Local Dynamics of Quasi-Parabolic Transformations of **C**ⁿ

Feng Rong

Department of Mathematics University of Michigan, Ann Arbor

International Workshop on "Local Holomorphic Dynamics" Pisa, Italy – January 23, 2007

Feng Rong Local Dynamics of Quasi-Parabolic Transformations of Cⁿ

Object: holomorphic germ f in \mathbf{C}^n , fixing the origin O;

Topics:

- (Holomorphic) Linearization;
- Existence of attracting sets;

Types of germs:

- Tangent to the identity: the spectrum of df_O consists of only 1's;
- Parabolic: the spectrum of *df_O* consists of only *e*^{2πiθ_j} with θ_j ∈ **R****Q**;
- Quasi-parabolic: the spectrum of *df_O* consists of both 1's and *e*^{2πiθ_j} with θ_j ∈ **R****Q**.

Definition (Brjuno condition)

Let $\lambda_j = e^{2\pi i \theta_j}$ with $\theta_j \in \mathbf{R} \setminus \mathbf{Q}$, $1 \le j \le I$. We say that $\{\lambda_j\}$ satisfies the Brjuno condition if

$$\sum_{\nu\geq 0} p_{\nu}^{-1} \log \omega^{-1}(p_{\nu+1}) < \infty,$$

where

$$\omega(m) = \min_{2 \le |k| \le m} \min_{1 \le j \le l} |\lambda^k - \lambda_j|, \qquad m \ge 2,$$

and $\{p_{\nu}\}_{\nu=0}^{\infty}$ is a sequence of integers with $1 = p_0 < p_1 < \cdots$.

イロト イポト イヨト イヨト

= 990

Theorem

f: quasi-parabolic with df_O = Diag(I_r, Λ_s); M: f-invariant, smooth analytic variety through O of dimension r, with f|_M = Id; Assume: 1. df_p = df_O for all $p \in M$; 2. { λ_j } satisfies the Brjuno condition; Conclusion: there exists a local holomorphic change of coordinates ψ such that

$$f\circ\psi=\psi\circ\Lambda,$$

where Λ is the linear part of f.

Theorem (Pöschel, '86)

f: spectrum of df_O is $\{\lambda_j\}_{j=1}^n$; Assume: $\{\lambda_j\}_{j=r+1}^n$ satisfies the "Brjuno condition"; Conclusion: there exists a *f*-invariant, smooth analytic variety *M* through *O* of dimension *r* such that $f|_M$ is linearizable.

"Siegel Disk" → "Siegel Cylinder"!

Definition

A parabolic curve for f, a germ of analytic transformation of (\mathbf{C}^n, O) , is an injective holomorphic map $\varphi : \Delta \to \mathbf{C}^n$ satisfying the following properties:

(i) Δ is a simply connected domain in **C** with $0 \in \partial \Delta$;

(ii) φ is continuous on $\partial \Delta$ and $\varphi(0) = 0$;

(iii) $\varphi(\Delta)$ is invariant under f and $f^k(\varphi(\zeta)) \to O$ as $k \to \infty$ for any $\zeta \in \Delta$.

Furthermore, if $[\varphi(\zeta)] \rightarrow [v] \in \mathbf{P}^{n-1}$ as $\zeta \rightarrow 0$ (where $[\cdot]$ denotes the canonical projection of $\mathbf{C}^n \setminus \{O\}$ onto \mathbf{P}^{n-1}), we say that φ is tangent to [v] at the origin.

ヘロト ヘアト ヘヨト ヘ

Theorem (Hakim, '98)

f : tangent to the identity, with order ν ; [v]: non-degenerate characteristic direction; Conclusion: there are $\nu - 1$ parabolic curves tangent to [v] at the origin.

Definitions:

- order ν : $f = f_1 + f_2 + \cdots$, $\nu = \min\{j > 1 : f_j \neq 0\};$
- characteristic direction [v]: f_ν(v) = λv, non-degenerate if λ ≠ 0.

