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Two-Scale Convergence: a bright idea from Yaounde

Augusto Visintin (Trento)

After Nguetseng and Allaire,

uε ⇀
2

u ⇐⇒
def

{uε} is bounded in L2(RN ), and

lim
ε→0

∫
RN

uε(x) ψ
(
x,

x

ε

)
dx =

∫∫
RN×[0,1[N

u(x, y) ψ(x, y) dxdy,

for any smooth ψ that is [0, 1[N -periodic w.r.t. y.

Canonic example: ψ(x, x/ε) ⇀
2

ψ(x, y) for any function ψ as above. E.g.:

x sin(2πx/ε) ⇀
2

x sin(2πy).



Set Y := [0, 1[N : N -dimensional torus, and identify any function on Y with its periodic

extension to RN . Set

n̂(x) := max{n ∈ Z : n ≤ x}, r̂(x) := x− n̂(x) (∈ [0, 1[) ∀x ∈ R

N (x) := (n̂(x1), ..., n̂(xN )) ∈ ZN , R(x) := x−N (x) ∈ Y ∀x ∈ RN .

Two-scale decomposition (unfolding):

x = ε[N (x/ε) +R(x/ε)] ∀x ∈ RN ,∀ε > 0;

{
εN (x/ε) : coarse-scale variable

R(x/ε) : fine-scale variable.

Two-scale composition (folding):

Sε(x, y) := εN (x/ε) + εy ∀(x, y) ∈ RN×Y,∀ε > 0.



Lemma 1.1 Let f : RN×Y → R be integrable and of Caratheodory. Then

∫
RN

f (x, x/ε) dx =
∫∫

RN×Y
f (Sε(x, y), y) dxdy ∀ε > 0.

For any p ∈ [1,+∞], v �→ v ◦ Sε is then a linear isometry Lp(RN )→ Lp(RN×Y).

Proof. As RN = ∪m∈ZN (εm + εY) and N (x/ε) = m for any x ∈ εm + εY ,

∫
RN

f (x, x/ε) dx =
∑
m∈ZN

∫
εm+εY

f (x, x/ε) dx =
∑
m∈ZN

εN
∫
Y

f (ε[m + y], y) dy

=
∑
m∈ZN

∫
εm+εY

dx

∫
Y

f (ε[N (x/ε) + y], y) dy =
∫

RN
dx

∫
Y

f (Sε(x, y), y) dy. ��



Two-Scale Convergence

By ε we represent the generic element of an arbitrary but prescribed, positive and vanishing

sequence of real numbers; e.g., ε = {1, 1/2, 1/3, ..., 1/n, ...}.
For any sequence of measurable functions, uε : RN → R, and any measurable function,

u : RN×Y → R, we say that uε two-scale converges to u (w.r.t. the prescribed sequence

{εn}) in some specific sense, whenever uε ◦ Sε → u in the corresponding standard (i.e.,

one-scale) sense.

In this way, for any p ∈ [1,+∞] we define strong and weak (weak star for p =∞) two-scale

convergence in Lp(RN×Y); we then write

uε →
2

u, uε ⇀
2

u, uε ⇀
2
∗ u (resp.).

This can be extended to two-scale convergence in C0(RN×Y).



Proposition 2.1 Let p ∈ [1,+∞[ and {uε} be a sequence in Lp(RN ). Then:

uε → u in Lp(RN ) ⇔
{

uε →
2

u in Lp(RN×Y)

u is independent of y,

uε →
2

u in Lp(RN×Y) ⇒ uε ⇀
2

u in Lp(RN×Y),

uε ⇀
2

u in Lp(RN×Y) ⇒ uε ⇀

∫
Y
u(·, y) dy in Lp(RN ).



Proposition 2.2 Let p ∈ [1,+∞[ and {uε} be a sequence in Lp(RN ). Then

uε ⇀
2

u in Lp(RN×Y) ⇔ {uε} is bounded in Lp(RN ) and∫
RN
uε(x) ψ(x, x/ε) dx→

∫∫
RN×Y

u(x, y) ψ(x, y) dxdy ∀ψ ∈ D(RN×Y),

uε ⇀
2

u in Lp(RN×Y) ⇒

lim inf
ε→0

‖uε‖Lp(RN ) ≥ ‖u‖Lp(RN×Y)

(
≥

∥∥∥∫
Y
u(·, y) dy

∥∥∥
Lp(RN )

)
.

