Local Dynamics of Quasi-Parabolic Transformations of \mathbf{C}^{n}

Feng Rong

Department of Mathematics
University of Michigan, Ann Arbor

International Workshop on "Local Holomorphic Dynamics" Pisa, Italy - January 23, 2007

Topics

Object: holomorphic germ f in \mathbf{C}^{n}, fixing the origin O;
Topics:
(1) (Holomorphic) Linearization;
(2) Existence of attracting sets;

Types of germs:

- Tangent to the identity: the spectrum of $d f_{O}$ consists of only 1's;
- Parabolic: the spectrum of $d f_{O}$ consists of only $e^{2 \pi i \theta_{j}}$ with $\theta_{j} \in \mathbf{R} \backslash \mathbf{Q}$;
- Quasi-parabolic: the spectrum of $d f_{O}$ consists of both 1's and $e^{2 \pi i \theta_{j}}$ with $\theta_{j} \in \mathbf{R} \backslash \mathbf{Q}$.

Linearization - Briuno Condition

Definition (Brjuno condition)

Let $\lambda_{j}=e^{2 \pi i \theta_{j}}$ with $\theta_{j} \in \mathbf{R} \backslash \mathbf{Q}, 1 \leq j \leq I$. We say that $\left\{\lambda_{j}\right\}$ satisfies the Brjuno condition if

$$
\sum_{\nu \geq 0} p_{\nu}^{-1} \log \omega^{-1}\left(p_{\nu+1}\right)<\infty
$$

where

$$
\omega(m)=\min _{2 \leq|k| \leq m} \min _{1 \leq j \leq 1}\left|\lambda^{k}-\lambda_{j}\right|, \quad m \geq 2,
$$

and $\left\{p_{\nu}\right\}_{\nu=0}^{\infty}$ is a sequence of integers with $1=p_{0}<p_{1}<\cdots$.

Linearization - Main Theorem

Theorem

f : quasi-parabolic with $d f_{O}=\operatorname{Diag}\left(I_{r}, \Lambda_{s}\right)$;
M : f-invariant, smooth analytic variety through O of dimension r, with $\left.f\right|_{M}=I d$;
Assume: 1. $d f_{p}=d f_{O}$ for all $p \in M$;
2. $\left\{\lambda_{j}\right\}$ satisfies the Brjuno condition;

Conclusion: there exists a local holomorphic change of coordinates ψ such that

$$
f \circ \psi=\psi \circ \Lambda
$$

where \wedge is the linear part of f.

Linearization - Pöschel

> Theorem (Pöschel, '86)
> f : spectrum of $d f_{O}$ is $\left\{\lambda_{j}\right\}_{j=1}^{n}$;
> Assume: $\left\{\lambda_{j}\right\}_{j=r+1}^{n}$ satisfies the "Brjuno condition";
> Conclusion: there exists a f-invariant, smooth analytic variety M through O of dimension r such that $\left.f\right|_{M}$ is linearizable.

"Siegel Disk" \rightarrow "Siegel Cylinder"!

Parabolic Curves - Definition

Definition

A parabolic curve for f, a germ of analytic transformation of $\left(\mathbf{C}^{n}, O\right)$, is an injective holomorphic map $\varphi: \Delta \rightarrow \mathbf{C}^{n}$ satisfying the following properties:
(i) Δ is a simply connected domain in \mathbf{C} with $0 \in \partial \Delta$;
(ii) φ is continuous on $\partial \Delta$ and $\varphi(0)=O$;
(iii) $\varphi(\Delta)$ is invariant under f and $f^{k}(\varphi(\zeta)) \rightarrow O$ as $k \rightarrow \infty$ for any $\zeta \in \Delta$.
Furthermore, if $[\varphi(\zeta)] \rightarrow[v] \in \mathbf{P}^{n-1}$ as $\zeta \rightarrow 0$ (where [•] denotes the canonical projection of $\mathbf{C}^{n} \backslash\{O\}$ onto \mathbf{P}^{n-1}), we say that φ is tangent to [v] at the origin.

