Parabolic and near-parabolic renormalizations in complex dynamics

Hiroyuki Inou (Kyoto University)
Mitsuhiro Shishikura (Kyoto University)

Local holomorphic dynamics
Pisa, January 25, 2007

Parabolic fixed points

Parab. fix. pts
Settings
Fatou coords \& horn maps

Near-parab. fix. pts Renormalization

Main theorems
Proof of Thm 1

- $f_{0}(z)$: holomorphic near $0, f_{0}(0)=0$
- multiplier $\lambda=f_{0}^{\prime}(0)$
- 0 : parabolic $\Leftrightarrow \lambda$: root of unity
- We consider the simplest case:
- 1-parabolic: $\lambda=1$
- non-degenerate: $f_{0}^{\prime \prime}(0) \neq 0$

Namely, f_{0} has the form

$$
f_{0}(z)=z+a_{2} z^{2}+O\left(z^{3}\right), \quad a_{2} \neq 0
$$

Fatou coordinates $\Phi_{\text {attr }}, \Phi_{\text {rep }}$ and horn map $E_{f_{0}}$

Parab. fix. pts
Settings
Fatou coords \& horn maps

Near-parab. fix. pts Renormalization

Main theorems
$\underline{\text { Proof of Thm } 1}$
$f_{0}(z)=z+a_{2} z^{2}+O\left(z^{3}\right)($ near 0$)$

$$
E_{f_{0}}=\Phi_{\text {attr }} \circ \Phi_{\text {rep }}^{-1}
$$

$F_{0}(w)=w+1+o(1)($ near $\infty)$

Fatou coordinates $\Phi_{\text {attr }}, \Phi_{\text {rep }}$ and horn map $E_{f_{0}}$

Parab. fix. pts
Settings
Fatou coords \& horn maps

Near-parab. fix. pts

Main theorems

- Fatou coordinates: $\Phi_{\text {attr }}, \Phi_{\text {rep }}$

$$
\Phi_{*}\left(f_{0}(z)\right)=\Phi_{*}(z)+1(*=\operatorname{attr}, \text { rep }) .
$$

- Ambiguity: $\Phi_{*}+$ const $_{*}$.
- Horn map: $E_{f_{0}}=\Phi_{\text {attr }} \circ \Phi_{\text {rep }}^{-1}$, defined on $|\operatorname{Im} z| \gg 0$.
- Fourier series expansion of $E_{f_{0}}$:

$$
E_{f_{0}}(z)= \begin{cases}z+c_{+}+\sum_{n>0} a_{n}^{+} e^{2 \pi i n z} & \operatorname{Im} z \gg 0 \\ z+c_{-}+\sum_{n<0} a_{n}^{-} e^{2 \pi i n z} & \operatorname{Im} z \ll 0\end{cases}
$$

\square Ambiguity: $E_{f_{0}}\left(z-\right.$ const $\left._{\text {rep }}\right)+$ const $_{\text {attr }}$.

- $E_{f_{0}}$ modulo const $_{*}$: Ecalle-Voronin invariant (complete invariant for local analytic conjugacy).
$\square \quad$ We normalize so that $c_{+}=0$, i.e., $E_{f_{0}}(z)=z+o(1)$.

Near-parabolic fixed points $f^{\prime}(0)=e^{2 \pi i \alpha}\left(\alpha\right.$: small, $\left.|\arg (\pm \alpha)|<\frac{\pi}{4}\right)$

Parab. fix. pts
Near-parab. fix. pts Near-parab. fix. pts Perturbation

Parab. Implosion
Renormalization
Main theorems
Proof of Thm 1

$$
f(z)=e^{2 \pi i \alpha} z+O\left(z^{2}\right)
$$

$$
\tilde{\mathcal{R}} f=\chi_{f} \circ E_{f}
$$

Perturbation of parabolic fixed points

"The gate opens" for a perturbed map $f=e^{2 \pi i \alpha} f_{0}(z)$ and new orbits through the gate induces an isomorphism $\chi_{f}(z)$ between cylinders \mathbb{C} / \mathbb{Z}.

- $\tilde{\mathcal{R}} f=\chi_{f} \circ E_{f}$ represents the first return map on the fundamental domain of the Fatou coordinate.
- We normalize the Fatou coordinates so that the following hold:
- "Parabolic" at the upper end for E_{f} :

$$
E_{f}(z)=z+o(1) \quad \text { as } \operatorname{Im} z \rightarrow+\infty
$$

- Continuity on f :

$$
E_{f} \rightarrow E_{f_{0}} \quad \text { as } f \rightarrow f_{0}
$$

- $\quad \chi_{f}(z)=z-\frac{1}{\alpha}$: rigid rotation by $-\frac{1}{\alpha}$.
- Hence we have

$$
\tilde{\mathcal{R}} f(z)=z-\frac{1}{\alpha}+o(1) \quad \text { as } \operatorname{Im} z \rightarrow+\infty
$$

Parabolic Implosion

After such a perturbation, orbits through the gate create new complicated dynamics. It is related to many interesting and subtle phenomena.

Example:

- Discontinuous change of the (filled) Julia sets
- Linearization problem of irrationally indifferent fixed points (Siegel, Bruno, Yoccoz. . .)
- Area of Julia sets (Buff-Chéritat)
- Quadratic Julia set having infinite satellite renormalizations
$\tilde{\mathcal{R}} f$ corresponds to a long-time behavior of f. New dynamics can be understood via $\tilde{\mathcal{R}} f$.
$\leadsto \rightarrow$ study $E_{f_{0}}$ first and use continuous dependence of E_{f} on maps.

Parabolic renormalization

- $\operatorname{Exp}^{\sharp}(z)=e^{2 \pi i z}: \mathbb{C} / \mathbb{Z} \xrightarrow{\cong} \mathbb{C}^{*}$
- $\mathcal{R}_{0} f_{0}=\operatorname{Exp}^{\sharp} \circ E_{f_{0}} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1}$: parabolic renormalization of f_{0}
- $\mathcal{R}_{0} f_{0}$ can be extended to 0 and ∞ holomorphically. They are fixed points and

$$
\left(\mathcal{R}_{0} f_{0}\right)^{\prime}(0)=1
$$

Namely, 0 is a 1-parabolic fixed point for $\mathcal{R}_{0} f_{0}$.

Near-parabolic renormalization ($f=e^{2 \pi i \alpha} f_{0}, f_{0}: 1$-parabolic)

Parab. fix. pts
Near-parab. fix. pts
Renormalization
Parab. renorm.
Near-parab. renorm. $\mathcal{F}_{0}: \mathcal{R}_{0}$-inv. space

Main theorems
Proof of Thm 1

$$
\begin{aligned}
\mathcal{R} f & =\operatorname{Exp}^{\sharp} \circ \tilde{\mathcal{R}} f \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \\
& =\operatorname{Exp}^{\sharp} \circ \chi_{f} \circ E_{f} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \\
& =e^{2 \pi i \beta} \operatorname{Exp}^{\sharp} \circ E_{f} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \\
& =e^{2 \pi i \beta} z+O\left(z^{2}\right),
\end{aligned}
$$

where $\beta=-\frac{1}{\alpha} \bmod \mathbb{Z}$
$\Leftrightarrow \alpha=\frac{1}{m-\beta}(m \in \mathbb{Z})$.
Let $\mathcal{R}_{\alpha} f_{0}=e^{-2 \pi i \beta} \mathcal{R}_{f}$.
Then $\mathcal{R}_{\alpha} f_{0}$ is 1-parabolic.
$\tilde{\mathcal{R}} f=\chi_{f} \circ E_{f}$

 O

\qquad

[

\mathcal{F}_{0} : Invariant space of \mathcal{R}_{0}

$$
\mathscr{F}_{0}=\left\{\begin{array}{l|l}
f: U_{f} \rightarrow \mathbb{C} & \begin{array}{c}
0 \in U_{f}: \text { connected open set } \subset \mathbb{C}, \\
f: \text { holomorphic, } f(0)=0, f^{\prime}(0)=1, \\
f: U_{f} \backslash\{0\} \rightarrow \mathbb{C}^{*}: \text { branched covering, } \\
\text { with a unique critical value, } \\
\text { local degree at every critical point is 2 }
\end{array}
\end{array}\right\}
$$

- $\mathcal{R}_{0} \mathcal{F}_{0} \subset \mathcal{F}_{0}$.

■ $z+z^{2}, \mathcal{R}_{0}\left(z+z^{2}\right), \cdots \in \mathcal{F}_{0}$.
This class is used to show that $\operatorname{dim}_{H}(J(f))=2$ for generic $f \in \partial M$ and $\operatorname{dim}_{\mathrm{H}}(\partial M)=2$ (Shishikura).

To study parabolic bifurcation via \mathcal{F}_{0}, study iteration of \mathcal{R}_{0} for parabolic maps and then consider perturbations \mathcal{R}_{α}.

Problem. The perturbation size for \mathcal{R}_{0}^{n} depends on n. So we can treat only finitely many times of iterations of \mathcal{R}_{α}.

So we want to define a new class of maps where we can iterate \mathcal{R}_{α} directly.

Main theorems

Theorem 1. Let $P(z)=z(1+z)^{2}$. There exist bounded simply connected open sets $0 \in V \Subset V^{\prime} \subset \mathbb{C}$ such that the class

$$
\mathcal{F}_{1}=\left\{\begin{array}{l|l}
f=P \circ \varphi^{-1}: \varphi(V) \rightarrow \mathbb{C} & \begin{array}{c}
\varphi: V \rightarrow \mathbb{C}: \text { univalent, } \\
\varphi(0)=0, \varphi^{\prime}(0)=1
\end{array}
\end{array}\right\}
$$

satisfies the following.

1. Every $f \in \mathcal{F}_{1}$ is non-degenerate;
2. $\mathcal{F}_{0} \backslash\left\{\right.$ quadratic polynomial\} can be naturally embedded into \mathscr{F}_{1}. In particular, $\mathcal{R}_{0}^{n}\left(z+z^{2}\right) \in \mathcal{F}_{1}$ for $n \geq 1$;
3. \mathcal{R}_{0} is defined on \mathcal{F}_{1} and $\mathcal{R}_{0}\left(\mathcal{F}_{1}\right) \subset \mathcal{F}_{1}$;
4. let $f \in \mathcal{F}_{1}$. If we write $\mathcal{R}_{0} f=P \circ \psi^{-1}$, then ψ can be extended to a univalent function on V^{\prime};
5. $f \mapsto \mathcal{R}_{0} f$ is "holomorphic".

Theorem 2. The above statements hold for \mathcal{R}_{α} for α small.

$P(z)=z(1+z)^{2}$ and the domains V, V^{\prime}

Parab. fix. pts
Near-parab. fix. pts
Renormalization
Main theorems
Thm 1, 2
$P(z)$ and V, V^{\prime}
Proof of Thm 1
$P(0)=0, P^{\prime}(0)=1$
Critical points: $-\frac{1}{3},-1$
Critical values: $P\left(-\frac{1}{3}\right)=-\frac{4}{27}, P(-1)=0$

V^{\prime}
$\eta=2 \quad(\eta=0.3$ in this figure $)$
V is a slightly smaller domain than V^{\prime}.

Proof of Theorem 1

Parab. fix. pts
Near-parab. fix. pts

Renormalization

Main theorems
Proof of Thm 1
Covering property
Coordinate change The covering property of $\mathcal{R}_{0} f$
Covering property $\mathcal{R}_{0} f \& \log \operatorname{lift} P$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
What we need

We give an outline of the proof of Theorem 1. (Theorem 2 follows from Theorem 1 and the continuity of E_{f} on f.)

To prove that a class of maps is invariant, we need a way to recognize that $\mathcal{R}_{0} f$ belongs to this class.

We characterize our class by a partial (incomplete) covering property.