For p ∈]1,+∞[

uε →
2

u in Lp(RN×Y) ⇔
{

uε ⇀
2

u in Lp(RN×Y)

‖uε‖Lp(RN ) → ‖u‖Lp(RN×Y) .



Two-Scale Convergence of Derivatives

Theorem 1 Let p ∈ ]1,+∞[ and {uε} be a sequence such that uε ⇀ u in W 1,p(RN ). For

any ε there exists a unique u∗1ε ∈ �p(W 1,p
∗ (Y)) such that

∫
Y

[∇u∗1ε(m, y)− (∇uε)(ε(m + y))]·∇ζ dx = 0 ∀ζ ∈W 1,p′ (Y), ∀m ∈ ZN .

Moreover there exists u1 ∈ Lp
(
RN ;W 1,p

∗ (Y)
)

such that setting

u1ε(ε(m + y)) := u∗1ε(m, y), zε(ε(m + y)) := ∇u∗1ε(m, y) for a.a. y ∈ Y, ∀m ∈ ZN ,

as ε→ 0 along a suitable subsequence,

u1ε ⇀
2

u1 in Lp(RN×Y), zε ⇀
2
∇yu1 in Lp(RN×Y)N .

This entails that, as ε→ 0 along the extracted subsequence,

∇uε ⇀
2
∇u +∇yu1 in Lp(RN×Y)N .



Theorem 1’ Under the above assumptions, conversely, for any u ∈ W 1,p(RN ) and any

u1 ∈ Lp
(
RN ;W 1,p

∗ (Y)
)

there exists a sequence {uε} of W 1,p(RN ) such that

uε → u in Lp(RN ), ∇uε →
2
∇u +∇yu1 in Lp(RN×Y)N .

Comparable results hold if the gradient (∇) is replaced either by the curl (∇×), or by the

divergence (∇·).

Theorem 1 [c] is a reformulation of a fundamental result of Nguetseng [b]; see also [a].

Theorem 1’ may also be found in [c].

[a] G. Allaire: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23

(1992) 1482–1518

[b] G. Nguetseng: A general convergence result for a functional related to the theory of

homogenization. S.I.A.M. J. Math. Anal. 20 (1989) 608–623

[c] A. V.: Two-scale convergence of first-order operators. Z. Anal. Anwendungen 26

(2007), 133-164



Denoting the weak one-scale (two-scale, resp.) limit by limε→0
(1) (limε→0

(2), resp.),

lim
ε→0

(2)∇uε = lim
ε→0

(1)∇uε +∇yu1
(

= ∇ lim
ε→0

(1)uε +∇yu1
)

a.e. in RN×Y.

For p = 2, this decomposition is orthogonal in L2(RN×Y)N .

An example. Let

N = 1, uε(x) := x + ε sin(2πx/ε) ∀x ∈ [0, 1].

Then, for any p ∈]1,+∞[,

u1ε(x) = sin(2πx/ε) ⇀
2

sin(2πy) = u1(y),

εDu1ε(x) = 2π cos(2πx/ε) ⇀
2

2π cos(2πy) = Dyu1(y)
in Lp(]0, 1[×Y),

whence

Duε ⇀
2

Du + Dyu1 = x + 2π cos(2πy) in Lp(]0, 1[×Y).



An Example: Elliptic Homogenization

The ε-Problem. For any ε > 0, let

fε ∈ L2(Ω)N , Aε = {aε,ij} ∈ L2(Ω)N
2

,

∃C > 0 : ∀ε,∀x ∈ RN ,∀ξ ∈ RN ,

N∑
i,j=1

aε,ij(x)ξiξj ≥ C|ξ|2;

e.g., aε,ij = aij(x, x/ε) for some Caratheodory function aij .

Problem 1ε Find uε ∈ H1
0 (Ω)N such that

∫
Ω

(Aε ·∇uε)·∇v dx =
∫
Ω

fε ·∇v dx ∀v ∈ H1
0 (Ω)N .