Parabolic Curves - Review

Theorem (Hakim, '98)

f : tangent to the identity, with order ν;
[v]: non-degenerate characteristic direction;
Conclusion: there are $\nu-1$ parabolic curves tangent to [v] at the origin.

Definitions:

- order $\nu: f=f_{1}+f_{2}+\cdots, \nu=\min \left\{j>1: f_{j} \not \equiv 0\right\}$;
- characteristic direction $[v]: f_{\nu}(v)=\lambda v$, non-degenerate if $\lambda \neq 0$.
Abate ('01) has shown the existence of parabolic curves for any germs of \mathbf{C}^{2} tangent to the identity, with the origin as an isolated fixed point. (ref. presentation by Molino on Thursday)

Parabolic Curves - Review, cont.

Theorem (Bracci \& Molino, '04)

f : quasi-parabolic germ of \mathbf{C}^{2};
Assume: f is of order $\nu<\infty$ and dynamically separating;
Conclusion: there exist $\nu-1$ parabolic curves for f at O tangent to the eigenspace of 1 .

Definitions:

- order ν : write $f=\left(f^{1}(x, y), f^{2}(x, y)\right)$. $\nu_{j}=\min \left\{\right.$ order of pure x terms in $\left.f^{j}(x, y)\right\}$,
if $\nu_{1} \leq \nu_{2}$ set $\nu=\nu_{1}$;
- dynamically separating:
$\mu=\min \left\{\right.$ order of x in terms like $x^{k} y$ in $\left.f^{2}(x, y)\right\}$, f is dynamically separating if $\mu \geq \nu-1$.

Note: the notion of dynamically separating is needed because those "bad" terms are persistent under blow-ups.

Parabolic Curves - Main Theorem

Theorem

f : quasi-parabolic germ of \mathbf{C}^{n};
Assume: f is of order $\nu<\infty$ and dynamically separating in the characteristic direction [V];
Conclusion: there exist $\nu-1$ parabolic curves for f at O tangent to the direction [v].

Note:

- we also have results on "parabolic manifolds";
- when f is given by a global isomorphism of \mathbf{C}^{n}, we also obtain results on "global attracting sets".

Hakim proved similar results for germs tangent to the identity.

Write $f(x, y, z)=\left(x_{1}, y_{1}, z_{1}\right),(x, y, z) \in\left(\mathbf{C}, \mathbf{C}^{\prime}, \mathbf{C}^{m}\right)$.
ν_{1} : the least of $i+|j|>1$ for terms $x^{i} y^{j}$ in the expression of
x_{1}, y_{1};
ν_{2} : the least of $i+|j|>1$ for terms $x^{i} y^{j}$ in the expression of z_{1};
If $\nu_{1}<\infty$ and $\nu_{2} \geq \nu_{1}$, then we say that f is ultra-resonant, and that the order of f is ν.

Note: the order is well-defined.
f : ultra-resonant with order $\nu<\infty$;
A characteristic direction for f is a vector
$[v]=\left[v_{1}: \cdots: v_{n}\right] \in \mathbf{P}^{n-1}$, with $v_{i}=0$ for $I+1<i \leq n$,
such that $f_{\nu}(v)=\lambda v$ for some $\lambda \in \mathbf{C}$.
If $\lambda \neq 0$, we say that $[v]$ is non-degenerate.

Parabolic Curves - Quasi-parabolic, Definitions, cont.

Focus: Terms $x^{i} y^{j} z^{k}$ with $|k|=1$ and $i+|j|+1<\nu$ in the expression of z_{1};

Let $\Lambda=\operatorname{Diag}\left(\Lambda_{1}, \cdots, \Lambda_{r}\right), z=\left(z_{(1)}, \cdots, z_{(r)}\right)$;
Change of coordinates: such that no terms $x^{i} y^{j} z^{k}$ with $|k|=1$, $i+|j|+1<\nu$ and $z^{k} \neq z_{(p), s}$ in the expression of $z_{1,(p)}$

Definition

We say that f is dynamically separating in the characteristic direction $[\nu]=[1: 0: 0]$ if there are no terms $x^{i} z_{(p), s}$ with $i<\nu-1$ in the expression of $z_{1,(p)}$.

