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Two-Scale Convergence. a bright idea from Yaounde

Augusto Visintin (Trento)

After Nguetseng and Allaire,

ue - u — {u.} isbounded in L#(R"), and

lim /R () v (w, 2) do = / /R o 1D P dry,

for any smooth 1) that is [0, 1["Y -periodic w.r.t. y.

Canonic example:  ¢(z, x/¢) > Y(x,y) forany function ¢ asabove. E.Q.:

x SiN(2rz /) P sin(2ry).



Set Y :=[0,1[": N-dimensional torus, and identify any function on ) with its periodic
extensionto R, Set

n(x) =max{n € Z :n <z}, 7(x):=x—n(x)(€][0,1]) Ve e R
N (@) = ((z1), ..., 7azn) € ZN, R@)=z—-—N(@) ey Ve € RY.

Two-scale decomposition (unfolding):

r=e[N(x/e)+R(x/e)]  Vax € RN, Ve > 0;

eN(x/e) . coarse-scalevariable
R(x/e) : fine-scalevariable.

Two-scale composition (folding):

Se(x,y) :=eN(x/e) + ey Y(z,y) € RY x), Ve > 0.



Lemmall Let f:RY x) — R beintegrable and of Caratheodory. Then
fafdo= [[ - fS.a)pdudy Ve >0
RN RVXY

For any p € [1, +o0], v — v o S, isthen alinear isometry LP(RY) — LP(RY x ).

Proof. AsRY =U,,cznv(em +eY) and N(xz/e) = m forany x € em +¢)),

f(x,x/e)dx = Z /

=) Lm+€ydef(e[N(x/s)+y],y)dy=/RN def(Ss(w,y),y)dy-

meZN

f@afyde= 30 N [ flelm+ ol dy

N
R meZN



Two-Scale Convergence

By £ werepresent the generic e ement of an arbitrary but prescribed, positive and vanishing
sequence of real numbers; eg., e ={1,1/2,1/3,...,1/n, ...}.

For any sequence of measurable functions, u. : RY — R, and any measurable function,
v RN xY — R, we say that u. two-scale converges to « (W.r.t. the prescribed sequence
{e,}) in some specific sense, whenever u. o S. — w in the corresponding standard (i.e.,
one-scale) sense.

Inthisway, forany p € [1, +oo] wedefine strong and weak (weak star for p = co) two-scale
convergencein LP(RY x )); we then write

Ue — U, Ue > Uy Ue ;Au (resp.).

This can be extended to two-scale convergencein CO(RY x ).



Proposition 2.1 Let p € [1, +oo[ and {u. } be a sequencein LP(RY). Then:

u: — u in LP(RY x )
u: — u iINnLP(RY) < 2
u 1S independent of y,

ue > u in LPRY X)) = u. - u in LP(RY x ),

ue >+ u in LPRY X)) = u. A/u(-,y)dy in LP(RY).
N%



Proposition 2.2 Let p € [1, +oo[ and {u.} be a sequencein LP(R¥). Then
ue —* u o in LP(RY %)) <«  {u.}isboundedin LP(R") and

/ uo(2) Vi, z /) dz — / / w(e,y) Wz, dedy Vi € DR x V),
R R

N ny
ue 5 u in LP(RY x)) =

. . ) > o > . .
i nf [l | o 2 ol ooy (2 | /ﬂ D )

For p €]1, +o0o|

. N ue 5+ u in LP(RY x )
Ue -7 U in LP(R™ x))) &
luell Loy = 1l Loy -



Two-Scale Convergence of Derivatives

Theorem1 Letp € 11, +oo[ and {u.} be a sequence such that v, — « in WHP(RY). For
any ¢ there exists a unique uj,_ € P(WEP()) such that

/y[VUL«(m, y) — (Vue)(e(m+y)]-V¢dz =0 Y¢e WP (), ¥m e ZV.