Abate ('01) has shown the existence of parabolic curves for any germs of C^2 tangent to the identity, with the origin as an isolated fixed point. (ref. presentation by Molino on Thursday)

(日)

Theorem (Bracci & Molino, '04)

f: quasi-parabolic germ of \mathbb{C}^2 ; Assume: *f* is of order $\nu < \infty$ and dynamically separating; Conclusion: there exist $\nu - 1$ parabolic curves for *f* at O tangent to the eigenspace of 1.

Definitions:

- order ν : write $f = (f^1(x, y), f^2(x, y))$. $\nu_j = \min\{\text{order of pure x terms in } f^j(x, y)\},$ if $\nu_1 \le \nu_2 \text{ set } \nu = \nu_1;$
- dynamically separating:
 - $\mu = \min\{\text{order of } x \text{ in terms like } x^k y \text{ in } f^2(x, y)\},\$

f is dynamically separating if $\mu \ge \nu - 1$.

Note: the notion of dynamically separating is needed because those "bad" terms are persistent under blow-ups.

Theorem

f: quasi-parabolic germ of \mathbb{C}^n ; Assume: *f* is of order $\nu < \infty$ and dynamically separating in the characteristic direction [*v*]; Conclusion: there exist $\nu - 1$ parabolic curves for *f* at *O* tangent to the direction [*v*].

Note:

- we also have results on "parabolic manifolds";
- when f is given by a global isomorphism of Cⁿ, we also obtain results on "global attracting sets".

Hakim proved similar results for germs tangent to the identity.

(日)

Write $f(x, y, z) = (x_1, y_1, z_1), (x, y, z) \in (\mathbf{C}, \mathbf{C}^l, \mathbf{C}^m).$ ν_1 : the least of i + |j| > 1 for terms $x^i y^j$ in the expression of x_1, y_1 ;

 ν_2 : the least of i + |j| > 1 for terms $x^i y^j$ in the expression of z_1 ; If $\nu_1 < \infty$ and $\nu_2 \ge \nu_1$, then we say that *f* is ultra-resonant, and that the order of *f* is ν .

Note: the order is well-defined.

f: ultra-resonant with order $\nu < \infty$; A characteristic direction for *f* is a vector $[\nu] = [\nu_1 : \cdots : \nu_n] \in \mathbf{P}^{n-1}$, with $\nu_i = 0$ for $l + 1 < i \le n$, such that $f_{\nu}(\nu) = \lambda \nu$ for some $\lambda \in \mathbf{C}$. If $\lambda \ne 0$, we say that $[\nu]$ is non-degenerate. Focus: Terms $x^i y^j z^k$ with |k| = 1 and $i + |j| + 1 < \nu$ in the expression of z_1 ;

Let $\Lambda = \text{Diag}(\Lambda_1, \dots, \Lambda_r)$, $z = (z_{(1)}, \dots, z_{(r)})$; Change of coordinates: such that no terms $x^i y^j z^k$ with |k| = 1, $i + |j| + 1 < \nu$ and $z^k \neq z_{(p),s}$ in the expression of $z_{1,(p)}$

Definition

We say that f is dynamically separating in the characteristic direction [v] = [1 : 0 : 0] if there are no terms $x^i z_{(p),s}$ with $i < \nu - 1$ in the expression of $z_{1,(p)}$.

Note: the notion of dynamically separating is well-defined.

イロト 不得 とくほ とくほう

f: tangent to the identity, with $\nu = 2$; [ν] = [1 : 0 : · · · , 0]: non-degenerate characteristic direction; Blow-up the origin, in the coordinates (x = x, y = xu), write

$$\begin{cases} x_1 = x - x^2 + O(||u||x^2, x^3), \\ u_1 = (I - xA)u + O(||u||^2x, ||u||x^2) + O(x^2), \end{cases}$$

Note: the class of similarity of *A* is unique, in particular we can assume that *A* is in Jordan canonical form;

Want: a parabolic curve, i.e. an analytic curve u = u(x) such that

$$u_1(x) = u(x_1)$$
, with $\lim_{x \to 0} u(x) = 0$.