∀ε, this problem is obviously well-posed.



The Two-Scale Problem. Now we assume that

Aε →
2

A in L2(Ω×Y)N
2

, fε ⇀
2

f in L2(Ω×Y)N .

Problem 1 Find u ∈ H1
0 (Ω)N and u1 ∈ L2

(
Ω;H1(Y)N

)
such that

∫
Y u1(·, y) dy = 0 a.e.

in Ω, and∫∫
Ω×Y

[A·(∇u +∇yu1)]·(∇v +∇yv1) dxdy =
∫∫

Ω×Y
f ·(∇v +∇yv1) dxdy

∀v ∈ H1
0 (Ω)N ,∀v1 ∈ L2

(
Ω;H1(Y)N

)
.

This equation is equivalent to a coarse-scale equation coupled with a fine-scale one:

∇·
∫
Y
A·(∇u +∇yu1) dy = ∇·

∫
Y
f dy in H−1(Ω)N ,

∇y ·[A·(∇u +∇yu1)] = ∇y ·f in H−1(Y)N , a.e. in Ω.



The Classic Approach: Tartar’s Energy Method. For f independ of y:

(i) solve the cell problem for the unknown functions w1, ..., wN ∈ L2
(
Ω;H1(Y)N

)
:

∇y ·[A(x, y)·(∇ywi + ei)] = 0 in H−1(Y)N , for a.a. x;

(ii) define the homogenized matrix

A∗ij(x) =
∫
Y
A(x, y)·(∇ywi + ei)·(∇ywj + ej) dy

=
∫
Y

( N∑
m=1

Am(x, y)·(∇ywi) ·(∇ywj)m + Aij(x, y)

)
dy for a.a. x;

(iii) formulate the (one-scale) homogenized equation

∇·[A∗ ·∇u] = ∇f in H−1(Ω)N .

The functions u1 (cf. Theorem 1 above) and (w1, ..., w3) are then related by

u1 =
∑N
i=1wi (∇u)i a.e. in Ω×Y.
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Two-scale convergence

and

Homogenization of a nonlinear PDE problem
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The Problem

Ampère’s and Faraday’s equations coupled with nonlinear constitutive relations,

for a metal occupying a (possibly multi-connected) domain Ω ⊂ R3:




∇× �H = �J + (1− χ)∂
�E
∂t + �Je in R3

T ,

∇× �E = −∂ �B∂t in R3
T ,

�B ∈ ∂ϕ( �H, x) in ΩT ,
�B = �H in R3

T \ΩT ,
�J = �α( �E, �H, x) in ΩT ,
�J = �0 in R3

T \ΩT ,
�E(·, 0) = �E0 in R3\Ω,
�B(·, 0) = �B0 in R3.

�α(·, ·, x) globally continuous, and maximal monotone w.r.t. the first argument,

ϕ(·, x) convex lower semicontinuous, �E0, �B0, �Je prescribed,

χ:= characteristic function of Ω; AT := A×]0, T [ for any set A.



This problem is quasi-linear parabolic in Ω, linear hyperbolic in R3\Ω.

(It would not be natural to confine it to Ω.)

Weak formulation for a heterogeneous periodic material, for any ε > 0.

Problem 1ε. Find �Bε, �Hε, �Eε, �Jε ∈ L2(R3
T )3 such that




∇× �Hε = �Jε + (1− χ)∂
�Eε
∂t + �Je in D′(R3

T )3,

∇× �Eε = −∂ �Bε∂t in D′(R3
T )3,

�Bε ∈ ∂ϕ( �Hε, x/ε) a.e. in ΩT ,

�Bε = �Hε a.e. in R3
T \ΩT ,

�Jε = �α( �Eε, �Hε, x/ε) a.e. in ΩT ,

�Jε = �0 a.e. in R3
T \ΩT ,

(1− χ) �Eε(·, 0) = (1− χ) �E0, in D′(R3)3,

�Bε(·, 0) = �B0 in D′(R3)3.