Note: the notion of dynamically separating is well-defined.
f : tangent to the identity, with $\nu=2$;
$[v]=[1: 0: \cdots, 0]:$ non-degenerate characteristic direction; Blow-up the origin, in the coordinates $(x=x, y=x u)$, write

$$
\left\{\begin{array}{l}
x_{1}=x-x^{2}+O\left(\|u\| x^{2}, x^{3}\right) \\
u_{1}=(I-x A) u+O\left(\|u\|^{2} x,\|u\| x^{2}\right)+O\left(x^{2}\right)
\end{array}\right.
$$

Note: the class of similarity of A is unique, in particular we can assume that A is in Jordan canonical form; Want: a parabolic curve, i.e. an analytic curve $u=u(x)$ such that

$$
u_{1}(x)=u\left(x_{1}\right), \text { with } \lim _{x \rightarrow 0} u(x)=0
$$

We have

$$
x_{1}^{-A}=x^{-A}[(I+x A)+O(\cdots)]
$$

Therefore,

$$
\begin{aligned}
x_{1}^{-A} u_{1} & =x^{-A}[(I+x A)+O(\cdots)][(I-x A) u+O(\cdots)] \\
& =x^{-A} u+x^{-A} O(\cdots)
\end{aligned}
$$

Thus,

$$
u_{1}(x)=u\left(x_{1}\right) \Longleftrightarrow x^{-A} u(x)-x_{1}^{-A} u\left(x_{1}\right)=x^{-A} H(x, u(x))
$$

Define

$$
T u(x)=x^{A} \sum_{n=0}^{\infty} x_{n}^{-A} H\left(x_{n}, u\left(x_{n}\right)\right)
$$

Want: A fixed point of the operator T.

Questions:
(1) Is T well-defined?
(2) How to obtain the fixed point?

The answer to Question 1 depends on two facts:

- by local change of coordinates (which might involve the use of $\log (x)$), one can push the order of the pure x terms in the expression of u_{1} to arbitrarily big.
- $x_{n}=O(1 / n)$, for n big.

These facts make the summands in the definition of T to be of order n^{-a}, with $a>1$, thus T well-defined.

The idea to answer Question 2 is as follows.
B : Banach space of functions
$\left\{u(\cdot)=x^{k}(\log x)^{q} h(\cdot) ; h\right.$ holomorphic bounded from D_{r} to $\left.\mathbf{C}^{n-1}\right\}$,

$$
D_{r}=\{x \in \mathbf{C} ;|x-r|<r\}, \quad\|u\|=\|h\|_{\infty} .
$$

We know that T is well-defined on B for suitable k, q, r.
To obtain the fixed point, we show that T restricted to a certain closed subset of B is continuous and contracting.
f : quasi-parabolic in \mathbf{C}^{n};
After a finite number of blow-ups and changes of coordinates:

$$
\left\{\begin{array}{l}
x_{1}=x-x^{\nu}+O(\cdots) \\
u_{1}=\left(I_{1}-x^{\nu-1} A\right) u+O(\cdots), \\
v_{1}=\left(\Lambda-x^{\nu-1} B\right) v+O(\cdots),
\end{array}\right.
$$

Note:

- $B=\operatorname{Diag}\left(B_{1}, \cdots, B_{r}\right)$;
- the classes of similarity of A and B are unique, in particular, we can assume that both A and $\Lambda^{-1} B$ are in Jordan canonical forms.