Moreover there exists ug € LP (RY; WP ())) such that setting
ure(e(m +y)) = ui.(m,y), z(e(m+y)) =Vui (m,y) foraayecY, vmezZ",
ase — 0 along a suitable subsequence,
uge > ug in LP(RY x ), ze o> Vyuy in LP(RYN x )V,
This entails that, ase — 0 along the extracted subseguence,

Vue — Vu+Vyug in LP(RY x )N,



Theorem 1' Under the above assumptions, conversely, for any v € WHP(R™) and any
up € LP(RN; WiP())) there exists a sequence {u. } of WP(R™) such that

u. — u in LP(RM), Vu, Y Vu+Vyur In LP(RN x )V

Comparable results hold if the gradient (V) is replaced either by the curl (V x), or by the
divergence (V).

Theorem 1 [c] isareformulation of afundamental result of Nguetseng [b]; see aso [a].
Theorem 1’ may also befound in [c].

[a] G. Allaire: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23
(1992) 1482-1518

[b] G. Nguetseng: A general convergence result for a functional related to the theory of
homogenization. S.I.A.M. J. Math. Anal. 20 (1989) 608—623

[c] A. V.. Two-scale convergence of first-order operators. Z. Anal. Anwendungen 26
(2007), 133-164



Denoting the weak one-scale (two-scale, resp.) limit by lim._o @ (lim._o @, resp.),

im @Vu, = lim OvVu, + Vyuy (= VIim O, + V0 ae inRY x .

e—0 e—0 e—0

For p = 2, this decomposition is orthogonal in L?(RY x V).
An example. Let
N =1, u(r) :=x +esnrx/e) Vr €][0,1].

Then, for any p €]1, +oo],

ute(r) = 8n(2ra/e) - Sn(2ry) = ua(y),

Dus(v) = 2 co8(2na/2) = 2ncos2y) = Dyua(y) o)

whence
Du, > Du+ Dyuq = x + 27 cos(2my) in LP(]0, 1[x))).



An Example: Elliptic Homogenization
Thee-Problem. Forany ¢ > 0O, let

fo e LAY, A ={a.i;} € LV,

N
3C > 0:Ve, Vo e RV VE € RN, ) ai5(0)6& > C|¢

1,7=1

e.g., a.;; = a;;(z,z/c) for some Caratheodory function a;;.

Problem 1. Findu. € H}(£2)" such that

/ (A.-Vu.)-Voudr = / fe-Vudx Vo € Hi(2)N.
Q Q

Ve, this problem is obvioudly well-posed.

2.



The Two-Scale Problem. Now we assume that

A > A in L202x V)N fe finLX@x M.

Problem 1 Findu € Hg(2)Y anduy € L#($2; H(Y)Y) suchthat [y, ui(-,y) dy =0 ae.
In (2, and

// [A-(Vu+Vyu1)]- (Vv +Vyu1) dedy = / f-(Vv+Vyv)dzdy
(97°8Y% XY

Vo € HY(2)N, Yoy € L*(92; HHQ)V).
This equation is equivalent to a coarse-scale equation coupled with a fine-scale one:

V-/ A-(Vu+Vyu1)dy=V-/ fdy in H- ()N,
Y Y

V, [A-(Vu+Vyui)] =V, f in H- 1))V, ae.in 1.



The Classic Approach: Tartar’'sEnergy Method. For f independ of y:
(i) solve the cell problem for the unknown functions wy, ..., wy € L*(£2; HH(QY)N):

V- [A(z,y) (Vyw; +e;)] =0 in H Q)Y foraa z;

(i1) define the homogenized matrix
A= [ Aw)(Tywn +e) (T +er)dy
Y
N
:/ (Z Apm (@, ) (Vywi)e- (Vyw;)m + Aij(z, y)) dy  foraa x;
Y \m=1
(i11) formulate the (one-scale) homogenized equation
V- [A*Vu] =Vf in H ().
The functions u1 (cf. Theorem 1 above) and (wq, ..., w3) are then related by