Parabolic Curves - Method, 2

We have

$$x_1^{-A} = x^{-A}[(I + xA) + O(\cdots)].$$

Therefore,

$$x_1^{-A}u_1 = x^{-A}[(I + xA) + O(\cdots)][(I - xA)u + O(\cdots)]$$

= $x^{-A}u + x^{-A}O(\cdots).$

Thus,

$$u_1(x) = u(x_1) \iff x^{-A}u(x) - x_1^{-A}u(x_1) = x^{-A}H(x, u(x)).$$

Define

$$Tu(x) = x^{A} \sum_{n=0}^{\infty} x_{n}^{-A} H(x_{n}, u(x_{n})).$$

Want: A fixed point of the operator T.

Questions:

- Is T well-defined?
- Provide the end of the end of

The answer to Question 1 depends on two facts:

by local change of coordinates (which might involve the use of log(x)), one can push the order of the pure x terms in the expression of u₁ to arbitrarily big.

• $x_n = O(1/n)$, for *n* big.

These facts make the summands in the definition of *T* to be of order n^{-a} , with a > 1, thus *T* well-defined.

The idea to answer Question 2 is as follows.

B: Banach space of functions

 $\{u(\cdot) = x^k (\log x)^q h(\cdot); h \text{ holomorphic bounded from } D_r \text{ to } \mathbf{C}^{n-1}\},\$

$$D_r = \{x \in \mathbf{C}; |x - r| < r\}, \|u\| = \|h\|_{\infty}.$$

We know that T is well-defined on B for suitable k, q, r. To obtain the fixed point, we show that T restricted to a certain closed subset of B is continuous and contracting. f: quasi-parabolic in **C**ⁿ;

After a finite number of blow-ups and changes of coordinates:

$$\begin{cases} x_1 = x - x^{\nu} + O(\cdots), \\ u_1 = (I_l - x^{\nu-1}A)u + O(\cdots), \\ v_1 = (\Lambda - x^{\nu-1}B)v + O(\cdots), \end{cases}$$

Note:

- $B = \text{Diag}(B_1, \cdots, B_r);$
- the classes of similarity of A and B are unique, in particular, we can assume that both A and Λ⁻¹B are in Jordan canonical forms.

く 同 と く ヨ と く ヨ と

Parabolic Curves - Quasi-parabolic, Method, 2

Set $N = \text{Diag}(I_l, \Lambda)$, M = Diag(A, B) and $L = N^{-1}M$. Rewrite

$$\begin{cases} x_1 = x - x^{\nu} + O(\cdots), \\ w_1 = (N - x^{\nu-1}M)w + O(\cdots). \end{cases}$$

Want: an analytic curve w = w(x) such that

$$w_1(x) = w(x_1)$$
, with $\lim_{x \to 0} w(x) = 0$.

We have

$$x_1^{-L} = x^{-L}(I + x^{\nu-1}L + O(\cdots)).$$

Therefore,

$$x_1^{-L}N^{-1}w_1 = x^{-L}(I + x^{\nu-1}L + O(\cdots))N^{-1}((N - x^{\nu-1}M)w + O(\cdots))$$

= $x^{-L}w + x^{-L}O(\cdots).$

Parabolic Curves - Quasi-parabolic, Method, 3

Lemma

The equality
$$x_i^{-L}N^{-1} = N^{-1}x_i^{-L}$$
 holds for all $i \ge 0$.

Therefore,

$$N^{-1}x_1^{-L}w_1 = x^{-L}w + x^{-L}O(\cdots).$$

Thus,

$$w_1(x) = w(x_1) \iff x^{-L}w(x) - N^{-1}x_1^{-L}w(x_1) = x^{-L}H(x,w(x)).$$

Define

$$Tw(x) = x^{L} \sum_{n=0}^{\infty} N^{-n} x_n^{-L} H(x_n, w(x_n)).$$

Want: A fixed point of the operator T.

Open questions:

- tangent to the identity:
 - what is the dynamics in a characteristic direction with zero "index"?
 - what can one say about the dynamics of a general map in \mathbf{C}^n , n > 2?
- Quasi-parabolic:
 - what can one say about the "non-dynamically-separating" case?
 - are there index theorems in this case?

An Example

Let us take a look at the following map:

$$\begin{cases} z_1 = z - z^3, \\ w_1 = \lambda w - azw + z^{d+1}, \end{cases}$$

where $|\lambda| = 1$, $a \neq 0$ and $d \geq 3$.

