2.3 — Resolution of rational maps. Let S be a smooth surface, and consider a
rational map f : S 99K Pn. Then there is a finite sequence of blow-ups ε : S(r)→ S(r−1)→ ··· →
S′→ S and a morphism g : S(r)→ Pn such that the diagram

S(r)
g

!!B
BB

BB
BB

B
ε

~~~~
~~
~~
~~

S
f

//_______ Pn

(1.1)

commutes.
g is a resolution of the indeterminacy locus of f . The resolution is minimal if r is the

minimum possible number among all possible resolutions of the indeterminacy locus of f .

It is easy to detect if a surface is a blow-up of an other surfaces.

Theorem 1.2.4 — Castelnuovo contractibility theorem. Let S′ be a smooth surface and E
a smooth rational curve on S′ such that E2 = −1. Then there exist a smooth surface S and a
morphism π : S′→ S such that π contracts E to a point p and (S′,π) is isomorphic to the blow-up
of S at p.

This motivates the definition of minimal surface, which is a surface that is not isomorphic to
the blow-up of any other surface.
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Definition 1.2.2 A smooth surface is minimal if it does not contain any smooth rational curve
E with E2 =−1.

An immediate consequence of this definition is the

Proposition 1.2.5 Every smooth surface S is birational to a minimal surface.

Proof. If S is not minimal, it has a smooth rational curve E with E2 =−1, and contracting it we
get a surface S1 with rankNS(S1) = rankNS(S)−1. If S1 is not minimal, we repeat the procedure
constructing a new surface S2 and so on. Since rankNS(S)< ∞, the procedure terminates. �

1.3 Enriques classification

From the point of view of classification theory, since we know that every surface is obtained by a
minimal one by finitely many blow-ups, and the blow-up is a rather simple procedure, it is natural
then to restrict itself to the study of minimal surfaces. A key role in this study is played by the
following numbers.

Definition 1.3.1 Let S be a smooth surface. We associate to S the following numbers, who are
birational invariants.
• the geometric genus pg(S) := h0(OS(KS))
• the m-th plurigenus Pm := h0(OS(mKS))
• the irregularity q := h1(Os) = h0(Ω1

S) (last equality follows by Hodge theory)
• the Euler characteristic χ := χ(OS) = 1−q+ pg

The reason why most of the numbers above are birational invariants, is by the fact that, if π : Y → X
is a blow-up, |mKY |= π∗|mKX |+mE.

Definition 1.3.2 Let S be a smooth surface. Its canonical ring is the graded ring

R :=⊕d≥0H0(OS(dKS))

with product given by the tensor product of sections (here the homogeneous piece Rd of degree
d is clearly H0(OS(dKS))).

Then by the argument above birational surfaces have isomorphic canonical rings. The plurigenera
give the Hilbert function of R. The growth of them define then a further birational invariant

Definition 1.3.3 Let S be a be a smooth surface. Its Kodaira dimension is

κ(S) = min
(

k|
{

Pd(s)
dk

}
is bounded from above

)
When all plurigenera vanish, one conventially set κ(S) =−∞.

Theorem 1.3.1 — Uniqueness of the minimal model. Let S and S′ be two minimal surfaces,
and assume that there is a birational map f : S 99K S′. Assume κ(S) 6=−∞. Then f is biregular.

Recall that a divisor D on S is nef if for every irreducible curve C in S, DC ≥ 0.

Theorem 1.3.2 Let S be a surface. If KS is nef then S is minimal.
If κ(S) 6=−∞, then S is minimal if and only if KS is nef.

Proof. If S is not minimal, then there is a rational curve E in S with KSE =−1, so KS is not nef.
Assume then κ(S) 6=−∞, so there is an effective divisor D ∈ |mKS| for some m > 0.



1.3 Enriques classification 9

If KS is not nef, then there is an irreducible curve C in S with DC < 0. Writing D = ∑diDi we
see that ∃i with CDi < 0, so C = Di and C2 < 0. Now C2 ≤ −1, KSC ≤ −1 so C2 +KSC ≤ −2.
Since C is irreducible, by the genus formula pa(C) = 0, so C is smooth rational and C2 = KC =−1.
Then S is not minimal. �

There is the following classification

Theorem 1.3.3 — Enriquesa classification. Let S be a smooth minimal surface. Then S is one
of the following.
• κ =−∞: P2;
• κ =−∞: a ruledb surface: a surface S fibred as S→ B onto a smooth curve B such that

all fibres are isomorphic to P1;
• κ = 0: a K3 surface: a simply connected surface with OS(KS)∼= OS, q = 0;
• κ = 0: an Enriquesc surface: a surface with OS(KS) 6∼= OS, OS(2KS)∼= OS, q = 0;
• κ = 0: an abelian surface: a quotient C2

/Λ
by a lattice Λ of rank 4: OS(KS)∼= OS, q = 2;

• κ = 1: ad minimal elliptic surfaces: a surface fibred as S→ B onto a smooth curve B such
that the general fibre is smooth of genus 1 (these have K2 = 0);
• κ = 2: a minimal surface of general type.

aThis classification has been extended in the ′60s by Kodaira to all compact complex manifold of dimension 2,
including the non-algebraic compact surfaces. That generalization is known as Enriques-Kodaira classification.

bThere is exactly one ruled surface, the Hirzebruch surface F1, which is not minimal; all other ruled surfaces are
minimal surfaces with κ(S) =−∞

cThese have π1(S) = Z/2Z: their universal cover is a K3 surface.
dnot all elliptic surfaces have κ(S) = 1; they may have also κ(S) = 0 or κ(S) =−∞. For example, all Enriques

surfaces are elliptic.

The last line of Theorem 1.3.3 is just a definition:

Definition 1.3.4 A surface S is of general type if κ(S) = 2.

� Example 1.1 — Product of two curves. Let C1, C2 be two curves of genus g(Ci) =: gi ≥ 2.
Then C1×C2 is minimal of general type with q = g1 +g2, pg = g1g2, K2 = 4(g1−1)(g2−1). �

� Example 1.2 — Hypersurfaces in a projective space. Fix d ≥ 5. Let S be a smooth divisor
in |OP3(d)|. Then S has q = 0, ωS = OS(d−4), K2

S = d(d−4)2, pg =
(d−1

3

)
.

Then ωS is nef and so S is minimal. Then K2
S > 0 implies ∀m≥ 2, h2(mKS)= h0((1−m)KS)= 0,

and then by Riemann-Roch Pm(S)≥ χ(OS(mKS)) = χ(OS)+
m(m−1)

2 K2
S , so κ(S) = 2.

Similarly complete intersections of n−2 hypersurfaces in Pn are almost always minimal of
general type. �

� Example 1.3 — Godeaux1 surfaces. Consider the Fermat quintic {x5
1+x5

2+x5
3+x5

4 = 0}⊂ P3,
it is a smooth minimal surface of general type with ωS = OS(1), q = 0, pg = 4, K2

S = 5.
Set η := e

2πi
5 and let Z/5Z act on P3 by (x1,x2,x3,x4) 7→ (ηx1,η

2x2,η
3x3,η

4x4). Note that
Z/5Z acts on S, and the action on S is free, so that S′ := S/Z/5Z is a smooth surface and the
projection π : S→ S′ is étale of degree 5.

First note (for example by the Lefschetz fixed point formula, as the group has order 5 and acts
freely) χ(OS) = 5χ(OS′). So χ(OS′) =

5
5 = 1.

Moreover Ω1(S) = π∗Ω1(S′), and then (since we know q(S) = 0) q(S′) = 0. So pg(S) = 0.
Similarly KS = π∗KS′ : note that this implies that KS′ is nef, and K2

S′ =
5
5 = 1 > 0. So S is of

general type. �

1This construction, given by Godeaux in the 30s, is one of the first examples of surfaces of general type with pg = 0.
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Exercise 1.1 Show that, if D̃ is the strict transform of a curve D in a surface by the blow-up in
a point, then pa(D̃)≤ pa(D) �

Exercise 1.2 Showa that, if D̃ is the strict transform of D in a surface by the blow-up in a point
p, then pa(D̃) = pa(D) if and only if p 6∈ D or p is a smooth point of D. �

aHint: writing π∗D = D+mE show that p is a smooth point of D if and only if m = 1

Exercise 1.3 — Enriques surfaces. Consider a smooth complete intersection of three quadrics
S = Q0∩Q1∩Q2 ⊂ P5. Show that it is a minimal surface, and more generally a K3 surface.

Let Z/2Z act on P5 by (x0,x1,x2,x3,x4,x5) 7→ (x0,x1,x2,−x3,−x4,−x5). Assume that all
Qi are of the form ∑ai jx2

j = 0; then Z/2Z acts on S.
Show that if Q0,Q1 and Q2 are general, then the action on S is free, and S′ := S/Z/2Z is an

Enriques surface. �

Exercise 1.4 — Campedellia surfaces. Consider a smooth complete intersection of four
quadrics S = Q0∩Q1∩Q2∩Q3 ⊂ P6. Show that it is a minimal surface of general type with
q = 0, pg = 7, K2

S = 16.
Let (Z/2Z)3 act on P6 by

(a,b,c)(x0,x1,x2,x3,x4,x5,x6) =

= ((−1)ax0,(−1)bx1,(−1)cx2,(−1)a+bx3,(−1)a+cx4,(−1)b+cx5,(−1)a+b+cx6).

Assume that all Qi are of the form ∑ai jx2
j = 0; then (Z/2Z)3 acts on S.

