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n f0(z): holomorphic near 0, f0(0) = 0

n multiplier λ = f ′
0
(0)

n 0: parabolic⇔ λ: root of unity

n We consider the simplest case:

— 1-parabolic: λ = 1

— non-degenerate: f ′′
0

(0) , 0

Namely, f0 has the form

f0(z) = z + a2z2 + O(z3), a2 , 0
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f0(z) = z + a2z2 + O(z3) (near 0)

w = − c
z

F0(w) = w + 1 + o(1) (near∞)

ΦattrΦrep

T (w) = w + 1T (w) = w + 1

mod ZE f0

E f0 = Φattr ◦ Φ
−1
rep
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n Fatou coordinates: Φattr, Φrep

Φ∗( f0(z)) = Φ∗(z) + 1 (∗ = attr, rep).

n Ambiguity: Φ∗ + const∗.

n Horn map: E f0 = Φattr ◦ Φ
−1
rep, defined on | Im z| ≫ 0.

n Fourier series expansion of E f0:

E f0(z) =















z + c+ +
∑

n>0 a+n e2πinz Im z ≫ 0,

z + c− +
∑

n<0 a−n e2πinz Im z ≪ 0.

n Ambiguity: E f0(z − constrep) + constattr.

n E f0 modulo const∗: Ecalle-Voronin invariant

(complete invariant for local analytic conjugacy).

n We normalize so that c+ = 0, i.e., E f0(z) = z + o(1).
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f0(z) = z + a2z2 + O(z3)

E f0

f (z) = e2πiαz + O(z2)

E f

χ f

�

R̃ f = χ f ◦ E f
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n “The gate opens” for a perturbed map f = e2πiα f0(z) and new

orbits through the gate induces an isomorphism χ f (z) between

cylinders C/Z.

n R̃ f = χ f ◦ E f represents the first return map on the fundamental

domain of the Fatou coordinate.

n We normalize the Fatou coordinates so that the following hold:

— “Parabolic” at the upper end for E f :

E f (z) = z + o(1) as Im z→ +∞.
— Continuity on f :

E f → E f0 as f → f0.
— χ f (z) = z − 1

α
: rigid rotation by − 1

α
.

— Hence we have

R̃ f (z) = z − 1
α
+ o(1) as Im z→ +∞.
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After such a perturbation, orbits through the gate create new

complicated dynamics. It is related to many interesting and subtle

phenomena.

Example:

n Discontinuous change of the (filled) Julia sets

n Linearization problem of irrationally indifferent fixed points

(Siegel, Bruno, Yoccoz. . . )

n Area of Julia sets (Buff-Chéritat)

n Quadratic Julia set having infinite satellite renormalizations

R̃ f corresponds to a long-time behavior of f . New dynamics can be

understood via R̃ f .

 study E f0 first and use continuous dependence of E f on maps.
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E f0

Exp♯ Exp♯

R0 f0

n Exp♯(z) = e2πiz : C/Z
�

−→ C∗

n R0 f0 = Exp♯ ◦E f0 ◦ (Exp♯)−1: parabolic renormalization of f0

n R0 f0 can be extended to 0 and∞ holomorphically. They are

fixed points and

(R0 f0)′(0) = 1

Namely, 0 is a 1-parabolic fixed point for R0 f0.



Near-parabolic renormalization ( f = e2πiα f0, f0: 1-parabolic)

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Parab. renorm.

Near-parab. renorm.

F0 : R0-inv. space

Main theorems

Proof of Thm 1

9 / 21

R f = Exp♯ ◦R̃ f ◦ (Exp♯)−1

= Exp♯ ◦χ f ◦ E f ◦ (Exp♯)−1

= e2πiβ Exp♯ ◦E f ◦ (Exp♯)−1

= e2πiβz + O(z2),
where β = − 1

α
mod Z

⇔ α = 1
m−β

(m ∈ Z).

Let Rα f0 = e−2πiβR f .

Then Rα f0 is 1-parabolic.

E f

χ f

�

R̃ f = χ f ◦ E f

Exp♯

R f
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F0 =







































f : U f → C

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ∈ U f : connected open set ⊂ C,
f : holomorphic, f (0) = 0, f ′(0) = 1,
f : U f \ {0} → C

∗ : branched covering,
with a unique critical value,

local degree at every critical point is 2







































n R0F0 ⊂ F0.

n z + z2,R0(z + z2), · · · ∈ F0.

This class is used to show that dimH(J( f )) = 2 for generic f ∈ ∂M

and dimH(∂M) = 2 (Shishikura).

To study parabolic bifurcation via F0, study iteration of R0 for

parabolic maps and then consider perturbations Rα.

Problem. The perturbation size for Rn
0

depends on n. So we can

treat only finitely many times of iterations of Rα.

So we want to define a new class of maps where we can iterate Rα
directly.
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Theorem 1. Let P(z) = z(1 + z)2. There exist bounded simply

connected open sets 0 ∈ V ⋐ V ′ ⊂ C such that the class

F1 =

{

f = P ◦ ϕ−1 : ϕ(V)→ C

∣

∣

∣

∣

∣

∣

ϕ : V → C : univalent,

ϕ(0) = 0, ϕ′(0) = 1

}

satisfies the following.

1. Every f ∈ F1 is non-degenerate;

2. F0 \ {quadratic polynomial} can be naturally embedded into F1.

In particular, Rn
0
(z + z2) ∈ F1 for n ≥ 1;

3. R0 is defined on F1 and R0(F1) ⊂ F1;

4. let f ∈ F1. If we write R0 f = P ◦ ψ−1, then ψ can be extended to

a univalent function on V ′;

5. f 7→ R0 f is “holomorphic”.

Theorem 2. The above statements hold for Rα for α small.
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P(0) = 0, P′(0) = 1

Critical points: − 1
3
, −1

Critical values: P(− 1
3
) = − 4

27
, P(−1) = 0

P
−→slit

V ′

− 4
27

4
27

e2πη
4

27
e−2πη

η = 2 (η = 0.3 in this figure)

V is a slightly smaller domain than V ′.
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We give an outline of the proof of Theorem 1. (Theorem 2 follows

from Theorem 1 and the continuity of E f on f . )

To prove that a class of maps is invariant, we need a way to

recognize that R0 f belongs to this class.

We characterize our class by a partial (incomplete) covering

property.
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We say two maps f and g have the same covering property if there

exists a univalent map ϕ : Dom( f )→ Dom(g) such that g = f ◦ ϕ−1.

Dom( f )
ϕ

−−−−−→
�

Dom(g)

f











y

g











y

C C

F1 consists of maps with the same covering property as P|V such

that 0 is 1-parabolic.
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We take a coordinate change sending 0 to∞ because

n maps are close to translation;

n Fatou coordinates are close to the identity.

Hence instead of P(z), we consider

Q(z) = z

(

1 + 1
z

)6

(

1 − 1
z

)4
.

Q = ψ−1
0
◦ P ◦ ψ1, where ψ0(z) = − 4

z
, ψ1(z) = − 4z

(1+z)2 .

F
Q

1
=

{

Q ◦ ϕ−1

∣

∣

∣

∣

∣

∣

ϕ : Ĉ \ E → Ĉ \ {0} univalent,

ϕ(∞) = ∞, limz→∞
ϕ(z)

z
= 1

}

E =

{

z = x + iy
∣

∣

∣

∣

(

x+0.18
1.24

)2
+
(

y

1.04

)2
≤ 1

}

V = ψ1(Ĉ \ E)
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How to prove R0 f ∈ F ′
1

(replace V by V ′ in the definition)

R0 f = Exp♯ ◦E f ◦ (Exp♯)−1

n Domain of E f = repelling Fatou coordinate.

n Image of E f = attracting Fatou coordinate.

We make a color-tiling in attracting Fatou coordinate (=range) and

pull it back by f to the domain of repelling Fatou coordinate. See it

is the same as the tiling for P.

Exp♯
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P

Exp♯

Exp♯

The log lift of P

Remark.

η = 0.3
for P.

η = 2

for log lift.
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E f log lift of P

repelling

side

(Re z≪ 0)

f = Q ◦ ϕ−1

∈ F
Q

1

attracting

side

(Re z≫ 0)
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E f log lift of Q

repelling

side

(Re z ≪ 0)

f = Q ◦ ϕ−1

∈ F
Q

1

attracting

side

(Re z ≫ 0)
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0

f and the log lift of Q
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E f log lift of Q

repelling

side

(Re z ≪ 0)

f = Q ◦ ϕ−1

∈ F
Q

1

attracting

side

(Re z ≫ 0)
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Left

Construct a Riemann

surface X where an

inverse branch of f can

be lifted on X.

Show the repelling Fatou

coord. is defined on X.

Show D0,D
′
0
,D−1,D

′′
−1

are “contained” in X.

Middle

Take inverse images

of D1

(D0,D
′
0
,D−1,D

′′
−1

).

Estimate the position of

them.

D1D0

D−1

D′
0

D′′
−1

Right

Estimate the distortion

of the attracting Fatou

coordinate and the

position of D1.

To do this, determine the

region where the

attracting Fatou coord. is

univalent and apply the

Golusin ineq.

Need to check many

inequalities (≈30) with

help of computers.

(Maple,

MATLAB+INTLAB)
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