Set $N=\operatorname{Diag}(I, \Lambda), M=\operatorname{Diag}(A, B)$ and $L=N^{-1} M$. Rewrite

$$
\left\{\begin{array}{l}
x_{1}=x-x^{\nu}+O(\cdots), \\
w_{1}=\left(N-x^{\nu-1} M\right) w+O(\cdots) .
\end{array}\right.
$$

Want: an analytic curve $w=w(x)$ such that

$$
w_{1}(x)=w\left(x_{1}\right), \text { with } \lim _{x \rightarrow 0} w(x)=0 .
$$

We have

$$
x_{1}^{-L}=x^{-L}\left(I+x^{\nu-1} L+O(\cdots)\right) .
$$

Therefore,

$$
\begin{aligned}
x_{1}^{-L} N^{-1} w_{1} & =x^{-L}\left(I+x^{\nu-1} L+O(\cdots)\right) N^{-1}\left(\left(N-x^{\nu-1} M\right) w+O(\cdots)\right) \\
& =x^{-L} w+x^{-L} O(\cdots) .
\end{aligned}
$$

Parabolic Curves - Quasi-parabolic, Method, 3

Lemma

The equality $x_{i}^{-L} N^{-1}=N^{-1} x_{i}^{-L}$ holds for all $i \geq 0$.
Therefore,

$$
N^{-1} x_{1}^{-L} w_{1}=x^{-L} w+x^{-L} O(\cdots)
$$

Thus,

$$
w_{1}(x)=w\left(x_{1}\right) \Longleftrightarrow x^{-L} w(x)-N^{-1} x_{1}^{-L} w\left(x_{1}\right)=x^{-L} H(x, w(x)) .
$$

Define

$$
T w(x)=x^{L} \sum_{n=0}^{\infty} N^{-n} x_{n}^{-L} H\left(x_{n}, w\left(x_{n}\right)\right)
$$

Want: A fixed point of the operator T.

Open Questions

Open questions:
(1) tangent to the identity:

- what is the dynamics in a characteristic direction with zero "index"?
- what can one say about the dynamics of a general map in $\mathbf{C l}^{n}, n>2$?
(2) quasi-parabolic:
- what can one say about the "non-dynamically-separating" case?
- are there index theorems in this case?

An Example

Let us take a look at the following map:

$$
\left\{\begin{aligned}
z_{1} & =z-z^{3} \\
w_{1} & =\lambda w-a z w+z^{d+1}
\end{aligned}\right.
$$

where $|\lambda|=1, a \neq 0$ and $d \geq 3$.
Note:

- if $\lambda=1$, the map is tangent to the identity and [1:0] is a degenerate characteristic direction with zero "index";
- if λ is not a root of unity, the map is quasi-parabolic and is "non-dynamically-separating" in the characteristic direction [1:0];
- $\{z=0\}$ is invariant and there are two "parabolic tubes" by one-dimensional theory.

An Example, cont.

$$
\text { Let } \begin{aligned}
D_{1} & =\left\{z:\left|z^{2}-\delta\right|<\delta, \operatorname{Re} z>0\right\} \text { and } \\
D_{2} & =\left\{z:\left|z^{2}-\delta\right|<\delta, \operatorname{Re} z<0\right\}, \delta \text { small. }
\end{aligned}
$$

By fundamental analysis, we have:

- if $\operatorname{Re}(\lambda \cdot \bar{a})>0$, then there is a two-dimensional parabolic domain over D_{1} and a parabolic curve over D_{2}, both tangent to the direction [1:0];
- if $\operatorname{Re}(\lambda \cdot \bar{a})<0$, then there is a two-dimensional parabolic domain over D_{2} and a parabolic curve over D_{1}, both tangent to the direction [1:0].

Note: symmetry break-down!

Recall:
f : tangent to the identity, of order ν;
$[v]=[1: 0: \cdots, 0]:$ non-degenerate characteristic direction;

$$
\left\{\begin{array}{l}
x_{1}=x-x^{\nu}+O(\cdots) \\
u_{1}=\left(I-x^{\nu-1} A\right) u+O(\cdots)
\end{array}\right.
$$

The class of similarity of A is unique, and A is in Jordan canonical form;

Assume: $A=\operatorname{Diag}\left(A_{1}, \cdots, A_{r}\right)$, with $A_{j}=J\left(\alpha_{j}\right)$.
Moreover, $\operatorname{Re}\left(\alpha_{j}\right)>\alpha>0$, for $1 \leq j \leq p$.

Parabolic Manifolds - Review, cont.