Show that if Q0,Q1,Q2 and Q3 are general, then the action on S is free, and S′ := S/(Z/2Z)3

is a minimal surface of general type with K2
S = 2, pg = q = 0. �

aThese surfaces have been constructed by Campedelli in the 30s, more or less at the same time of Godeaux
construction, but this construction is not Campedelli’s one



2. The geography

2.1 Improving "K is nef" on minimal surfaces of general type

If S is a minimal surface of general type, then by Theorem 1.3.2, KS is nef. Since by definition
|nKS| is not empty for large n, follows immediately K2

S ≥ 0. A slightly better inequality holds.

Proposition 2.1.1 Let S be a minimal surface of general type. Then K2
S ≥ 1.

Proof. Let H be a general (then smooth) hyperplane section of S. As nKS is effective for large n,
HKS > 0. Consider the exact sequence

0→ OS(nKS−H)→ OS(nKS)→ OH(nKS)→ 0

for large n, and its long cohomology exact sequence. By the Riemann-Roch theorem for curves
h0(OH(nKS)) grows linearly with n whereas by assumption Pn grows more quickly. So for large n
there is an effective divisor in |nKS−H|, and then (nKS−H)KS ≥ 0, so nK2

S ≥ HKS > 0. �

Corollary 2.1.2 Let S be a minimal surface of general type, then h1(OS(nKS)) = 0 for all
n 6= {0,1}.

Proof. The case n < 0 follows by Mumford’s vanishing theorem (if D is nef and D2 > 0 then
h1(OS(−D)) = 0). The case n≥ 2 follows then by Serre duality. �

We can improve the assertion that KS is nef in a different direction.

Proposition 2.1.3 Let S be a minimal surface of general type. Then1 the irreducible curves C in S
with KSC = 0 are all smooth and rational, and they are at most ρ(S)−1.

Moreover the symmetric matrix (Ci ·C j) is negative definite and then their classes form a
linearly independent set {C1, . . . ,Ck} in NS(S)⊗ZR.

1This proof comes from [Bom73].
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Proof. Let C be an irreducible curve with KSC = 0, so its class in NS(S)⊗ZR belongs to 〈KS〉⊥.
By Proposition 2.1.1 and the Hodge Index Theorem 1.1.1 follows then C2 ≤ 0 and C2 = 0 if and
only if C is numerically trivial which is impossible as C is effective (so CH > 0 for any hyperplane
section H). So C2 < 0. Then by the genus formula pa(C) = 1+ 1

2(C
2 +KSC) = 1+ 1

2C2 < 1, so
pa(C) = 0 and C is smooth and rational with C2 =−2.

Now assume that C1, . . . ,Cr are distinct irreducible curves with KSCi = 0, not linearly indepen-
dent in NS(S)⊗ZR. Then we can find constants ci > 0 so that, for some 1 < k < r, A = ∑i≤k ciCi

and B = ∑i≥k+1 ciCi are numerically equivalent. But then A2 = AB ≥ 0 contradicts (arguing as
above) the Hodge Index Theorem 1.1.1, since A ∈ 〈KS〉⊥ is effective. �

2.2 Noether’s inequality
Definition 2.2.1 A projective variety X ⊂ Pn is nondegenerate if it is not contained in any
linear subspace.

R The image of a variety by the rational map induced by a linear system is always nondegerate.

We need a classical result on the degree of a nondegenerate projective surface.

Lemma 2.2.1 Let Σ⊂ Pn be a nondegenerate surface, and let d be its degree. Then d ≥ n−1.
If moreover Σ is not ruled, then d ≥ 2(n−1), and KΣ is numerically trivial2 if equality holds.

Theorem 2.2.2 — Noether inequalitya. Let S be a minimal surface of general type. Then
K2

S ≥ 2pg(S)−4. If the equality holds, then ϕ|KS| is a degree 2 morphism onto a nondegenerate
surface of minimal degree pg−2 in Ppg−1.

aSome people denote as Noether inequality the slightly weaker inequality K2
S ≥ 2χ(OS)−6. The proof here is

essentially taken by [Sak80].

Proof. By K2
S ≥ 1 we can assume pg(S)≥ 3.

Let Z be the fixed part of |KS|, so we can write |KS|= |D|+Z where D has no fixed components.
Since pg(S)≥ 3 we may consider the canonical map ϕ|KS| : S 99K Ppg−1. Let π : S∗→ S be the

blow up of the indeterminacy locus of |D| so that the movable part |L| of |π∗D| (which is also the
movable part of |KS∗ |) is base point free. We get then a morphism

ϕ|KS| ◦π = ϕ|L| : S∗→ Σ

Let Σ be its image ϕ|KS|(S): it is an irreducible subvariety of Ppg−1, pg ≥ 3, which is nondegen-
erate. So dimΣ ∈ {1,2}.

We first consider the case dimΣ = 1. The Stein factorization of ϕ|L| is

S∗
p→ B θ→ Σ

where B is a smooth curve, p has connected fibres and θ is a finite map.