Theorem 5. Assume that

�E0 ∈ L2(R3\Ω)3, �B0 ∈ L2(R3)3, ∇· �B0 = 0 in D′(R3),

�Je ∈ L2(R3
T )3, ∇· �Je(·, t) = 0 in D′(R3), for a.a. t ∈]0, T [,

∃c > 0, h ∈L1(Ω) : ϕ(�v, x) ≥ c|�v|2 + h(x),

�v �→ ∂ϕ(�v, ·) is strictly monotone and has affine growth at∞,

�v �→ |�α(�v, ·, ·)| is monotone and has affine growth at∞.

Then for any ε > 0 there exists a solution of Problem 1ε such that

�Bε ∈ L∞
(
0, T ;L2(R3)3

)
∩H1

(
0, T ; (L2

rot(R
3)3)′

)
,

�Hε ∈ L∞
(
0, T ;L2(R3)3

)
∩ L2

(
0, T ;L2

rot(Ω)3
)
,

�Eε ∈ L2(R3
T )3 ∩ L∞

(
0, T ;L2(R3\Ω)3

)
,

�Jε ∈ L2(R3
T )3.

The solution is uniformly bounded w.r.t. ε in these spaces.



Outline of the Proof.

Approximation via implicit time-discretization (with time-step = T/m form ∈ N).

The energy estimate yields the uniform boundedness of the approximating fields �Bεm,
�Hεm, �Eεm, �Jεm in the above function spaces.

These fields then weakly star converge along a subsequence.

The two PDEs are retrieved by taking the limit in the time-discretized equations.

The nonlinear �Bε vs. �Hε relation is proved via compensated compactness.

Compactness by strict convexity then yields �Hεm → �Hε strongly in L2(ΩT )3.

The nonlinear �Jε vs. ( �Eε, �Hε) relation follow via monotonicity and semicontinuity.

Free Boundaries. Discontinuities in the �Bε vs. �Hε constitutive relation are not excluded.

This may correspond to the occurrence of free boundaries.



Lemma . If

ψ : RM → R ∪ {+∞} is strictly convex, lower semicontinuous,

un → u weakly in L1(Ω)M ,∫
Ω

ψ(un) dx→
∫
Ω

ψ(u) dx �= +∞,

then
un → u strongly in L1(Ω)M ,

ψ(un)→ ψ(u) strongly in L1(Ω).

A. V.: Strong convergence results related to strict convexity.

Communications in P.D.E.s 9 (1984) 439–466



Set

v̂ :=
∫
Y
v(·, y) dy ∀v = v(x, y),

V :=
{
�v ∈ L2(Y)3 : �̂v = �0,∇×�v = �0 in D′(Y)3

}
,

W :=
{
�w ∈ L2(Y)3 : �̂w = �0,∇· �w = 0 in D′(Y)

}
.



Problem 2. Find �B, �H, �E, �H1, �E1, �J ∈ L2(R3×Y)3 such that

�B ∈ L2(R3
T ;W ) ∩H1(0, T ;L2(R3;V ′)),

�H, �E ∈ L2(R3
T ;V ), ∇x× �̂H,∇x× �̂E ∈ L2(R3

T )3,

�H1, �E1 ∈ L2(R3
T ;W ), �J ∈ L2(R3

T×Y)3,

�̂H1 = �̂E1 = �0 a.e. in R3
T ,



∇x× �H +∇y× �H1 = �J + (1− χ)∂
�E
∂t + �Je in D′(R3

T×Y)3,

∇x× �E +∇y× �E1 = −∂ �B∂t in D′(R3
T×Y)3,

�B ∈ ∂ϕ( �H, y) a.e. in ΩT×Y,
�B = �H a.e. in (R3

T \ΩT )×Y,
�J = �α( �E, �H, y) a.e. in ΩT×Y,
�J = �0 a.e. in (R3

T \ΩT )×Y,
(1− χ) �E(·, 0) = (1− χ) �E0 in D′(R3×Y)3,

�B(·, 0) = �B0 in D′(R3×Y)3.



(Henceforth ϕ and �α are assumed Y-periodic w.r.t. their final argument.)

