CRM: Centro De Giorgi

This is the old version of the CRM site. Please use the new site on the page crmdegiorgi.sns.it

logo sns
Stability of Solitary Waves (Workshop)

Instability of solitary waves for nonlinear Schr\"odinger equations of derivative type

speaker: Masahito Ohta (Tokyo University of Science, Japan)

abstract: We consider a nonlinear Schr¥"odinger equation of derivative type: ¥i¥partial_tu+¥partial_x^2u+i where ¥(b¥ge 0¥). It has a two parameter family of solitary wave solutions ¥u_{¥omega}(t,x)=e^{i¥omega_0 t}¥phi_{¥omega}(x-¥omega_1 t),¥ where ¥(¥omega=(¥omega0,¥omega1) ¥in ¥Omega:=¥{(¥omega0,¥omega1)¥in R2: ¥omega12<4 ¥omega0¥}¥), ¥¥phi_{¥omega}(x)=¥tilde{¥phi}_{¥omega}(x) ¥exp ¥left( i¥frac{¥omega_1}{2} x-¥frac{i}{4} ¥int_{-¥infty}^{x} ¥¥tilde{¥phi}_{¥omega}(x)=¥left¥{¥frac{4¥omega_0-¥omega_1^2}{-¥frac{¥omega_1}{2} +¥sqrt{¥omega_0+¥frac{4}{3}b(4¥omega_0-¥omega_1^2)} ¥, ¥cosh (¥sqrt{4¥omega_0-¥omega_1^2}¥,x)}¥right¥}^{1/2}.¥ The orbital stability of solitary waves ¥(u{¥omega}(t)¥) has been studied by Guo and Wu (1995) and Colin and Ohta (2006) for the case ¥(b=0¥). In this talk, we consider the case ¥(b>0¥), and prove the orbital instability of ¥(u{¥omega}(t)¥) for some ¥(¥omega¥).


timetable:
Wed 28 May, 11:15 - 12:00, Aula Dini
<< Go back