Note:

- if λ = 1, the map is tangent to the identity and [1 : 0] is a degenerate characteristic direction with zero "index";
- if λ is not a root of unity, the map is quasi-parabolic and is "non-dynamically-separating" in the characteristic direction [1:0];
- {*z* = 0} is invariant and there are two "parabolic tubes" by one-dimensional theory.

Let
$$D_1 = \{z : |z^2 - \delta| < \delta, \text{Re}z > 0\}$$
 and
 $D_2 = \{z : |z^2 - \delta| < \delta, \text{Re}z < 0\}, \delta$ small.

By fundamental analysis, we have:

- if Re(λ · ā) > 0, then there is a two-dimensional parabolic domain over D₁ and a parabolic curve over D₂, both tangent to the direction [1 : 0];
- if Re(λ · ā) < 0, then there is a two-dimensional parabolic domain over D₂ and a parabolic curve over D₁, both tangent to the direction [1 : 0].

Note: symmetry break-down!

Recall:

f: tangent to the identity, of order ν ; [ν] = [1 : 0 : · · · , 0]: non-degenerate characteristic direction;

$$\begin{cases} x_1 = x - x^{\nu} + O(\cdots), \\ u_1 = (I - x^{\nu-1}A)u + O(\cdots), \end{cases}$$

The class of similarity of *A* is unique, and *A* is in Jordan canonical form;

Assume: $A = \text{Diag}(A_1, \dots, A_r)$, with $A_j = J(\alpha_j)$. Moreover, $\text{Re}(\alpha_j) > \alpha > 0$, for $1 \le j \le p$.

Theorem (Hakim, '98)

Let *E* be the sum of the generalized eigenspaces associated to the α_j 's, $1 \le j \le p$, of dimension *d*. Then there exist $\nu - 1$ invariant pieces of analytic manifolds of dimension d + 1, with *O* in the boundary and tangent to $\mathbf{C}[\nu] + E$ at *O*, such that every point is attracted to the origin in the direction $[\nu]$.

Note:

- Hakim also assumed that Re(α_j) < α, for p < j ≤ r, which turns out to be unnecessary. (Rong, '06)
- the proof of the theorem is again to define a suitable operator T and to find a fixed point of T.

Parabolic Manifolds - Quasi-parabolic, 1

f: quasi-parabolic, of order ν ,

dynamically separating in the characteristic direction [1:0:0]:

$$\begin{cases} x_1 = x - x^{\nu} + O(x^{\nu} || w ||, x^{\nu+1} \log x), \\ u_1 = (I_l - x^{\nu-1} A)u + O(x^{\nu-1} || w ||^2, x^{\nu} \log x || w ||, x^{\mu} (\log x)^{q_{\mu}}), \\ v_1 = (\Lambda - x^{\nu-1} B)v + O(x^{\nu-1} || w ||^2, x^{\nu} \log x || w ||, x^{\mu} (\log x)^{q_{\mu}}), \end{cases}$$

Assume:

$$\begin{split} &A = \text{Diag}(A_1, \cdots, A_r), \text{ with } A_j = J(\alpha_j), \\ &\Lambda^{-1}B = C = \text{Diag}(C_1, \cdots, C_s), \text{ with } C_k = J(\beta_k), \\ &\text{Re}(\alpha_j) > \alpha > 0, \text{ for } 1 \leq j \leq p, \\ &\text{Re}(\beta_k) > \beta > 0, \text{ for } 1 \leq k \leq p'. \end{split}$$

Set $\gamma = \min\{\alpha, \beta\}$.

Parabolic Manifolds - Quasi-parabolic, 2

Write
$$u = (u^1, u^2)$$
, $v = (v^1, v^2)$. Set $\tilde{u} = (u^1, v^1)$, $\tilde{v} = (u^2, v^2)$.
Write $A = (A^1, A^2)$, $B = (B^1, B^2)$, $\Lambda = (\Lambda^1, \Lambda^2)$ and $I_l = (I^1, I^2)$,
Set $N = (I^1, \Lambda^1)$, $M = (A^1, B^1)$, $E = (I^2, \Lambda^2)$ and $D = (A^2, B^2)$.

