CRM: Centro De Giorgi
logo sns
ERC Workshop on Geometric Measure Theory, Analysis in Metric Spaces and Real Analysis

The sharp Faber-Krahn inequality

speaker: Guido De Philippis (SISSA, Trieste e New York University)

abstract: The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among sets with given volume. I will show a sharp quantitative enhancement of this result, confirming a conjecture by Nadirashvili and Bhattacharya-Weitsman: \[ \lambda_1(\Omega)-\lambda_1(B_1)\ge c_N \mathcal A (\Omega)^2\qquad \text{for all \(\Omega\subset \mathbb R^N\) such that \(
\Omega
=
B_1
\)}, \] where \(\mathcal A(\Omega)\) is the Frankel asymmetry of a set: \[ \mathcal A(\Omega)=\inf_{x_0\in \mathbb R^N}
\Omega \Delta B_1(x_0)
. \] More generally, the result applies to every optimal Poincar\'e-Sobolev constant for the embeddings \(W^{1,2}_0(\Omega)\hookrightarrow L^q(\Omega)\). (Joint work with L. Brasco and B. Velichkov).


timetable:
Mon 7 Oct, 16:50 - 17:40, Aula Dini
<< Go back