Let H be an hyperplane section of Σ, and let n be the degree of θ ∗H. Then

pg(S) = pg(S∗) = h0(OS∗(L)) = h0(OS∗(p∗θ ∗H)) = h0(OB(θ
∗H))

2Here Σ is not necessarily smooth, but under these assumptions one can show that there is a Cartier divisor KΣ such
that OΣ(KΣ) is a dualizing sheaf for Σ and moreover the class of Σ in NS(Σ)⊗ZR is zero.
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and then, denoting by g the genus of B, by Riemann-Roch theorem

pg(S) = n+1−g if n > 2g−2

and, by Clifford theorem

pg(S)≤
1
2

n+1 if n≤ 2g−2.

The two claims together give

pg(S)≤ n+1. (2.1)

On the other hand, denoting by F∗ a general fibre of p, and by F its image on S, D is numerically
equivalent to nF , and then

K2
S = KS(nF +Z)≥ nKSF = n(nF2 +ZF)

where the inequality follows from KS nef.
We claim nF2 +ZF ≥ 2, which immediately implies

K2
S ≥ 2n. (2.2)

We prove the claim. Since D has no fixed components, D2 ≥ 0, DZ ≥ 0, and therefore F2 ≥ 0,
FZ ≥ 0. Since Σ is nondegenerate, n≥ degΣ≥ 2 and then our claim follows if we exclude the case
F2 = 0, FZ ∈ {0,1} Indeed, if F2 = 0, by the genus formula ZF = KSF is even, thus excluding
ZF = 1. Finally, if ZF = F2 = 0, then F ∈ 〈KS〉⊥, contradicting Proposition 2.1.3.

Finally (2.1) and (2.2) together give the inequality K2
S ≥ 2pg−2, slightly3 strictly stronger than

the stated inequality, concluding the case dimΣ = 1 (equality can’t occur).

We can then assume dimΣ = 2. Arguing as above,

K2
S = D2 +DZ +KSZ ≥ D2 ≥ L2 = (degϕ|KS|)(degΣ) (2.3)

where the last equality comes from L = ϕ∗|KS|(H) for a hyperplane section H of Σ. We have two
cases.

1) If degϕ|KS| = 1, then Σ is birational to a surface of general type, and then neither it can be
ruled4 nor KΣ can5 be numerically trivial. By Lemma 2.2.1, degΣ > 2(pg−1)−2. Then by
(2.3) K2

S > 2pg−4, stronger than required. In this case the equality cannot occur.
2) Else degϕ|KS| ≥ 2 and then (2.3) and Lemma 2.2.1 give K2

S ≥ 2pg−4. Here the equality may
occur when degϕ|KS| = 2 and Σ has minimal degree. Moreover, if equality occurs it must
occur also in all inequalities of (2.3): in particular from D2 = L2 it follows that ϕ|KS| is a
morphism (in other words S∗ = S).

�

2.3 The geography
There are two more inequalities among the invariants of a surface of general type.

3When dimΣ = 1 a much stronger inequality has been proved by Xiao Gang in [Xia85]: indeed in this case
K2

X ≥ 4pg−6 unless X is one of the surfaces with pg = 2 and K2 = 1 in the Example 2.2. The Xiao inequality is sharp,
as the equality can be realized for every value of pg; the surfaces with K2 ≤ 4pg−4 and dimΣ = 1 have been classified
in [Pig12].

4If Σ is ruled, then S is covered by rational curves, which implies that κ(S) =−∞, compare Theorem 1.3.3.
5One can show KS∗ ≤ ϕ∗|L|KΣ
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K2
S

χ(OS)

K2 = 9χ K2 = 2χ− 6

χ = 1

K2 = 1

Figure 2.1: The geography of the surfaces of general type
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Theorem 2.3.1 Let S be a surface of general type, then χ(OS)≥ 1 and K2
S ≤ 9χ .

which, with Proposition 2.1.1 and Theorem 2.2.2, determines a quadrilateral region of the plane
where the pair (K2,χ) can stay: this is the region in Figure 2.1.

2.4 Weighted projective spaces: some surfaces on the Noether line
Let (a0, . . . ,an) ∈ Nn+1. The weighted projective space P := P(a0, . . . ,an) is defined as P :=
Proj(A) where A is the polynomial ring C[x0, . . . ,xn] graded so that degxi = ai. We will denote
by Ad the vector subspace of the weighted homogeneous polynomials of degree d. The ai are the
weights of P. We restrict to the well-formed case, i.e. assuming that each subset of n of the n+1
weights have no common divisors: for example the straight projective space P(1,1,1,1)∼= P3 or
P(1,1,2,5) (whereas P(1,2,2,2) is not well-formed, and we do not allow that).

They can be also seen as quotients
(
Cn+1 \{0}

)
/C∗ and precisely the quotient by the C∗-action

λ (x0,x1, . . . ,xn) = (λ a0x0,λ
a1x1, . . . ,λ

anxn).