Theorem 6. There exist �B, �H, �E, �J such that, as ε→ 0 along a suitable sequence,

�Bε ⇀
2
∗ �B in L∞

(
0, T ;L2(R3×Y)3

)
,

�Hε ⇀
2
∗ �H in L∞

(
0, T ;L2(R3×Y)3

)
,

�Eε ⇀
2
∗ �E in L2(ΩT×Y)3 ∩ L∞

(
0, T ;L2

(
(R3\Ω)×Y

)3)
,

�Jε ⇀
2
�J in L2(ΩT×Y)3.

This entails that ( �B, �H, �E, �J) is a solution of Problem 2.



Let us now assume that α = ∂γ, with γ convex and lower semicontinuous, and set

ϕ0( �H) := inf
η∈V

∫
Y
ϕ( �H + �η(y), y) dy

γ0( �E, �H) := inf
η∈V

∫
Y
γ( �E + �η(y), �H, y) dy

∀ �H, �E ∈ R3.

Theorem 7. If ( �B, �H, �E, �J) is a solution of Problem 2 then ( �̂B, �̂H, �̂E, �̂J) is a solution of

the next problem.



Single-Scale Formulation

Problem 3. Find �̂B, �̂H, �̂E, �̂J ∈ L2(R3
T )3 such that

∇× �̂H,∇× �̂E ∈ L2(R3
T )3,




∇× �̂H = �̂J + (1− χ)∂
�̂E
∂t + �Je in D′(R3

T )3,

∇× �̂E = −∂ �̂B∂t in D′(R3
T )3,

�̂B ∈ ∂ϕ0( �̂H) a.e. in ΩT ,

�̂B = �̂H a.e. in R3
T \ΩT ,

�̂J ∈ ∂γ0( �̂E, �̂H) a.e. in ΩT ,

�̂J = �0 a.e. in R3
T \ΩT ,

(1− χ) �E(·, 0) = (1− χ) �E0 in D′(R3)3,

�B(·, 0) = �B0 in D′(R3)3.



Homogenization of a Model of Phase Transitions

The above approach can also be applied to other models.

E.g., the homogenization of a doubly-nonlinear Stefan-type model of phase transitions for

a nonhomogeneous material, in which the heat flux depends nonlinearly on the temperature

gradient and on the temperature:




∂wε
∂t

+∇·�qε = f in D′(ΩT ),

wε ∈ ∂ϕ(uε, x/ε) a.e. in ΩT ,

�qε = −�α(∇uε, uε, x/ε) a.e. in ΩT ,

wε(·, 0) = w0 a.e. in Ω,

uε = ũ on (∂Ω)T ,

ϕ and �α being as above.

A. V.: Homogenization of doubly-nonlinear equations.

Rend. Lincei Mat. Appl. 17 (2006) 211-222
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Homogenization of Visco-Elastic and Plastic Processes

Augusto Visintin - Trento

Analogical Models
A large class of mathematical models are built by coupling

• a (universal) balance law,

e.g., the dynamical equation, the Maxwell system, the energy balance, and so on,

• a set of constitutive relations (that characterize the specific material),

• appropriate initial- and boundary-conditions.

In continuum mechanics, electricity, magnetism, and so on

constitutive behaviours are often represented via so-called analogical models, namely

networks of elementary components arranged in series and / or in parallel.

If each element fulfils a constitutive law, a global law is then derived for each network.



Rheological Models
ε: deformation tensor, σ: stress tensor.

— For a discrete family of elements {Aj : j = 1, ...,M}
(i) Combination in Series: σ = σ1 = σ2, ε = ε1 + ε2;

(ii) Combination in Parallel: ε = ε1 = ε2, σ = σ1 + σ2.

E.g., for a parallel arrangement

σj = Bj :εj ∀j, ⇒ σ =
M∑
j=1

Bj :ε.

— For a continuous distribution of elements {A(y) : y ∈ Y } (Y := [0, 1[3):

(i) Combination in Series: σ(y) = constant, ε =
∫
Y
ε(y) dy;

(ii) Combination in Parallel: ε(y) = constant, σ =
∫
Y
σ(y) dy.

