◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Infinitesimal Automorphisms of Webs

Jorge Vitório Pereira

IMPA Rio de Janeiro BRASIL

Local Holomorphic Dynamics PISA – January 26, 2007

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

Background

- 3-Webs on the Plane
- Abelian Relations
- Algebrization

Infinitesimal Automorphisms

- The shape of the abelian relations
- "New" Exceptional Webs

B) Curvature

- A Necessary condition for maximal rank
- Quasi-Parallel Webs on the Projective Plane

Holonomy

Curvature

Following the leaves one obtains germs of diffeomorphisms in one variable whose equivalence class is a local invariant of the web. If all the possible germs are the identity the web is called **hexagonal**.

Background ⊙●⊙○○○○○○○○	Infinitesimal Automorphisms	Curvature
3-Webs on the Plane		
Curvature		

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3 \qquad \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3 \qquad \qquad \mathcal{F}_i = \{\omega_i = 0\}$$

$$\omega_1 + \omega_2 + \omega_3 = 0 \implies \exists ! \gamma, \quad d\omega_i = \gamma \wedge \omega_i, \quad \forall i.$$

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3 \qquad \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

$$\omega_1 + \omega_2 + \omega_3 = 0 \implies \exists ! \gamma, \quad d\omega_i = \gamma \wedge \omega_i, \quad \forall i.$$

 $\kappa(\mathcal{W}) = d\gamma$ is canonically attached to \mathcal{W} (the **curvature** of \mathcal{W}).

Background oo●oooooooo	Infinitesimal Automorphisms	Curvature
3-Webs on the Plane		
Structure		

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

$\mathcal{W}=\mathcal{F}_1\boxtimes\mathcal{F}_2\boxtimes\mathcal{F}_3$ a 3-web on $(\mathbb{C}^2,0).$ Are equivalent:

 \bigcirc \mathcal{W} is hexagonal;

Background	Infinitesimal Automorphisms	Curvature
0000000000		
3-Webs on the Plane		
Structure		

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

- $\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3$ a 3-web on ($\mathbb{C}^2, 0$). Are equivalent:
 - \bigcirc \mathcal{W} is hexagonal;
 - 2 $\kappa(\mathcal{W}) = 0;$

Background oo●○○○○○○○○	Infinitesimal Automorphisms	Curvature
3-Webs on the Plane		
Structure		

- $\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3$ a 3-web on ($\mathbb{C}^2, 0$). Are equivalent:
 - \bigcirc \mathcal{W} is hexagonal;
 - 2 $\kappa(\mathcal{W}) = 0;$
 - **o** there exists **closed** 1-forms η_i defining \mathcal{F}_i such that

$$\eta_1 + \eta_2 + \eta_3 = 0.$$

- $\mathcal{W} = \mathcal{F}_1 \boxtimes \mathcal{F}_2 \boxtimes \mathcal{F}_3$ a 3-web on ($\mathbb{C}^2, 0$). Are equivalent:
 - \mathcal{W} is hexagonal;
 - 2 $\kappa(\mathcal{W}) = 0;$
 - Solution the exists closed 1-forms η_i defining \mathcal{F}_i such that

$$\eta_1 + \eta_2 + \eta_3 = 0.$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

If \mathcal{W} is equivalent to the web defined by x, y and x - y.

Background ○○○●○○○○○○○	Infinitesimal Automorphisms	Curvature
Abelian Relations		
Definition		

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

Background ○○○●○○○○○○○	Infinitesimal Automorphisms	Curvature
Abelian Relations		
Definition		

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k\right) \in \left(\Omega^1_{(\mathbb{C}^2, 0)}\right)^k \middle| d\eta_i = 0, \ \eta_i \wedge \omega_i = 0, \ \sum_{i=1}^k \eta_i = 0 \right\}.$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → Ѻ�...

 Background
 Infinitesimal Automorphisms
 Curvature

 0000000000
 00000
 00000

 Abelian Relations
 Definition

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k\right) \in \left(\Omega_{(\mathbb{C}^2, 0)}^{\mathsf{1}}\right)^k \mid d\eta_i = \mathsf{0}, \ \eta_i \wedge \omega_i = \mathsf{0}, \ \sum_{i=1}^k \eta_i = \mathsf{0} \right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $u_i: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ local submersions defining \mathcal{F}_i then

 Background
 Infinitesimal Automorphisms
 Curvature

 0000000000
 00000
 00000

 Abelian Relations
 Definition

$$\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k \qquad \mathcal{F}_i = \{\omega_i = \mathbf{0}\}$$

$$\mathcal{A}(\mathcal{W}) = \left\{ \left(\eta_1, \ldots, \eta_k\right) \in (\Omega^1_{(\mathbb{C}^2, 0)})^k \, \middle| \, d\eta_i = 0 \,, \, \eta_i \wedge \omega_i = 0 \,, \, \sum_{i=1}^k \eta_i = 0 \right\}.$$

 $u_i: (\mathbb{C}^2, 0) \to (\mathbb{C}, 0)$ local submersions defining \mathcal{F}_i then

$$\int \implies \sum_{i=1}^k g_i(u_i) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□▶