Theorem (Hakim, '98)

Let E be the sum of the generalized eigenspaces associated to the α_{j} 's, $1 \leq j \leq p$, of dimension d. Then there exist $\nu-1$ invariant pieces of analytic manifolds of dimension $d+1$, with O in the boundary and tangent to $\mathbf{C}[v]+E$ at O, such that every point is attracted to the origin in the direction $[v]$.

Note:

- Hakim also assumed that $\operatorname{Re}\left(\alpha_{j}\right)<\alpha$, for $p<j \leq r$, which turns out to be unnecessary. (Rong, '06)
- the proof of the theorem is again to define a suitable operator T and to find a fixed point of T.
f : quasi-parabolic, of order ν, dynamically separating in the characteristic direction [1:0:0]:

$$
\left\{\begin{array}{l}
x_{1}=x-x^{\nu}+O\left(x^{\nu}\|w\|, x^{\nu+1} \log x\right) \\
u_{1}=\left(I_{l}-x^{\nu-1} A\right) u+O\left(x^{\nu-1}\|w\|^{2}, x^{\nu} \log x\|w\|, x^{\mu}(\log x)^{q_{\mu}}\right) \\
v_{1}=\left(\Lambda-x^{\nu-1} B\right) v+O\left(x^{\nu-1}\|w\|^{2}, x^{\nu} \log x\|w\|, x^{\mu}(\log x)^{q_{\mu}}\right)
\end{array}\right.
$$

Assume:

$$
\begin{aligned}
& A=\operatorname{Diag}\left(A_{1}, \cdots, A_{r}\right), \text { with } A_{j}=J\left(\alpha_{j}\right) \\
& \Lambda^{-1} B=C=\operatorname{Diag}\left(C_{1}, \cdots, C_{s}\right) \text {, with } C_{k}=J\left(\beta_{k}\right) \\
& \operatorname{Re}\left(\alpha_{j}\right)>\alpha>0, \text { for } 1 \leq j \leq p, \\
& \operatorname{Re}\left(\beta_{k}\right)>\beta>0, \text { for } 1 \leq k \leq p^{\prime}
\end{aligned}
$$

Set $\gamma=\min \{\alpha, \beta\}$.

Parabolic Manifolds - Quasi-parabolic, 2

Write $u=\left(u^{1}, u^{2}\right), v=\left(v^{1}, v^{2}\right)$. Set $\tilde{u}=\left(u^{1}, v^{1}\right), \tilde{v}=\left(u^{2}, v^{2}\right)$.
Write $A=\left(A^{1}, A^{2}\right), B=\left(B^{1}, B^{2}\right), \Lambda=\left(\Lambda^{1}, \Lambda^{2}\right)$ and $I_{l}=\left(I^{1}, I^{2}\right)$,
Set $N=\left(I^{1}, \Lambda^{1}\right), M=\left(A^{1}, B^{1}\right), E=\left(I^{2}, \Lambda^{2}\right)$ and $D=\left(A^{2}, B^{2}\right)$.

$$
\left\{\begin{array}{l}
x_{1}=x-x^{\nu}+P(x, \tilde{u}, \tilde{v}), \\
\tilde{u}_{1}=\left(E-x^{\nu-1} D\right) \tilde{u}+Q(x, \tilde{u}, \tilde{v}), \\
\tilde{v}_{1}=\left(N-x^{\nu-1} M\right) \tilde{v}+R(x, \tilde{u}, \tilde{v}) .
\end{array}\right.
$$

Want: an analytic manifold $\tilde{v}=\tilde{v}(x, \tilde{u})$ such that

$$
\tilde{v}_{1}(x, \tilde{u})=\tilde{v}\left(x_{1}, \tilde{u}_{1}\right), \text { with } \lim _{x \rightarrow 0, \tilde{u} \rightarrow 0} \tilde{v}(x, \tilde{u})=0 \text {. }
$$

Parabolic Manifolds - Quasi-parabolic, 3

Theorem

Let E be the sum of the generalized eigenspaces associated to the α_{j} 's, $1 \leq j \leq p$, and β_{k} 's, $1 \leq k \leq p^{\prime}$. Then there exist $\nu-1$ invariant pieces of analytic manifolds of dimension $d+d^{\prime}+1$, with O in the boundary and tangent to $\mathrm{C}[v]+E$ at O, such that every point is attracted to the origin in the direction [v].