E.g., for a parallel arrangement

σ(y) = B(y) :ε(y) for a.e. y ⇒ σ =
∫
Y

B(y) dy :ε.



ε  σ1 1 ε  σ22 ε  σ

ε  σ

3 3

ε  σ

ε  σ3 3

ε  σ22

ε  σ1 1

Schemes of Series and Parallel Arrangements

Series:



ε =

∑
j

εj

σ = σj ∀j.
Parallel:



σ =

∑
j

σj

ε = εj ∀j.



Examples of Basic Components

Classically linear elasticity is assumed for the spheric components: σ(s) = aε(s),

whereas several relations are considered for the deviatoric components, e.g.:

(i) Linear Elasticity: σ(d) = A :ε(d) (A = Aijk�).

(ii) Nonlinear Viscosity: ε̇(d) ∈ ∂ϕ(σ(d)), with ϕ l.s.c. and convex.

(iii) Rigid Perfect Plasticity: as above for ϕ = IK , K being the yield criterion.

Examples of Composed Model

(i) Maxwell model: series arrangement of linear elasticity and nonlinear viscosity:

B : σ̇ + ∂ϕ(σ) � ε̇ whence σ = G(ε).

(ii) Generalized Maxwell model: parallel arrangement of Maxwell models:

σ =
∑
j

Gj(ε) or σ =
∫
Y

G(ε, y) dy.



σ

ε

Two Mechanical Models with Hysteresis

(iii) Prandtl-Reuss Model (or Stop): as in the Maxwell model, with ϕ = IK :

σ = G(ε) (G : hysteresis operator).

(iv) Prandtl-Ishlinskiı̆ Model of Stop-Type: parallel arrangement of stops:

σ =
∑
j

Gj(ε) or σ =
∫
Y

G(ε, y) dy.
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What is the significance of analogical models ?

May networks of series / parallel arrangements represent composites?

May the corresponding constitutive relations be then retrieved via homogenization?

Which models do arise by assembling (either elementary or composite) models?

The answer depends upon the coupled PDEs and the space-dimension:

ε :=
∂u

∂x
, ρ

∂2u

∂t2
− ∂σ
∂x

= f in 1 space-dimension,

ε := ∇s�u, ρ
∂2�u

∂t2
−∇ · σ = �f in 3 space-dimensions.



A Model of Elasto-Visco-Plasticity

σ: stress tensor, ε: linearized strain tensor,

B(x): compliance tensor, ϕ(·, x) : R9
s → R ∪ {+∞} convex l.s.c.

∂ε

∂t
−B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x), namely (1)

(∂ε
∂t
−B(x) :

∂σ

∂t

)
: (σ − v) ≥ ϕ(σ, x)− ϕ(v, x) ∀v ∈ R9

s. (1)′

This relation accounts for elasto-visco-plasticity, including

the nonlinear Maxwell model, and

the Prandtl-Reuss model.

(The latter is a weak formulation of the evolution of the elasto-plastic interface...)

(1) is assumed pointwise and is coupled with the dynamical equation

ρ
∂2�u

∂t2
−∇·σ = �f in ΩT := Ω×]0, T [. (2)



Program for Two- and Single-Scale Homogenization

1. Model of a Macroscopically Inhomogeneous Material. Here the fields only depend

on the coarse-scale variable x (besides time). A single-scale initial- and boundary-value

problem P1 is formulated and solved.

2. Model of a Mesoscopically Inhomogeneous Material. The constitutive data B and ϕ

are assumed to depend periodically on a fine-scale variable y := x/η (η being a the ratio

between the two space-scales). The problem P1 is then relabelled as P1η.

3. Two-Scale Homogenization. As η → 0 a subsequence of solutions of P1η weakly

two-scale converges to a solution of a two-scale problem, P2, in which the fields depend on

both the coarse- and fine-scale variables x and y (besides time).

4. Scale-Transformation of the Two-Scale Problem (“Upscaling”). A single-scale

problem P3 is derived from the two-scale problem P2, by averaging the mesoscopic fields

over the reference set Y and by homogenizing the constitutive relation.

5. Inversion of the Scale-Transformation (“Downscaling”). Conversely any solution of

P3 is represented as the Y-average of a solution of problem P2.