The following are well known results on weighted projective spaces whose proofs are in
[Dol82].

They are (usually singular) varieties, on which there are sheaves OP(d) defined analogously to
the case of the straight projective spaces, although they are in general not locally free at the singular
points of X : more precisely they are line bundles if and only if d is a multiple of lcm(ai). Moreover
• |OP(lcm(ai))| is very ample;
• ∀d ∈ N, H0(OP(d))∼= Ad ;
• for each 0 < i < n, ∀d, hi(OP(d)) = 0;
• The dualizing sheaf of P is OP(−∑ai).

A weighted homogeneous polynomial f ∈ Ad has a zero locus V ( f )⊂ P which is a Weil divisor,
we will write V ( f ) ∈ |OP(d)|. Given r weighted homogeneous polymonials f1, . . . , fr their zero
locus V ( f1, . . . , fr) is a quasi-smooth complete intersection if { f1 = · · ·= fr = 0} ⊂ Cn+1 \{0}
is a smooth complete intersection. If a quasi-smooth divisor does not intersect the singular locus of
P, it is smooth.

If X =V ( f1, . . . , fr) ∈ |OP(d)| is a quasi-smooth complete intersection, then
• H0(OX(d))∼= (A/( f1, · · · , fr))d ;
• for each 0 < i < n− r−1, ∀d, hi(OX(d)) = 0;
• OX(∑deg fi−∑a j) is a dualizing sheaf for X .

� Example 2.1 Consider P := P(1,1,1,4), and a smooth X8 ∈ |OP(1,1,1,4)(8)|, so X = V ( f ) for
f = x2

3 + x3 f4(x0,x1,x2)+ f8(x0,x1,x2).
By the formulas above ωX8 = OX8(8−1−1−1−4 = 1), so ω4

X8
is very ample, and therefore

ωX is nef.
Moreover pg(X) = dimA1 = 3, and ∀m ∈ Z h1(OX8(mKX8)) = 0, so q = 0 and P2(X8) =

dimA2 = 6 which give by Riemann Roch K2
X8
=P2−1+q− pg = 2. Note that, since h1(OX8(mKX8))=

0 and K2
X8

> 0, by Riemann-Roch Pm grows quadratically, so X8 is minimal (as KX is nef) of general
type.

Note that K2
X8

= 2pg(X8)−4: this surface realizes the equality in Noether’s inequality so by
Theorem 2.2.2 φ|KS| is a degree 2 morphism on P2. Indeed ϕKS is by construction the map S→ P2

given by the projection (x0,x1,x2,x3) 99K (x0,x1,x2), that has degree 2. �

� Example 2.2 Consider P := P(1,1,2,5), with coordinates (x0,x1,y,z) and a smooth surface
X10 ∈ |OP(10)|. We can then see it as X10 =V ( f ) for

f = z2 +ay5 ++x0g0(x0,x1,y,z)+ x1g1(x0,x1,y,z)
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By the formulas above ωX10 = OX10(10−1−1−2−5 = 1) is ample and then nef (as in the
previous example), pg(X) = dimA1 = 2, and moreover ∀m, h1(OX10(mKX10)) = 0, so q = 0 and
P2(X10) = dimA2 = 4 which give K2

X8
= P2−1+q− pg = 1.

In this case the image of the canonical map is P1, so it has dimension 1. Note that the
canonical map is the restriction of (x0,x1,y,z) 99K (x0,x1), so it is not defined at the unique point in
{x0 = x1 = 0}∩X10. �

Exercise 2.1 Show that the surfaces in the Example 2.1 exist by using first a Bertini argument
to show that the general X8 ∈ |OP(8)| is quasi-smooth, and then by using that the only singular
point of P(1,1,1,4) is (0,0,0,1).

�

Exercise 2.2 Use a similar argument to show that the surfaces in the Example 2.2 exista.
In the notation of the proof of Theorem 2.2.2, these surfaces have dimΣ = 1. At a first

glance, they seems to be a counterexample to that part of the proof, as they violates the inequality
K2 ≥ 2pg−2. But indeed, this is not true as we were assuming pg ≥ 3, whereas these surfaces
have pg = 2.

Find where exactly the proof of dimΣ = 1⇒ K2 ≥ 2pg−2 fails for pg = 2. �

aThe singular points of P(1,1,2,5) are (0,0,1,0) and (0,0,0,1)

Exercise 2.3 Set P = P(1,1,1,1,3) and choose two general hypersurfaces Q ∈ |OP(2)| and
G ∈ |OP(6)|.

Showa that, if Q and G are general enough, then X12 := Q∩G is a smooth minimal surface
of general type. compute its invariants pg. q and K2

S and locate it in the geography. Describe its
canonical map. �

aIn case you don’t know, the singular locus of P is just the point (0,0,0,0,1)

Exercise 2.4 Set P= P(1,1,1,2,2) and choose two general hypersurfaces G1,G2 ∈ |OP(4)|.