Note:

- we need technical lemmas to "push" certain terms in P, Q and R;
- the proof of the theorem is again to define a suitable operator T and to find a fixed point of T.

Parabolic Manifolds - Global

f : tangent to the identity at O, global isomorphism of \mathbf{C}^{n};
Theorem (Hakim, '98)
Let Ω be the set of all points attracted to O through one of the "parabolic manifolds", of dimension $d+1$. Then Ω is isomorphic to \mathbf{C}^{d+1}.

Note:

- when $d=n-1$, we get Fatou-Bieberbach domains;
- the theorem holds in the quasi-parabolic case. (Rong, '06)

Linearization - Nishimura

Theorem (Nishimura, '83)

f : semi-attractive;
M : f-invariant, smooth analytic variety through O of dimension r, with $\left.f\right|_{M}=I d$;
Assume: the spectrum of $d f_{p}$ is contained in the unit circle for all $p \in M$;
Conclusion: there exists a local holomorphic change of coordinates ψ such that

$$
f \circ \psi=\psi \circ \Lambda(x),
$$

where $\Lambda(x)=\operatorname{Diag}\left(I_{r}, A(x)\right)$.

Linearization - Resonances

The main new difficulty is the presence of resonances. Write $f(z)=\Lambda z+\hat{f}(z)$ and $\psi(w)=w+\hat{\psi}(w)$. Want

$$
\hat{\psi} \circ \Lambda-\Lambda \hat{\psi}=\hat{f} \circ \psi .
$$

Write

$$
\hat{\psi}=\sum_{|k| \geq 2} \psi_{k} w^{k}, \quad \psi_{k} \in \mathbf{C}^{n}
$$

and

$$
\hat{f}=\sum_{|| | \geq 2} f_{l} z^{\prime}, \quad f_{l} \in \mathbf{C}^{n}
$$

then

$$
\begin{equation*}
\sum_{|k| \geq 2} E_{k} \psi_{k} w^{k}=\sum_{|| | \geq 2} f_{l}\left(\sum_{|m| \geq 1} \psi_{m} w^{m}\right)^{\prime} \tag{1}
\end{equation*}
$$

where $E_{k}=\tilde{\lambda}^{k} I_{n}-\Lambda$.

Linearization - Resonances, cont.

Write $E_{k}=\operatorname{Diag}\left(E_{k}^{1}, E_{k}^{2}\right)$, then $\operatorname{det} E_{k}^{1}=0$ for

$$
\begin{equation*}
k=\left(k_{1}, \cdots, k_{r}, 0, \cdots, 0\right) \tag{2}
\end{equation*}
$$

and $\operatorname{det} E_{k}^{2}=0$ for

$$
\begin{equation*}
k=\left(k_{1}, \cdots, k_{r}, 0, \cdots, 0,1,0, \cdots, 0\right) \tag{3}
\end{equation*}
$$

Denote by K_{1} the set of k 's as in (2) and K_{2} the set of k 's as in (3).

Write $f_{l}=\left(f_{l}^{1}, f_{l}^{2}\right)$ and $\psi_{k}=\left(\psi_{k}^{1}, \psi_{k}^{2}\right)$.
Set $\psi_{k}^{1}=0$ for $k \in K_{1}$ and $\psi_{k}^{2}=0$ for $k \in K_{1} \cup K_{2}$.
The right-hand side of (1) produces terms w^{k} with $k \in K_{1}$ only when $I \in K_{1}$ and terms w^{k} with $k \in K_{2}$ only when $I \in K_{1} \cup K_{2}$. But $f_{l}^{1}=0$ for $I \in K_{1}$ and $f_{l}^{2}=0$ for $I \in K_{1} \cup K_{2}$.