We may thus represent processes in our composite by means of four different models:

— (i) a single-scale model that can be represented via an analogical model, and rests on

an (apparently unjustified) mean-field-type hypothesis;

— (ii) an approximate single-scale model, that is characterized by a small but finite

parameter η; this might also be regarded as intermediate between a single-scale and a two-

scale model;

— (iii) a detailed representation via a two-scale problem, in which the fields depend on

both the coarse- and fine-scale variables x and y;

— (iv) a more synthetic but equivalent formulation, via a single-scale homogenized

model in which the fields only depend on the coarse-scale variable x.

The models (iii) and (iv) contain the same amount of information, although this is fully

displayed just in (iii).

In general the single-scale models (i) and (iv) need not be equivalent, for apparently there

is no reason why either the stress or the strain should be mesoscopically uniform.



Two-Scale Convergence

After Nguetseng and Allaire, denoting by Y the N -dim. unit torus,

uε ⇀
2
u in L2(RN×Y) ⇐⇒

def
‖uε‖L2(RN ) ≤ C and

∫
RN
uε(x) ψ

(
x,
x

ε

)
dx→

∫∫
RN×Y

u(x, y) ψ(x, y) dxdy ∀ψ∈D(RN×Y).

Example. For any ψ ∈ D(RN×Y), ψ(x, x/ε) ⇀
2
ψ(x, y) in L2(]0, 1[×Y). E.g.:

x sin(2πx/ε) ⇀
2
x sin(2πy) in L2(]0, 1[×Y).

G. Allaire: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23

(1992) 1482–1518

G. Nguetseng: A general convergence result for a functional related to the theory of

homogenization. S.I.A.M. J. Math. Anal. 20 (1989) 608–623



Theorem . If

uε ⇀ u in H1(Ω), (1)

then there exists w ∈ L2
(
Ω;H1(Y)

)
such that

∫
Y w(·, y)dy = 0 a.e. in Ω, and such that, as

ε→ 0 along a suitable subsequence,

∇uε ⇀
2
∇u +∇yw in L2(Ω×Y)3. (2)

Example.

uε(x) := εx sin(2πx/ε) ⇀ 0 =: u(x) in H1(0, 1), (3)

Dxuε(x) = ε sin(2πx/ε) + 2πx cos(2πx/ε)

⇀
2

2πx cos(2πy) = Dxu(x) +Dyw(x, y) in L2(]0, 1[×Y),
(4)

where w(x, y) = x sin(2πy).
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1. Model of a Macroscopically Inhomogeneous Material

Here the fields only depend on the coarse-scale variable x (besides time).

Problem 1. Find (�u, σ) such that, setting ε := ∇s�u,

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;W 1,q
0 (Ω)3

)
(1)

σ ∈W 1,∞(
0, T ;L2(Ω)9

s

)
, ∇·σ ∈ L∞

(
0, T ;L2(Ω)9

s

)
(2)

∂ε

∂t
−B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x) a.e. in ΩT (3)

ρ
∂2�u

∂t2
−∇·σ = �f in D′(ΩT ). (4)

This problem is well-posed.

2. Model of a Mesoscopically Inhomogeneous Material

Just replace x by x/η, η being a (small) positive parameter.



3. Two-Scale Model

Problem 2. Find �u = �u(x, t), ε = ε(x, y, t), σ = σ(x, y, t) such that

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;W 1,q
0 (Ω)3

)
(1)

σ ∈W 1,∞(
0, T ;L2(Ω×Y)9

s

)
, ∇·

∫
Y
σ dy ∈ L∞

(
0, T ;L2(Ω)9

s

)
(2)

∃�u(1) ∈ Lq
(
ΩT ;W 1,q(Y)3

)
: ε = ∇s�u +∇y�u(1) a.e. in ΩT×Y (3)

∂ε

∂t
−B(y) :

∂σ

∂t
∈ ∂ϕ(σ, y) a.e. in ΩT×Y (4)

ρ
∂2�u

∂t2
−∇·

∫
Y
σ dy = �f in D′(ΩT ) (5)

∇y ·σ = �0 in D′(Y)3, a.e. in ΩT . (6)

This is retrieved by passing to the two-scale limit as η → 0 in Problem 1η.



