Parabolic and near-parabolic renormalizations in complex dynamics

Hiroyuki Inou (Kyoto University) Mitsuhiro Shishikura (Kyoto University)

> Local holomorphic dynamics Pisa, January 25, 2007

Parabolic fixed points

Settings Fatou coords & horn

Parab. fix. pts

maps

Near-parab. fix. pts

Renormalization

Main theorems

Proof of Thm 1

 $f_0(z)$: holomorphic near 0, $f_0(0) = 0$ multiplier $\lambda = f'_0(0)$ 0: parabolic $\Leftrightarrow \lambda$: root of unity We consider the simplest case:

— 1-parabolic: $\lambda = 1$

— non-degenerate: $f_0''(0) \neq 0$

Namely, f_0 has the form

$$f_0(z) = z + a_2 z^2 + O(z^3), \quad a_2 \neq 0$$

Fatou coordinates Φ_{attr} , Φ_{rep} and horn map E_{f_0}

Parab. fix. pts $F_0(w) = w + 1 + o(1) \text{ (near } \infty)$ $f_0(z) = z + a_2 z^2 + O(z^3)$ (near 0) Settings Fatou coords & horn maps Near-parab. fix. pts Renormalization \mathcal{W} Main theorems Proof of Thm 1 Φ_{rep} Φ_{attr} E_{f_0} $\mod \mathbb{Z}$ T(w) = w + 1 T(w) = w + 1 $E_{f_0} = \Phi_{\text{attr}} \circ \Phi_{\text{rep}}^{-1}$

3/21

Fatou coordinates Φ_{attr} , Φ_{rep} and horn map E_{f_0}

Parab. fix. pts Settings Fatou coords & horn maps Near-parab. fix. pts

Renormalization

Main theorems

Proof of Thm 1

 Fatou coordinates: Φ_{attr}, Φ_{rep} Φ_{*}(f₀(z)) = Φ_{*}(z) + 1 (* = attr, rep).
Ambiguity: Φ_{*} + const_{*}.
Horn map: E_{f0} = Φ_{attr} ∘ Φ⁻¹_{rep}, defined on | Im z| ≫ 0.
Fourier series expansion of E_{f0}:

$$E_{f_0}(z) = \begin{cases} z + c_+ + \sum_{n>0} a_n^+ e^{2\pi i n z} & \text{Im } z \gg 0, \\ z + c_- + \sum_{n<0} a_n^- e^{2\pi i n z} & \text{Im } z \ll 0. \end{cases}$$

- Ambiguity: $E_{f_0}(z \text{const}_{\text{rep}}) + \text{const}_{\text{attr}}$.
- $\blacksquare E_{f_0} \text{ modulo const}_*: \text{ Ecalle-Voronin invariant} \\ \text{(complete invariant for local analytic conjugacy).}$
- We normalize so that $c_+ = 0$, i.e., $E_{f_0}(z) = z + o(1)$.

Near-parabolic fixed points $f'(0) = e^{2\pi i \alpha}$ (α : small, $|\arg(\pm \alpha)| < \frac{\pi}{4}$)

Parab. fix. pts

- Near-parab. fix. pts
- Near-parab. fix. pts
- Perturbation
- Parab. Implosion
- Renormalization
- Main theorems
- Proof of Thm 1

$$f(z) = e^{2\pi i\alpha} z + O(z^2)$$

Perturbation of parabolic fixed points

Parab. fix. pts

Near-parab. fix. pts

Near-parab. fix. pts

Perturbation

Parab. Implosion

Renormalization

Main theorems

Proof of Thm 1

"The gate opens" for a perturbed map $f = e^{2\pi i \alpha} f_0(z)$ and new orbits through the gate induces an isomorphism $\chi_f(z)$ between cylinders \mathbb{C}/\mathbb{Z} .

 $\tilde{\mathcal{R}}_{f} = \chi_{f} \circ E_{f}$ represents the first return map on the fundamental domain of the Fatou coordinate.

■ We normalize the Fatou coordinates so that the following hold:

— "Parabolic" at the upper end for E_f :

 $E_f(z) = z + o(1)$ as $\operatorname{Im} z \to +\infty$.

— Continuity on f:

 $E_f \to E_{f_0}$ as $f \to f_0$.

-
$$\chi_f(z) = z - \frac{1}{\alpha}$$
: rigid rotation by $-\frac{1}{\alpha}$

— Hence we have

 $\tilde{\mathcal{R}}f(z) = z - \frac{1}{\alpha} + o(1)$ as $\operatorname{Im} z \to +\infty$.

Parabolic Implosion

Parab. fix. pts

Near-parab. fix. pts Near-parab. fix. pts Perturbation

Parab. Implosion

Renormalization

Main theorems

Proof of Thm 1

After such a perturbation, orbits through the gate create new complicated dynamics. It is related to many interesting and subtle phenomena.

Example:

- Discontinuous change of the (filled) Julia sets
- Linearization problem of irrationally indifferent fixed points (Siegel, Bruno, Yoccoz...)
- Area of Julia sets (Buff-Chéritat)
- Quadratic Julia set having infinite satellite renormalizations

 $\tilde{\mathcal{R}}f$ corresponds to a long-time behavior of f. New dynamics can be understood via $\tilde{\mathcal{R}}f$.

 \rightsquigarrow study E_{f_0} first and use continuous dependence of E_f on maps.

Parabolic renormalization

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Parab. renorm. Near-parab. renorm.

 \mathcal{F}_0 : \mathcal{R}_0 -inv. space

Main theorems

Proof of Thm 1

Exp[#](z) = $e^{2\pi i z}$: $\mathbb{C}/\mathbb{Z} \xrightarrow{\cong} \mathbb{C}^*$ $\mathcal{R}_0 f_0 = \operatorname{Exp}^{\sharp} \circ E_{f_0} \circ (\operatorname{Exp}^{\sharp})^{-1}$: parabolic renormalization of f_0 $\mathcal{R}_0 f_0$ can be extended to 0 and ∞ holomorphically. They are fixed points and

 $(\mathcal{R}_0 f_0)'(0) = 1$

Namely, 0 is a 1-parabolic fixed point for $\mathcal{R}_0 f_0$.

Near-parabolic renormalization ($f = e^{2\pi i \alpha} f_0, f_0$: 1-parabolic)

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Parab. renorm. Near-parab. renorm.

 \mathcal{F}_0 : \mathcal{R}_0 -inv. space

Main theorems

Proof of Thm 1

 $\mathcal{R}f = \operatorname{Exp}^{\sharp} \circ \widetilde{\mathcal{R}}f \circ (\operatorname{Exp}^{\sharp})^{-1}$ $= \operatorname{Exp}^{\sharp} \circ \chi_{f} \circ E_{f} \circ (\operatorname{Exp}^{\sharp})^{-1}$ $= e^{2\pi i\beta} \operatorname{Exp}^{\sharp} \circ E_{f} \circ (\operatorname{Exp}^{\sharp})^{-1}$ $= e^{2\pi i\beta} z + O(z^{2}),$ where $\beta = -\frac{1}{\alpha} \mod \mathbb{Z}$ $\Leftrightarrow \alpha = \frac{1}{m-\beta} (m \in \mathbb{Z}).$ Let $\mathcal{R}_{\alpha}f_{0} = e^{-2\pi i\beta}\mathcal{R}_{f}.$ Then $\mathcal{R}_{\alpha}f_{0}$ is 1-parabolic.

 $\mathcal{R}f$

\mathcal{F}_0 : Invariant space of \mathcal{R}_0

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Parab. renorm. Near-parab. renorm. \mathcal{F}_0 : \mathcal{R}_0 -inv. space

Main theorems

Proof of Thm 1

 $\mathcal{F}_{0} = \begin{cases} f: U_{f} \to \mathbb{C} \\ f: U_{f} \to \mathbb{C} \end{cases} \begin{vmatrix} 0 \in U_{f} : \text{ connected open set } \subset \mathbb{C}, \\ f: \text{ holomorphic, } f(0) = 0, f'(0) = 1, \\ f: U_{f} \setminus \{0\} \to \mathbb{C}^{*} : \text{ branched covering,} \\ \text{ with a unique critical value,} \\ \text{ local degree at every critical point is 2} \end{cases}$

 $\begin{array}{l} \blacksquare \quad \mathcal{R}_0 \mathcal{F}_0 \subset \mathcal{F}_0. \\ \blacksquare \quad z + z^2, \mathcal{R}_0(z + z^2), \dots \in \mathcal{F}_0. \end{array}$

This class is used to show that $\dim_{\mathrm{H}}(J(f)) = 2$ for generic $f \in \partial M$ and $\dim_{\mathrm{H}}(\partial M) = 2$ (Shishikura).

To study parabolic bifurcation via \mathcal{F}_0 , study iteration of \mathcal{R}_0 for parabolic maps and then consider perturbations \mathcal{R}_{α} .

Problem. The perturbation size for \mathcal{R}_0^n depends on *n*. So we can treat only finitely many times of iterations of \mathcal{R}_{α} .

So we want to define a new class of maps where we can iterate \mathcal{R}_{α} directly. 10/21

Main theorems

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Main theorems

Thm 1, 2 P(z) and V, V'

Proof of Thm 1

Theorem 1. Let $P(z) = z(1 + z)^2$. There exist bounded simply connected open sets $0 \in V \Subset V' \subset \mathbb{C}$ such that the class

$$\mathcal{F}_{1} = \begin{cases} f = P \circ \varphi^{-1} : \varphi(V) \to \mathbb{C} & \varphi^{-1} : \varphi(V) \to \mathbb{C} \\ \varphi(0) = 0, \varphi'(0) = 1 \end{cases}$$

satisfies the following.

- *1. Every* $f \in \mathcal{F}_1$ *is non-degenerate;*
- 2. $\mathcal{F}_0 \setminus \{ \text{quadratic polynomial} \} \text{ can be naturally embedded into } \mathcal{F}_1.$ In particular, $\mathcal{R}_0^n(z + z^2) \in \mathcal{F}_1 \text{ for } n \ge 1;$
- *3.* \mathcal{R}_0 is defined on \mathcal{F}_1 and $\mathcal{R}_0(\mathcal{F}_1) \subset \mathcal{F}_1$;
- 4. *let* $f \in \mathcal{F}_1$. *If we write* $\mathcal{R}_0 f = P \circ \psi^{-1}$ *, then* ψ *can be extended to a univalent function on* V';
- 5. $f \mapsto \mathcal{R}_0 f$ is "holomorphic".

Theorem 2. The above statements hold for \mathcal{R}_{α} for α small.

$P(z) = z(1 + z)^2$ and the domains *V*, *V'*

Parab. fix. pts Near-parab. fix. pts Renormalization Main theorems

Thm 1, 2 P(z) and V, V'

Proof of Thm 1

P(0) = 0, P'(0) = 1Critical points: $-\frac{1}{3}, -1$ Critical values: $P(-\frac{1}{3}) = -\frac{4}{27}, P(-1) = 0$

 $\eta = 2$ ($\eta = 0.3$ in this figure)

V is a slightly smaller domain than V'.

Proof of Theorem 1

Parab. fix. pts

Near-parab. fix. pts Renormalization

Main theorems

Proof of Thm 1

Covering property Coordinate change The covering property of $\mathcal{R}_0 f$ Covering property $\mathcal{R}_0 f$ & log lift P $\mathcal{R}_0 f$ & log lift Q $\mathcal{R}_0 f$ & log lift QWhat we need We give an outline of the proof of Theorem 1. (Theorem 2 follows from Theorem 1 and the continuity of E_f on f.)

To prove that a class of maps is invariant, we need a way to recognize that $\mathcal{R}_0 f$ belongs to this class.

We characterize our class by a partial (incomplete) covering property.