Covering property

Parab. fix. pts
Near-parab. fix. pts
Renormalization
Main theorems
Proof of Thm 1
Covering property
Coordinate change
The covering property of $\mathcal{R}_{0} f$
Covering property $\mathcal{R}_{0} f \& \log \operatorname{lift} P$ $\mathcal{R}_{0} f \& \log \operatorname{lift} Q$ $\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
What we need

We say two maps f and g have the same covering property if there exists a univalent map $\varphi: \operatorname{Dom}(f) \rightarrow \operatorname{Dom}(g)$ such that $g=f \circ \varphi^{-1}$.

$$
\begin{array}{cc}
\operatorname{Dom}(f) & \stackrel{\varphi}{\cong} \operatorname{Dom}(g) \\
f \downarrow & \\
\mathbb{C} \downarrow \\
\mathbb{C} & =\mathbb{C}
\end{array}
$$

\mathcal{F}_{1} consists of maps with the same covering property as $\left.P\right|_{V}$ such that 0 is 1 -parabolic.

Coordinate change

Near-parab. fix. pts
Renormalization
Main theorems
Proof of Thm 1
Covering property
Coordinate change The covering property of $\mathcal{R}_{0} f$
Covering property
$\mathcal{R}_{0} f \& \log \operatorname{lift} P$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
What we need

We take a coordinate change sending 0 to ∞ because

- maps are close to translation;
- Fatou coordinates are close to the identity.

Hence instead of $P(z)$, we consider

$$
Q(z)=z \frac{\left(1+\frac{1}{z}\right)^{6}}{\left(1-\frac{1}{z}\right)^{4}}
$$

$$
Q=\psi_{0}^{-1} \circ P \circ \psi_{1}, \text { where } \psi_{0}(z)=-\frac{4}{z}, \psi_{1}(z)=-\frac{4 z}{(1+z)^{2}} .
$$

$$
E=\left\{z=x+i y \left\lvert\,\left(\frac{x+0.18}{1.24}\right)^{2}+\left(\frac{y}{1.04}\right)^{2} \leq 1\right.\right\}
$$

$$
V=\psi_{1}(\hat{\mathbb{C}} \backslash E)
$$

The covering property of $\mathcal{R}_{0} f$

Parab. fix. pts
Near-parab. fix. pts
Renormalization
Main theorems
Proof of Thm 1
Covering property
Coordinate change
The covering property of $\mathcal{R}_{0} f$
Covering property $\mathcal{R}_{0} f \& \log \operatorname{lift} P$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
$\mathcal{R}_{0} f \& \log \operatorname{lift} Q$
What we need

How to prove $\mathcal{R}_{0} f \in \mathcal{F}_{1}^{\prime}$ (replace V by V^{\prime} in the definition)

$$
\mathcal{R}_{0} f=\operatorname{Exp}^{\sharp} \circ E_{f} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1}
$$

- Domain of $E_{f}=$ repelling Fatou coordinate.
- Image of $E_{f}=$ attracting Fatou coordinate.

We make a color-tiling in attracting Fatou coordinate (=range) and pull it back by f to the domain of repelling Fatou coordinate. See it is the same as the tiling for P.

The covering property of P and \log lift

Remark.
$\eta=0.3$
for P.
$\eta=2$
for \log lift.

$\mathcal{R}_{0} f$ and the \log lift of P

$f=Q \circ \varphi^{-1}$
$\in \mathcal{F}_{1}^{Q}$

repelling
\quad side
$(\operatorname{Re} z \ll 0)$

${ }^{E_{f}}$

\log lift of P

$\mathcal{R}_{0} f$ and the \log lift of Q

$\log \operatorname{lift}$ of Q

$\mathcal{R}_{0}^{2} f$ and the \log lift of Q

$$
\begin{gathered}
f=Q \circ \varphi^{-1} \\
\in \mathcal{F}_{1}^{Q} \\
\\
\text { repelling } \\
\text { side } \\
(\operatorname{Re} z \ll 0)
\end{gathered}
$$

$\|_{E_{f}}$

\log lift of Q

What we need to do

Left

Construct a Riemann surface X where an inverse branch of f can be lifted on X.
Show the repelling Fatou coord. is defined on X.

Show $D_{0}, D_{0}^{\prime}, D_{-1}, D_{-1}^{\prime \prime}$ are "contained" in X.

Right

Estimate the distortion of the attracting Fatou coordinate and the position of D_{1}.

To do this, determine the region where the attracting Fatou coord. is univalent and apply the Golusin ineq.

Need to check many inequalities (≈ 30) with help of computers.
(Maple,
MATLAB+INTLAEB)21