= Z,f\:]lwz (Vu); ae in2x).
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Two-scale convergence
and
Homogenization of a nonlinear PDE problem

Augusto Visintin (Trento)



The Problem

Ampere’'s and Faraday’s eguations coupled with nonlinear constitutive relations,
for ametal occupying a (possibly multi-connected) domain 2 C R3:

( UxH=J+1-x)2E+J. inRS,
VXE:—%? inR3,,
B € p(H, x) in Qr,

. B=H inR3.\ Qr,
J=a&(E, H,x) in O,
J=0 inR3.\ Qr,
E(-,0) = E° inR3\ 2,

. B(,0)=B° in R3.

a(-, -, x) globally continuous, and maximal monotone w.r.t. the first argument,
o(-, ) convex lower semicontinuous,  E°, BY, .J, prescribed,
X .= characteristic function of (2; Ap = Ax]0, T for any set A.



This problem is quasi-linear parabolic in £2, linear hyperbolicin R3\ (2.
(It would not be natural to confineit to f2.)

Weak formulation for a heterogeneous periodic material, for any £ > O.

Problem 1.. Find B., H., E., J. € L?([R3.)? such that

([ VxH.=J.+(1-x)%=+J.  inD'(R%L),
VxE, =95 inD’'(R3.)3,
B. € 8p(H.,x /) a.e in 2,
< B. = H. a.e inR3\ 27,
I. = &(E., H.,x/¢) a.e in r,
J.=0 a.e inR3.\ Qr,
(1— X)E.(-,0) = (1 — x)E°, inD'(R%)?,
. B.(-,0)= B° in D'(R3)3.




Theorem 5. Assume that

E° e LAR3\ )2, B°e L%R®®, V-B°=0inD'(R®),
J. € LAR3)®, V-J.(,t)=0 inD'(R%), for aa.t €]0,TT,
Je>0,h e LND): (@, x) > c|T]* + h(z),

v — 0p(v, ) Isgtrictly monotone and has affine growth at oo,

v — |a(v, -, -)| ismonotone and has affine growth at oo.
Then for any £ > 0 there exists a solution of Problem 1. such that
B. € L*>=(0,T; L*(R%?®) n H*(0, T; (L4(R%3)),
H. € L=(0,T; L3(R®?) N L?(0, T; L2,(£2)%),
E. € IA(R3)® N L>(0,T; LAR3\ 2)%),
J. € L*(R}).

The solution is uniformly bounded w.r.t. £ in these spaces.



Outline of the Proof.

Approximation viaimplicit time-discretization (with time-step = 7'/m for m € N).

The energy estimate yields the uniform boundedness of the approximating fields B.,p,
H.,., E.,.., J... intheabove function spaces.

These fields then weakly star converge along a subseguence.

Thetwo PDEs are retrieved by taking the l[imit in the time-discretized equations.

The nonlinear B. vs. H. relation is proved via compensated compactness.

Compactness by strict convexity then yields H.,, — H. strongly in L2(21)3.

The nonlinear J. vs. (E., H.) relation follow via monotonicity and semicontinuity.

Free Boundaries. Discontinuitiesin the 5. vs. H. contitutive relation are not excluded.
This may correspond to the occurrence of free boundaries.



Lemma. If
Y RM — RU {+o00} isstrictly convex, lower semicontinuous,

Uy, — U weakly in L(2)M,

/Q (o) di — /Q (o) dae 7 +00,

then
Uy, — U strongly in L(2)M,

V(uy) — P(u) strongly in L(2).