Covering property

Parab. fix. pts

Near-parab. fix. pts

Renormalization

Main theorems

Proof of Thm 1 Covering property Coordinate change The covering property of $\mathcal{R}_0 f$ Covering property $\mathcal{R}_0 f$ & log lift P $\mathcal{R}_0 f$ & log lift Q

 $\mathcal{R}_0 f$ & log lift QWhat we need We say two maps f and g have the same covering property if there exists a univalent map φ : Dom $(f) \rightarrow$ Dom(g) such that $g = f \circ \varphi^{-1}$.

 \mathcal{F}_1 consists of maps with the same covering property as $P|_V$ such that 0 is 1-parabolic.

Coordinate change

Parab. fix. pts Near-parab. fix. pts

Renormalization

Main theorems

Proof of Thm 1

Covering property Coordinate change The covering property of $\mathcal{R}_0 f$ Covering property $\mathcal{R}_0 f$ & log lift P $\mathcal{R}_0 f$ & log lift Q $\mathcal{R}_0 f$ & log lift QWhat we need We take a coordinate change sending 0 to ∞ because

- maps are close to translation;
 - Fatou coordinates are close to the identity.

Hence instead of P(z), we consider

$$Q(z) = z \frac{\left(1 + \frac{1}{z}\right)^{6}}{\left(1 - \frac{1}{z}\right)^{4}}.$$

$$Q = \psi_0^{-1} \circ P \circ \psi_1$$
, where $\psi_0(z) = -\frac{4}{z}$, $\psi_1(z) = -\frac{4z}{(1+z)^2}$.

$$\mathcal{F}_{1}^{Q} = \left\{ Q \circ \varphi^{-1} \middle| \begin{array}{l} \varphi : \hat{\mathbb{C}} \setminus E \to \hat{\mathbb{C}} \setminus \{0\} \text{ univalent,} \\ \varphi(\infty) = \infty, \lim_{z \to \infty} \frac{\varphi(z)}{z} = 1 \end{array} \right\}$$
$$E = \left\{ z = x + iy \middle| \left(\frac{x + 0.18}{1.24}\right)^{2} + \left(\frac{y}{1.04}\right)^{2} \le 1 \right\}$$
$$V = \psi_{1}(\hat{\mathbb{C}} \setminus E)$$

The covering property of $\mathcal{R}_0 f$

Parab. fix. pts Near-parab. fix. pts

Renormalization

Main theorems

Proof of Thm 1 Covering property Coordinate change The covering property of $\mathcal{R}_0 f$ Covering property $\mathcal{R}_0 f$ & log lift P $\mathcal{R}_0 f$ & log lift Q $\mathcal{R}_0 f$ & log lift QWhat we need How to prove $\mathcal{R}_0 f \in \mathcal{F}'_1$ (replace V by V' in the definition)

$$\mathcal{R}_0 f = \operatorname{Exp}^{\sharp} \circ E_f \circ (\operatorname{Exp}^{\sharp})^{-1}$$

Domain of *E_f* = repelling Fatou coordinate.
Image of *E_f* = attracting Fatou coordinate.

We make a color-tiling in attracting Fatou coordinate (=range) and pull it back by f to the domain of repelling Fatou coordinate. See it is the same as the tiling for P.

The covering property of *P* and log lift

$\mathcal{R}_0 f$ and the log lift of P

$\mathcal{R}_0 f$ and the log lift of Q

 $\mathcal{R}_0^2 f$ and the log lift of Q

 $f = Q \circ \varphi^{-1}$ $\in \mathcal{F}_1^Q$

repelling side $(\operatorname{Re} z \ll 0)$

attracting side (Re $z \gg 0$)

What we need to do

Left

Construct a Riemann surface *X* where an inverse branch of *f* can be lifted on *X*. Show the repelling Fatou coord. is defined on *X*.

Show $D_0, D'_0, D_{-1}, D''_{-1}$ are "contained" in *X*.

Middle

Take inverse images of D_1 $(D_0, D'_0, D_{-1}, D''_{-1}).$ Estimate the position of them.

Right

Estimate the distortion of the attracting Fatou coordinate and the position of D_1 .

To do this, determine the region where the attracting Fatou coord. is univalent and apply the Golusin ineq.

Need to check many inequalities (≈30) with help of computers. (Maple, MATLAB+INTLAB/)21