1) Showa that, if G1 and G2 are general enough, then X16 := G1∩G2 is a smooth minimal

surface of general type. Compute its invariants pg. q and K2
S and locate it in the geography.

2) Consider the action of Z/4Z on P generated by

(x1,x2,x3,y1,y3) 7→ (ix1,−x2,−ix3, iy1,−iy3)

where i is a square root of −1. Show that one can choose G1, G2 Z/4Z-invariant, so that
X16 is smooth and the action is étale. Then show that the quotient surface X16/Z/4Z is a
minimal surface of general type. Compute its invariants pg. q and K2

S and locate it in the
geography.
If your computations are correct, you should find the same invariants of another example
in these notes. Proveb that the these surfaces are not isomorphic to those.

�

aIn case you don’t know, the singular locus of P is the line (0,0,0,y1,y3)
bHint: Compute fundamental groups



3. The pluricanonical maps

3.1 Is the m-canonical map an embedding?

If S is a minimal surface of general type, as Pm grows very quickly, it is natural to ask if the
m-canonical maps ϕ|mKS| : S 99K PPm−1 are, for large m, embeddings. Note that in the example 2.2,
this is true for m≥ 5, but fails for smaller m: the 4−canonical map has degree 2.

On the other hand, if there is a curve C in 〈KS〉⊥ , there is no hope that one of these maps be an
embedding: by Proposition 2.1.3 C is smooth and rational and then ∀m, OS(mKS)⊗OC ∼= OC and
then ϕ|mKS| contracts C to a point.

A classical result claims

Theorem 3.1.1 Let {E1, . . . ,Er} be irreducible curves in a smooth surface S such that the
intersection matrix (Ei ·E j) is negative definite. Then there exists a normal surface X and a map
π : S→ X contracting each Ei to a point pi so that pi = p j if and only if Ei and E j belong to the
same connected component of ∪Ei, and mapping biregularly the complement of ∪Ei onto the
complement of {pi}.

By Proposition 2.1.3 and the Hodge Index Theorem 1.1.1, the set of curves C with KC = 0 has the
properties required to apply Theorem 3.1.1, and so the next definitions makes sense.

Definition 3.1.1 Let S be a smooth surface of general type. Its canonical model is the surface
obtained from its minimal model by contracting all curves C with KSC = 0. Canonical models
of surfaces of general type are also called canonical surfaces.

By the argument above, ϕ|mKS| factors through the projection onto the canonical model. To
understand these maps a bit more, we need to study the singularities of a canonical surface.

3.2 Normal surfaces

Recall that the singular locus of a normal variety has codimension at least 2, and therefore normal
surfaces have only finitely many singular points.
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Theorem 3.2.1 Let X be a normal surface. Then there is a smooth surface Y and a birational
morphism π : Y → X such that the preimage of every singular point p of X is a connected divisor.

Definition 3.2.1 Y and the pair (Y,π) are a resolution of the singularities of X . We will say
that an irreducible and reduced curve E ⊂ Y is exceptional if π maps E to a point.

The resolution is minimal if y does not contain any smooth rational curve E with E2 =−1
contracted by π to a point.

It is easy to prove, arguing as in proof of Proposition 1.2.5, that minimal resolutions of the
singularities always exists1.

Definition 3.2.2 A singular point p of a normal surface X is a Du Val singularity if there is
a resolution of the singularities π : S→ X so that for each curve C ⊂ π−1(p), C is smooth,
rational, and KXC = 0.

So all singular points of a canonical surface are Du Val, that gives us the motivation to classify
them.

Definition 3.2.3 A snc (=smooth normal crossing) divisor in a surface S is a divisor C = ∑Ci

such that the Ci are pairwise distinct smooth irreducible divisor and ∀i 6= j CiC j ≤ 1 (in other
words: Ci and C j are either disjoint or they intersect transversally in a point).

To each snc divisor we associate a graph by picking a vertex vi for each curve Ci and drawing
an edge among the vi and v j if and only if CiC j = 1

One usually decorates the graph by attributing some numbers to each vertex, namely the genus of
the curve and/or its selfintersection. This is useless in our case as we are only interested in snc
divisors whose irreducible components are rational with selfintersection −2.

� Example 3.1 Here are few examples of graphs which are tree (this means: connected not
containing any cycle), which plays an important role in the following. In all cases the subscript n is
the number of vertices.

An, n≥ 1 • • • •

Dn, n≥ 4 • • •
•

•

�
�

@
@

En, n≥ 6 • • •
•
• •

�

Proposition 3.2.2 Let p be a Du Val singularity of a normal surface X , S→ X a minimal resolution
of the singularities. Then the preimage of p, taken with the reduced structure, is a smooth normal
crossing divisor of type2 An, Dn, E6, E7 or E8.

Proof. We are going to repeatedly use Proposition 2.1.3, and namely that (Ci ·C j) is negative
definite.

We consider then the divisor C = ∑Ci sum of the curves contracted to p with multiplicity 1.
We know that they are all smooth and rational with KSC = 0. Moreover, if there are two of them
with CiC j ≥ 2, then (Ci +C j)

2 ≥ 0 contradicts the negative definiteness.

1With some more effort one can also prove that the minimal resolution is also unique up to isomorphism. Warning:
minimal resolutions of singularities can be defined and exist also in higher dimension, but then uniqueness fails.

2That’s why these singularities are also known as A-D-E singularities.
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So C is an snc divisor, and we can consider its dual graph. At this point we only know that it is
connected.

Let |V | be the number of vertices and |E| the number of edges of the graph; then C2 =
2(|E|−|V |), so Proposition 2.1.3 gives |E|< |V |. This property characterizes, among the connected
graphs, the trees (connected graphs without cycles). So the graph is a tree.

Recall that the degree of a vertex is the number of edges through it, so the number of curves
intersecting it. Consider then the divisor

C′i =Ci + ∑
j|CiC j=1

C j.

Then (C′i)
2 = 2(n−4), so Proposition 2.1.3 gives n≤ 3.

We say that a vertex of the graph v is a fork if degv = 3. We show that the graph as at most one
fork by assuming by contradiction that it has two forks. Then it contains a subgraph isomorphic
to Bn. Consider that the divisor C = ∑ciCi with ci = 0 if the corresponding vertex is not in the
subgraph, ci = 2 if it is a fork of the subgraph, ci = 1 else. Then C2 = 0 contradicting Proposition
2.1.3.

So the graph is a tree with at most one fork. The trees without forks are exactly the graphs An.
We have then only to consider now trees with exactly one fork, say the vertex v0. They are union of
three branches G1, G2 and G3, that are subgraphs Gi isomorphic to a graph Ani with v0 as one leaf,
ni ≥ 2.

Then we pick the divisor with rational coefficients C = ∑ciCi where ci is, if the vertex of Ci

belongs to the branch G j, (n j−di)/n j where di is the distance of the vertex from v0. Note that the
coefficient of the curve corresponding to the fork is 1. Then a direct computation shows that C2 < 0
is equivalent to

1
n1

+
1
n2

+
1
n3

> 1

whose integral solutions (n1,n2,n3) with 2≤ n1 ≤ n2 ≤ n3 are (2,2,n) for n≥ 2 (that’s Dn+2) and
(2,3,n) for 3≤ n≤ 5 (that’s En+3). �

With a bit more effort one can prove [KM98, Theorem 4.22]

Theorem 3.2.3 Let X be a normal surface and p ∈ X a Du Val singularity.
Then the Zariski tangent space of X has dimension 3, and a p is locally analytically deter-

mined by the dual graph of the exceptional divisor of the minimally resolution of its singularity.
More precisely an analytic neighbourhood of p is biholomorphic to a neighbourhood of the

origin of one of the following hypersurfaces of C3:

x2 + y2 + zn+1 = 0 if the graph is An;

x2 + y2z+ zn−1 = 0 if the graph is Dn;

x2 + y3 + z4 = 0 if the graph is E6;

x2 + y3 + yz3 = 0 if the graph is E7;

x2 + y3 + z5 = 0 if the graph is E8.

Definition 3.2.4 Let X be a normal surface. Then we may remove the singular points, and
consider the smooth part X◦ of X : the zero locus of a 2−form on it is a canonical divisor KX◦ of
X◦. Its Zariski closure is a Weil divisor on X which we will denote by KX , a canonical divisor
of X .
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R Warning: KX may be not Cartier.

Proposition 3.2.4 Let X be a canonical surface. Then KX is Cartier. If S→ X is the map from
the minimal model, solving the singularities of X , then π∗KX = KS. Moreover hi(mKX) = 0,
∀m 6= {0,1}.

Proof. KX is Cartier since all singular points have embedded dimension 3 by Theorem 3.2.3 . By
the definition of KX , KS = π∗KX +E for some E = ∑eiEi when Ei are exceptional and so (Ei ·E j)
is (negative) definite. From KSEi = 0, then EEi = 0 which immediately implies that ∀i, ei = 0, so
E = 0.

The vanishing is proved as in Corollary 2.1.2 by Mumford’s vanishing theorem (on normal
surfaces). �

3.3 Bombieri’s theorem on the 5-canonical map
We will need the following, a simplified version of ([Cat+99, Theorem 1.1]).

Theorem 3.3.1 — Curve embedding theorem. Let C be an effective Weil divisor in a normal
surface X , H a Cartier divisor on C. If for every subcurve B⊂C

HB≥ 2pa(B)+1

then H is very amplea.
aH is defined only on C, so the claim is that H0(OC(H)) embeds C. Indeed X does not play any role in the

statement, and the theorems holds more generally for C a scheme of pure dimension 1 with certain properties, and
effective Weil divisors in normal surfaces are just a special case. The intersection number HB is defined as the degree
of the line bundle OC(H)⊗OB: If H is the restriction of a Cartier divisor H ′ on X , then HB = H ′B.