A. V.. Srong convergence results related to strict convexity.
Communicationsin PD.E.s 9 (1984) 439-466



Vv = v(x, y),
3
A-_/v(-,y)dy . }
} 3’ 0.Vx7=0
7=0,V
3.5
ve L) v
V::{

0 inD’(y)}.
3.4 = 6,V-w =

L*(Y)°:

'—{zﬁe

W =



Problem 2. Find B, H, E, Hy, E1, J € L2(R3x )2 such that

B e LAR3; W)n HYO, T; LZ(RB V'),
H,E e IAR%;V), V., va xEELZ(R )3,
Hi, E, € L(R3; W), Je LAR3x))°,

Hi=E;=0 a.e.inR3.,

( VuxH+V,xHi=J+1-x)2L+J. inDRLxD),
VuxE+V,xE =—28 inD/(R3. x )3,

B € dp(H, ) aeinQpx),

) B=H ae in(R3\N27)x Y,
J=a(F, H,y) a.e.in 27 x ),
J=0 aein(R3\2r)xY,
(1—X)E(,0 = (1— x)E° inD'(R®x V)3,

\  B(-,0)= B° inD/(R3x))3.



(Henceforth ¢ and o are assumed )-periodic w.r.t. their final argument.)
Theorem 6. Thereexist B, H, E, J such that, ase — 0 along a suitable sequence,
B. §§ in L> (0, T; LAR3x ))%),
H. §ﬁ in L> (0, T; LAR3x ))%),
E.2E  inLX(2rxYPNL%(0,T; L2 ((R* 2)x V),
J = J inL¥rx))°

2
Thisentailsthat (B, H, E, J) is a solution of Problem 2.



L et us now assume that o« = 9, with v convex and lower semicontinuous, and set

oo(H) = inf / S(H + (), ) dy
neV Yy

VH, E € RS

"o(B, 7Y = inf / B + i), H, ) dy

Fa
— — —

Theorem 7. If (B, H, E,.J) isa solution of Problem 2 then (B, H, E, J) is a solution of
the next problem.



Single-Scale For mulation

 E,J e L?(R3)3 such that

mv
eyfE

Problem 3. Find B,

VXH VxE ¢ L3(R3)3,

( UxH=J+1-x)2E+]. inD(R3)
VxE=-98 in D’ (R3.)3,

B € 8yo(H) a.e in 2,

] B=H aeinR3\ 2,
J € 870(5, FI) a.e.in {2r,
J=0 a.e inR3\ 27,
(1—X)E(-0)=(1 - x)E° inD'(R%)?®,

. B(,0)=B° in D’ (R%)3.



Homogenization of a Model of Phase Transitions

The above approach can also be applied to other models.

E.g., the homogenization of a doubly-nonlinear Stefan-type model of phase transitionsfor
a nonhomogeneous material, in which the heat flux depends nonlinearly on the temperature
gradient and on the temperature:

¢ 0w,

5 +V-g.=f inD'(£2r),

we € Op(ue, x/€) ae. in 2,

\ @ = —a(Vue,ue,z/e)  ae.in2r,
we (-, 0) = w° ae. in {2,

( Us = U on (6Q)T,

@ and a being as above.

A. V.: Homogenization of doubly-nonlinear equations.
Rend. Lincei Mat. Appl. 17 (2006) 211-222
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Homogenization of Visco-Elastic and Plastic Processes

Augusto Visintin - Trento

Analogical Models
A large class of mathematical models are built by coupling
e a(universal) balance law,

e.d., the dynamical equation, the Maxwell system, the energy balance, and so on,
e aset of constitutive relations (that characterize the specific material),
e gppropriate initial- and boundary-conditions.

In continuum mechanics, electricity, magnetism, and so on
constitutive behaviours are often represented via so-called analogical models, namely

networks of elementary components arranged in seriesand / or in parallel.

If each element fulfils a constitutive law, aglobal law isthen derived for each network.



Rheological Models

e: deformation tensor, o stresstensor.

— For adiscrete family of elements{A4; : 5 =1,..., M }
(1) Combination in Series: o=01=0p ¢€=¢e1te;
(i) Combinationin Parallel: c=¢1=¢5, o0 =01+005.

E.g., for aparale arrangement

M
O_j:Bj:gj \V/], — O':ZBJ':&‘.
j=1

— For acontinuous distribution of elements {A(y) : y € Y} (Y =0, 1[3):
(i) Combination in Series: o(y) = constant, e = |, e(y) dy;
(ii) Combination in Parallel:  e(y) = constant, o= [, o(y)dy.

