CRM: Centro De Giorgi

This is the old version of the CRM site. Please use the new site on the page crmdegiorgi.sns.it

logo sns
ERC Workshop on Geometric Measure Theory, Analysis in Metric Spaces and Real Analysis

The sharp Faber-Krahn inequality

speaker: Guido De Philippis (SISSA, Trieste e New York University)

abstract: The classical Faber-Krahn inequality asserts that balls (uniquely) minimize the first eigenvalue of the Dirichlet-Laplacian among sets with given volume. I will show a sharp quantitative enhancement of this result, confirming a conjecture by Nadirashvili and Bhattacharya-Weitsman: \[ \lambda_1(\Omega)-\lambda_1(B_1)\ge c_N \mathcal A (\Omega)^2\qquad \text{for all \(\Omega\subset \mathbb R^N\) such that \(
\Omega
=
B_1
\)}, \] where \(\mathcal A(\Omega)\) is the Frankel asymmetry of a set: \[ \mathcal A(\Omega)=\inf_{x_0\in \mathbb R^N}
\Omega \Delta B_1(x_0)
. \] More generally, the result applies to every optimal Poincar\'e-Sobolev constant for the embeddings \(W^{1,2}_0(\Omega)\hookrightarrow L^q(\Omega)\). (Joint work with L. Brasco and B. Velichkov).


timetable:
Mon 7 Oct, 16:50 - 17:40, Aula Dini
<< Go back