4. Single-Scale Homogenization of the Constitutive Law

Basic scale decomposition: we define the average and fluctuating components:

v̂ :=
∫
Y
v(y) dy, ṽ := v − v̂ ∀v ∈ L1(Y). (1)

Henceforth we take p = q = 2. We define the spaces

W := {η ∈ L2(Y)9 : η̂ = 0,∇·η = �0 in D′(Y)3} (2)

Z := {ζ ∈ L2(Y)9 : ζ̂ = 0, ζ = ∇s�v a.e. in Y , for some �v ∈ H1(Y)3} (3)

and notice the obvious orthogonality properties

∫
Y
ζ(y) :η(y) dy = 0 ∀ζ ∈ Z,∀η ∈W (4)∫

Y
ζ̂ : η̃(y) dy = 0 ∀ζ, η ∈ L2(Y)9. (5)



The Fenchel Properties

∀u,w, F (u) + F ∗(w) ≥ w·u (Fenchel inequality)

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) = w·u (Fenchel property – I).
(1)

The latter statement then also reads

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) ≤ w·u (Fenchel property – II). (2)

Trivial example : F (v) = |v|2/2, whence ∂F (u) = u

∀u,w, |u|2
2

+
|w|2

2
≥ w·u (Fenchel inequality)

w = u ⇔ |u|2
2

+
|w|2

2
= w·u (Fenchel property – I)

(3)

w = u ⇔ |u|2
2

+
|w|2

2
≤ w·u (Fenchel property – II). (4)



By the Fenchel properties, ∂ε∂t −B(x) : ∂σ∂t ∈ ∂ϕ(σ, x) a.e. in ΩT is equivalent to

ϕ(σ, x) + ϕ∗
(∂ε
∂t
−B(x) :

∂σ

∂t
, x

)
= σ :

(∂ε
∂t
−B(x) :

∂σ

∂t

)
, (1)

namely ∫∫∫
Ωτ×Y

[
ϕ(σ, x) + ϕ∗

(∂ε
∂t
−B(x) :

∂σ

∂t
, x

)]
dxdydt

+
1
2

∫∫
Ω×Y

(σ :B(x) :σ)
∣∣∣t=τ
t=0
dxdy =

∫∫∫
Ωτ×Y

σ :
∂ε

∂t
dxdydt ∀τ ∈ ]0, T ].

(2)

After a further integration in time and using the above orthogonality properties, we get an

equation of the form

A(σ, ε) =
∫∫∫

ΩT×Y
(T − t)σ :

∂ε

∂t
dxdydt =

∫∫
ΩT

(T − t)σ̂ :
∂ε̂

∂t
dxdt. (3)

Setting Λ(σ̂, ε̂) := inf
{
A(σ̂ + σ̃, ε̂ + ε̃) : (σ̃, ε̃) ∈ L2(ΩT ;W ×Z)

}
, we then get (by the

Fenchel properties...)

Λ(σ̂, ε̂) =
∫∫

ΩT

(T − t)σ̂ :
∂ε̂

∂t
dxdt. (4)



4. Homogenized Single-Scale Model

Problem 3. Find (�u, ε̄, σ̄) such that

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;H1
0 (Ω)3

)
(1)

σ̄ ∈W 1,∞(
0, T ;L2(Ω)9

s

)
, ∇·σ̄ ∈ L∞

(
0, T ;L2(Ω)9

s

)
(2)

Λ(σ̄, ε̄) =
∫∫

ΩT

(T − t)σ̄ :
∂ε̄

∂t
dxdt (3)

ρ
∂2�u

∂t2
−∇·σ̄ = �f in D′(ΩT ). (4)

A.V. : Homogenization of the nonlinear Kelvin-Voigt model of visco-elasticity and of the

Prager model of plasticity. Continuum Mech. Thermodyn. 18 (2006) 223-252

A.V. : Homogenization of the nonlinear Maxwell model of visco-elasticity and of the

Prandtl-Reuss model of elasto-plasticity. (in preparation)