E.g., for aparallel arrangement

o(y) =B(y).e(y) foraey = JZ/YB(y)dy:a‘.



Schemes of Seriesand Parallel Arrangements

81 01
18 9% %8 G— £ 0,
a
- & G
EO
(é‘:Z&‘j (O':ZUJ
Series. < j Paralld: /{ j
o =0 V7. L€ =€ V7.




Examples of Basic Components

Classically linear elasticity is assumed for the spheric components: o5 = ae(y),
whereas several relations are considered for the deviatoric components, e.g.:
(i) Linear Elasticity: O(d) = Aig(d) (A= Az'jkg).
(11) Nonlinear Viscosity: ey € dp(o@), Withe l.s.c. and convex.
(il1) Rigid Perfect Plasticity. asabovefor ¢ = I, K being theyield criterion.
Examples of Composed M odel
(i) Maxwell model: series arrangement of linear elasticity and nonlinear viscosity:

B:og+0p(c) > whence o =G(e).

(i1) Generalized Maxwell model: parallel arrangement of Maxwell models:

U:Zgj(e) or UZ/YQ(e,y)dy.



Two Mechanical Modelswith Hysteresis

— ) —
G
.
’
.
”
.
’
’ ’
’ .
y .
4 4
Y A 3
—_— + s >
’ .
’ L
’ .
’ ’
’ .
’ .
’ 4
.
G
.
— —

—

(i11) Prandtl-Reuss Model (or Siop): asinthe Maxwell modedl, with ¢ = Ik
o =G(e) (G : hysteresis operator).

(iv) Prandtl-Ishlinskit Model of Sop-Type: parallel arrangement of stops:
c=) G or 02/ G(e, y) dy.
; Y
J



Some References on Rheological M odels
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B. Halphen, Nguyen Quoc Son: Sur lesmatériaux standard genéralises. J. de Méchanique
14 (1975), 39-63

W. Han, B.D. Reddy: Plasticity. Springer, New York 1999

M.J. Leitman, G.M.C. Fisher: The linear theory of viscoelasticity. In: Handbuch der
Physik (S. Fligge, ed.), vol. VIal3. Springer, Berlin 1973, pp. 1-123

J. Lemaitre, J.-L. Chaboche: Mechanics of Solid Materials. Cambridge Univ. Press,
Cambridge 1990

M. Reiner: Rheology. In: Handbuch der Physik (S. Flligge, ed.), vol. VI. Springer, Berlin
1958, pp. 434-550



What isthe significance of analogical models ?

May networks of series/ parallel arrangements represent composites?
May the corresponding constitutive relations be then retrieved via homogenization?
Which models do arise by assembling (either elementary or composite) model s?

3§4Y 3'4Y

The answer depends upon the coupled PDEs and the space-dimension:

= U @ _ 90 _ f In 1 space-dimension
T PeE P ’
. 0% - . . .
e = V?u, — —V.o=f In 3 space-dimensions.



A Model of Elasto-Visco-Plasticity

0. stress tensor, e linearized strain tensor,
B(x): compliance tensor, o(-,7) : R? — RU {+00} convex |.s.c.
Oe Jo
5 B(x): 5 € 0p(o,x), namey (1)
(%—B(x)'a—a)'(a—v)> (0,2) — o(v,2) Vv eR? (1)
at - at - - (p I (p I i

This relation accounts for elasto-visco-plasticity, including
the nonlinear Maxwell model, and
the Prandtl-Reuss model.
(The latter is aweak formulation of the evolution of the elasto-plastic interface...)

(1) is assumed pointwise and is coupled with the dynamical equation

. _ V.= f In 27 = 2x]0, T7. (2)



Program for Two- and Single-Scale Homogenization

1. Model of a Macroscopically Inhomogeneous Material. Here the fields only depend
on the coarse-scale variable x (besides time). A single-scale initial- and boundary-value
problem P; isformulated and solved.