$$\begin{cases} x_1 = x - x^{\nu} + P(x, \tilde{u}, \tilde{v}), \\ \tilde{u}_1 = (E - x^{\nu-1}D)\tilde{u} + Q(x, \tilde{u}, \tilde{v}), \\ \tilde{v}_1 = (N - x^{\nu-1}M)\tilde{v} + R(x, \tilde{u}, \tilde{v}). \end{cases}$$

Want: an analytic manifold $\tilde{v} = \tilde{v}(x, \tilde{u})$ such that

$$ilde{v}_1(x, ilde{u}) = ilde{v}(x_1, ilde{u}_1), ext{ with } \lim_{x o 0, ilde{u} o 0} ilde{v}(x, ilde{u}) = 0.$$

프 > 프

Theorem

Let *E* be the sum of the generalized eigenspaces associated to the α_j 's, $1 \le j \le p$, and β_k 's, $1 \le k \le p'$. Then there exist $\nu - 1$ invariant pieces of analytic manifolds of dimension d + d' + 1, with *O* in the boundary and tangent to $\mathbf{C}[v] + E$ at *O*, such that every point is attracted to the origin in the direction [v].

Note:

- we need technical lemmas to "push" certain terms in P, Q and R;
- the proof of the theorem is again to define a suitable operator *T* and to find a fixed point of *T*.

f: tangent to the identity at O, global isomorphism of \mathbf{C}^n ;

Theorem (Hakim, '98)

Let Ω be the set of all points attracted to O through one of the "parabolic manifolds", of dimension d + 1. Then Ω is isomorphic to \mathbf{C}^{d+1} .

Note:

- when d = n 1, we get Fatou-Bieberbach domains;
- the theorem holds in the quasi-parabolic case. (Rong, '06)

Theorem (Nishimura, '83)

f: semi-attractive;

M: *f*-invariant, smooth analytic variety through O of dimension *r*, with $f|_M = Id$;

Assume: the spectrum of df_p is contained in the unit circle for all $p \in M$;

Conclusion: there exists a local holomorphic change of coordinates ψ such that

$$f\circ\psi=\psi\circ\Lambda(\mathbf{X}),$$

where $\Lambda(x) = Diag(I_r, A(x))$.

Linearization - Resonances

The main new difficulty is the presence of resonances. Write $f(z) = \Lambda z + \hat{f}(z)$ and $\psi(w) = w + \hat{\psi}(w)$. Want

$$\hat{\psi} \circ \Lambda - \Lambda \hat{\psi} = \hat{f} \circ \psi.$$

Write

$$\hat{\psi} = \sum_{|\mathbf{k}| \ge 2} \psi_{\mathbf{k}} \mathbf{w}^{\mathbf{k}}, \qquad \psi_{\mathbf{k}} \in \mathbf{C}^{n},$$

and

$$\hat{f} = \sum_{|I| \ge 2} f_I z^I, \qquad f_I \in \mathbf{C}^n,$$

then

$$\sum_{|k|\geq 2} E_k \psi_k w^k = \sum_{|I|\geq 2} f_I \left(\sum_{|m|\geq 1} \psi_m w^m \right)^I, \qquad (1)$$

where $E_k = \tilde{\lambda}^k I_n - \Lambda$.

Linearization - Resonances, cont.

Write
$$E_k = \text{Diag}(E_k^1, E_k^2)$$
, then $\det E_k^1 = 0$ for
 $k = (k_1, \cdots, k_r, 0, \cdots, 0)$ (2)

and det $E_k^2 = 0$ for

$$k = (k_1, \cdots, k_r, 0, \cdots, 0, 1, 0, \cdots, 0).$$
 (3)

Denote by K_1 the set of k's as in (2) and K_2 the set of k's as in (3).

Write $f_l = (f_l^1, f_l^2)$ and $\psi_k = (\psi_k^1, \psi_k^2)$. Set $\psi_k^1 = 0$ for $k \in K_1$ and $\psi_k^2 = 0$ for $k \in K_1 \cup K_2$. The right-hand side of (1) produces terms w^k with $k \in K_1$ only when $l \in K_1$ and terms w^k with $k \in K_2$ only when $l \in K_1 \cup K_2$. But $f_l^1 = 0$ for $l \in K_1$ and $f_l^2 = 0$ for $l \in K_1 \cup K_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …