CRM: Centro De Giorgi

This is the old version of the CRM site. Please use the new site on the page crmdegiorgi.sns.it

logo sns
Phase Space Analysis of Partial Differential Equations

Effectively hyperbolic Cauchy problem

speaker: Tatsuo Nishitani (Department of Mathematics, Graduate School of Science, Osaka University)

abstract: Multiple characteristics Necessary conditions of Ivrii-Petkov Effective hyperbolicity Generalized flows Generalized characteristic curves Generalized bicharacteristics Microlocal hyperbolic a priori estimate, a heuristic argument Local hyperbolic a priori estimate Uniqueness results Existence theorem Deriving a priori estimate, a heuristic argument Metric with large parameters associated to a surface Symbols and weights A lemma for calculus Specializing symbols Regularization of time function $T$ Symbol $\Lambda=M\log T$ Composition formula Composition $\langle{\xi}\rangle{\gamma}{-a\rho}\#P\#\langle{\xi} \rangle{\gamma}{a\rho}$ with a parabolic $\rho$ Composition $T{-M}\#P\#TM=P{TM}$ Symbol $P{TM}$ Definition of $p(z;\zeta)$, $Q(z)$ Hyperbolicity of $p(z;\zeta)$ Estimating $\Lambda$ $Q(z)$ separates $p(z;\zeta)$ Estimating $Pj$ Estimating $P{TM}$ Estimating $Q(z)$ Estimating $S(z)=({\bar Q}\#P{TM}-\overline{ P{TM}}\#Q)2i Estimating $S(z)w$ from below Hyperbolic polynomials Semi-continuity of hyperbolic cones Applications of semi-continuity


<< Go back