2. Model of a Mesoscopically Inhomogeneous Material. The constitutive data B and ¢
are assumed to depend periodically on afine-scale variable y := z/n (n being athe ratio
between the two space-scales). The problem P; isthen relabelled as Pi,,.

3. Two-Scale Homogenization. As n — 0 a subsequence of solutions of Pj,, weakly
two-scale converges to a solution of atwo-scale problem, P, in which the fields depend on
both the coarse- and fine-scale variables x and y (besides time).

4. Scale-Transformation of the Two-Scale Problem (“ Upscaling” ). A single-scale
problem P; is derived from the two-scale problem P, by averaging the mesoscopic fields
over the reference set ) and by homogenizing the constitutive relation.

5. Inversion of the Scale-Transformation (“ Downscaling” ). Conversely any solution of
Ps isrepresented as the )-average of a solution of problem P.




We may thus represent processes in our composite by means of four different models:

— (1) asingle-scale model that can be represented via an analogical model, and rests on
an (apparently unjustified) mean-field-type hypothesis;

— (i1) an approximate single-scale model, that is characterized by a small but finite
parameter n; this might also be regarded as intermediate between a single-scale and a two-
scale model;

— (iii) adetailed representation via a two-scale problem, in which the fields depend on
both the coarse- and fine-scale variables x and v;

— (iv) a more synthetic but equivalent formulation, via a single-scale homogenized
model in which the fields only depend on the coarse-scale variable .

The models (iii) and (iv) contain the same amount of information, although this is fully
displayed just in (iii).

In general the single-scale models (i) and (iv) need not be equivalent, for apparently there
IS no reason why either the stress or the strain should be mesoscopically uniform.



Two-Scale Convergence

After Nguetseng and Allaire, denoting by Y the N-dim. unit torus,

Ue = U in L(RY x)) = el Leryy < C and

/RNUa(:E) w(ﬁ, g) dzx —>//R u(x, y) w(g;, y) dmdy WDED(RN ><y).

ny

Example. For any ¢ € D(RY x)), (z,x/¢) > Y(x,y) inL?(]0,1[x)). E.g.

rSin(2rz/¢) P sin(2my) in L2(]0, 1[x))).

G. Allairee Homogenization and two-scale convergence. S.1.A.M. J. Math. Anal. 23
(1992) 1482-1518

G. Nguetseng: A general convergence result for a functional related to the theory of
homogenization. S.I.A.M. J. Math. Anal. 20 (1989) 608-623



Theorem . If
Ue — U N Hl(ﬁ), (1)

then there exists w € L*(£2; H*())) suchthat [, w(:,y)dy = 0 a.e in 2, and such that, as
e — 0 along a suitable subsequence,

Vue — Vu+Vyw in L2(2x )3 (2)

Example.
ue(x) == exsn2rx/e) — 0= u(x) in H1(0, 1), (3)

D u.(x) = esSin(2rx/e) + 2wx cos(2mx /)
> 2wz cos(2ry) = Dyu(z) + Dyw(z,y) 1IN L]0, 1[xY), )

where w(z, y) = x SIN(2ry).



Some Basic References for Homogenization
G. Bensoussan, J.L. Lions, G. Papanicolaou: Asymptotic Analysisfor Periodic Sructures.
North-Holland, Amsterdam 1978

A. Braides, A. Defranceschi: Homogenization of Multiple Integrals. Oxford University
Press, Oxford 1998

D. Cioranescu, P. Donato: An Introduction to Homogenization. Oxford Univ. Press, New
York 1999

V.V. Jkov, S M. Kozlov, O.A. Oleinik: Homogenization of Differential Operators and
Integral Functionals. Springer, Berlin 1994



1. Modd of a Macroscopically Inhomogeneous M aterial

Here the fields only depend on the coarse-scale variable x (besides time).
Problem 1. Find (u, o) such that, setting ¢ .= V*4,

ii € W2°(0, T; LA(£2)%) N Who%(0, T; WE9(2)?)
o e W1’°°(0 T L)), V-0 € L=(0.T; L3(2)?)

gi B(:z:) iy dy(o, x) a.e. in 2p
02 . .
pW—V‘O’—f |nD(QT).

