CRM: Centro De Giorgi
logo sns
Dynamical systems and systems of equations

Swarm gradient dynamics for global optimization: the density case

speaker: Jerome Bolte (Toulouse School of Economics)

abstract: Using jointly geometric and stochastic reformulations of nonconvex problems and exploiting a Monge-Kantorovich gradient system formulation with vanishing forces, we formally extend the simulated annealing method to a wide class of global optimization methods. Due to an inbuilt combination of a gradient-like strategy and particles interactions, we call them swarm gradient dynamics. As in the original paper of Holley-KusuokaStroock, the key to the existence of a schedule ensuring convergence to a global minimizer is a functional inequality. One of our central theoretical contributions is the proof of such an inequality for one-dimensional compact manifolds. We conjecture the inequality to be true in a much wider setting. We also describe a general method allowing for global optimization and evidencing the crucial role of functional inequalities à la Łojasiewicz.

Tue 21 Jun, 15:20 - 16:20, Aula Dini
<< Go back