R If C is smooth of genus g, then the assumption becomes degH ≥ 2g+1 and the statement
follows by Riemann-Roch.
Indeed H is very ample if and only if for every cluster3 of length two contained in C the
restriction map

H0(OC(H))→ H0(OC(H)⊗OZ)∼= C2

is surjective ( i.e.: the map induced by H separates each pair of points).
If C is a smooth curve then the statement follows immediately since, by Serre duality (writing
Z as a divisor on C), both H and H−Z are not special (having degree≥ 2g−1), and therefore
by Riemann-Roch and Serre duality h0(OC(H))−h0(OC(H−Z)) = χ(OC(H))−χ(OC(H−
Z)) = degZ = 2.

This is a simplified version of a theorem proved by Bombieri in [Bom73]. We give here the
proof of [Cat+99].

Theorem 3.3.2 — Bombieri’s theorem on the 5−canonical map. Let X be a canonical
surface. Then if m≥ 5 then mKX is very ample.

Proof. The claim is that mKX is very ample, that is that for every cluster Z ⊂ X of degree 2 the
evaluation map H0(OX(mKX))→ H0(OZ(mKX))∼= C2 is surjective. Each curve C in X containing
Z allows us to split that map as a composition

H0(OX(mKX))→ H0(OC(mKX))→ H0(OZ(mKX))

3a cluster is a scheme of pure dimension zero
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and we will find a curve C such that both the above maps are surjective: then their composition will
be surjective too, proving the claim.

First we construct C, by picking a curve in |(m−2)KX | containing Z. Indeed, by Riemann-Roch
theorem, since by Corollary 2.1.2 ∀i > 0, ∀m≥ 2, hi(OS(mKS)) = 0,

h0(OX((m−2)KX))= h0(OS((m−2)KS))= χ(OS((m−2)KS))= χ(OS)+

(
m−2

2

)
K2

S ≥ 1+3= 4

and then h0(IZOX((m−2)KX))≥ 4−2 > 0: such a C exists.
Then we need the surjectivity of the map H0(OX(mKX))→ H0(OC(mKX)): this is obvious by

the long cohomology exact sequence associated to the short exact sequence

0→ OX(mKX −C = 2KX)→ OX(mKX)→ OC(mKX)→ 0

since h1(OX(2KX)) = 0 by Proposition 3.2.4.
Finally we prove the surjectivity of the evaluation map H0(OC(mKX))→H0(OZ(mKX)) by the

curve embedding theorem. Indeed, if OC(mKX) is very ample, then clearly the evaluation map on
Z (or any other cluster of degree 2 in C) is surjective. We only then need to prove that for every
subcurve B of C

mKX B≥ 2pa(B)+1

If B =C then

mKXC = (KX +KX +C)C = KXC+2pa(C)−2 = (m−2)K2
X +2pa(C)−2≥ 3+2pa(C)−2.

We can then assume that B is a proper subcurve of C. Note that, if B̃ is a lift of B to X , then
KX B = KSB̃≥ 1, since π contracts all curves in 〈KS〉⊥ and then it is enough to show

(KX +C)B≥ 2pa(B) (3.1)

To prove (3.1) let us assume, for sake of simplicity, X smooth. Then, writing C = A+B, as
2pa(B) = (KX +B)B+2, the statement to prove is just AB≥ 2. In other words, we have to prove
that C is 2-connected.

We assume then, by contradiction, AB ≤ 1. Note that C2 > 0, and therefore, by the Hodge
Index Theorem 1.1.1

A2B2 ≤ (AB)2 (3.2)

with equality possible if and only if A and B are numerically proportional. As X is a canonical
surfaces (no curves in 〈KS〉⊥), 0 < (m− 2)KSA = CA = A2 +AB, so A2 > −AB, and similarly
B2 >−AB.

If AB≤ 0 this contradicts (3.2). Then AB = 1, by (3.2) min(A2,B2)≤ 1. If A2 ≤ 1

1≤ KX A =
CA

m−2
=

A2 +AB
m−2

≤ 2
m−2

≤ 2
3

a contradiction. If B2 ≤ 1 we get a similar contradiction by considering KX B.
We have concluded the proof under the assumption that the canonical model X be smooth. The

general case can be proved in a similar way by considering the minimal model S and by lifting
C and B to S. We skip the details, only mentioning that one has to carefully choose the lifting of
B. �

R Theorem 3.3.2 is a major tool for the proof of the existence of a quasi-projective coarse moduli
space of canonical surfaces with given invariants K2, pg,q. Indeed using the 5-canonical
embeddings one find all these surfaces in a family parametrized by a suitable Hilbert scheme.
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