This problem is well-posed.

2. Model of a M esoscopically nhomogeneous M aterial

Just replace x by x/n, n being a (small) positive parameter.

(1)
(2)

(3)
(4)



3. Two-Scale Model
Problem 2. Find u = u(x,t), € = e(x,y,t), o =o(x,y,t) such that
i € W2(0,T; L2(2)%) n Wh*(0,T; Wy (2)%)
o€ Wh(0,T; L*(2%x))7), V- /y ody € L>(0,T; L*(£2)7)
Jiy € LU 2r; WHI(Q)P): e=Vi+ Vg aeinfrx)y

O _ B(y): ?9_: e dp(o,y) a.e in2rx)y

ot
0% ~ .
pﬁ—V/ O'dy:f |nD/(QT)
y
V,oc=0 inD'())3, aein 2r.

Thisisretrieved by passing to the two-scale limit asn — 0 in Problem 1,,.

1)
(2)

3)
(4)
(5)
(6)



4. Single-Scale Homogenization of the Constitutive Law

Basic scale decomposition: we define the average and fluctuating components:
v = / v(y) dy, Vi=v—0 Yo € LY().
Y

Henceforth we take p = ¢ = 2. We define the spaces

={neL?))°:1=0,V-n=0 inD'(V)%}
={¢eL’))°:(=0,( =V aein), for somev € H*())®}

and notice the obvious orthogonality properties

/yc(y):n@)dy:o AT

/y i) dy=0  eon e 2O,

(1)

(2)
(3)

(4)
()



The Fenchel Properties
Yu, w, Fu)+ F*(w) > w-u (Fenchel inequality)

weIF(u) & F(u)+F*(w)=w-u (Fenchel property —1).
The latter statement then also reads

weF(u) & Fu)+F'(w) <w-wu (Fenchel property —11).

1)

(2)

Trivial example: F(v) = |v|?/2, whence O0F(u) = u

ul? | |w]? - -
Yu, w, > + > > w-u (Fenchel inequality)
2 2
w=u & ‘u2| + ‘u;‘ =w-u (Fenchel property —1)
ul? | |wl?
w=u < + <w-u (Fenchel property —11).

(3)

(4)



By the Fenchel properties, £ 5; — B(x :%—j € 0p(o, x) ae. in 27 isequivalent to

olo.)+ o (50— B@): 7 2) =0 (5~ Bay: 07, (1

(2)

+ %/ (0:B(x):

2xXY

dxdy /// 0. — da;dydt VT €1]0,T].
2. XY

After a further integration in time and using the above orthogonality properties, we get an
eguation of the form

A, e) = / / /Q TXy(T— o —dazdydt = / QT(T )6 % dadt. 3)

Setting A(5,€) = inf {A(6 + 5, +¢€) : (5,8) € L*(2r; W x Z)}, we then get (by the
Fenchel properties...)

A(o,¢) = / . (T —t)o: % dxdt. (4)



4. Homogenized Single-Scale M odel

Problem 3. Find (u, ¢, o) such that

i € W2>(0, T; L*(£2)%) n Wh(0, T; H3(£2)°) D

o € Wh(0,T; LA(2)]), V-0 € L>(0,T; L*(£2)?) (2)
_ _ 0e

A7, ¢) = / o (T = t)o: . dudt (3)
2 —

p% —Vo=f inD(2r). (4)

A.V. : Homogenization of the nonlinear Kelvin-Voigt model of visco-elasticity and of the
Prager model of plasticity. Continuum Mech. Thermodyn. 18 (2006) 223-252

A.V. . Homogenization of the nonlinear Maxwell model of visco-elasticity and of the
Prandtl-Reuss model of elasto-plasticity. (in preparation)