Background ○○○○●○○○○○○	Infinitesimal Automorphisms	Curvature
Abelian Relations		
Bol's Bound		

$$\dim \mathcal{A}(\mathcal{W}) \leq rac{(k-1)(k-2)}{2}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\dim \mathcal{A}(\mathcal{W}) \leq \frac{(k-1)(k-2)}{2} \,.$$

$$\mathcal{A}(\mathcal{W}) = \mathcal{A}^{0}(\mathcal{W}) \supseteq \mathcal{A}^{1}(\mathcal{W}) \supseteq \cdots \supseteq \mathcal{A}^{m}(\mathcal{W}) \supseteq \cdots,$$
$$\mathcal{A}^{j}(\mathcal{W}) = \ker \left\{ \mathcal{A}(\mathcal{W}) \longrightarrow \left(\frac{\Omega^{1}(\mathbb{C}^{n}, \mathbf{0})}{\mathfrak{m}^{j} \cdot \Omega^{1}(\mathbb{C}^{n}, \mathbf{0})} \right)^{k} \right\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\dim \mathcal{A}(\mathcal{W}) \leq rac{(k-1)(k-2)}{2}$$
 .

$$\mathcal{A}(\mathcal{W}) = \mathcal{A}^{0}(\mathcal{W}) \supseteq \mathcal{A}^{1}(\mathcal{W}) \supseteq \cdots \supseteq \mathcal{A}^{m}(\mathcal{W}) \supseteq \cdots,$$
$$\mathcal{A}^{j}(\mathcal{W}) = \ker \left\{ \mathcal{A}(\mathcal{W}) \longrightarrow \left(\frac{\Omega^{1}(\mathbb{C}^{n}, \mathbf{0})}{\mathfrak{m}^{j} \cdot \Omega^{1}(\mathbb{C}^{n}, \mathbf{0})} \right)^{k} \right\},$$

$$\dim \frac{\mathcal{A}^{j}(\mathcal{W})}{\mathcal{A}^{j+1}(\mathcal{W})} \leq k - \dim \left(\mathbb{C} \cdot \ell_{1}^{j+1} + \dots + \mathbb{C} \cdot \ell_{k}^{j+1} \right) = k - \min(j+2,k)$$

▲日▼▲□▼▲目▼▲目▼ ● ● ●

Curvature

Abelian Relations

Algebraic Webs

 $C \subset \mathbb{P}^2$ reduced curve. $L_0 \in \check{\mathbb{P}^2}$ transverse to C. $L_0 \cap C = p_1 + \cdots + p_k$.

Curvature

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Abelian Relations

Algebraic Webs

 $C \subset \mathbb{P}^2$ reduced curve. $L_0 \in \check{\mathbb{P}^2}$ transverse to C. $L_0 \cap C = p_1 + \cdots + p_k$.

$$\Psi_i: (\check{\mathbb{P}^2}, L_0) \to C \implies L \cap C = \Psi_1(L) + \cdots + \Psi_k(L).$$

Curvature

Abelian Relations

Algebraic Webs

 $C \subset \mathbb{P}^2$ reduced curve. $L_0 \in \check{\mathbb{P}^2}$ transverse to C. $L_0 \cap C = p_1 + \cdots + p_k$.

$$\Psi_i: (\check{\mathbb{P}^2}, L_0) \to C \implies L \cap C = \Psi_1(L) + \cdots + \Psi_k(L).$$

Curvature

Abelian Relations

Algebraic Webs

 $C \subset \mathbb{P}^2$ reduced curve. $L_0 \in \check{\mathbb{P}^2}$ transverse to C. $L_0 \cap C = p_1 + \cdots + p_k$.

$$\Psi_i: (\check{\mathbb{P}^2}, L_0) \to C \implies L \cap C = \Psi_1(L) + \cdots + \Psi_k(L).$$

Abel's Theorem $\implies (\Psi_1 \oplus \cdots \oplus \Psi_k)^* \mathrm{H}^0(\mathcal{C}, \omega_{\mathcal{C}}) \hookrightarrow \mathcal{A}(\mathcal{W}_{\mathcal{C}})$

Curvature

Algebrization

Converse to Abel's Theorem

 $L_0 \in \mathbb{P}^2$ and $U \subset \mathbb{P}^2$ neighborhood of L_0 . $C_0 \subset U \subset \mathbb{P}^2$ reduced curve (**local**) transverse to L_0 . ω_0 1-form on C_0 .

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Algebrization

Converse to Abel's Theorem

 $L_0 \in \mathbb{P}^2$ and $U \subset \mathbb{P}^2$ neighborhood of L_0 . $C_0 \subset U \subset \mathbb{P}^2$ reduced curve (**local**) transverse to L_0 . ω_0 1-form on C_0 .

If $\Psi_1^*\omega + \cdots \Psi_k^*\omega = 0$ then there exists a **global** algebraic curve C and a **global** holomorphic 1-form ω on C such that $C_0 \subset C$ and $\omega_0 = \omega_{|C_0}$.

Algebrization

Converse to Abel's Theorem

 $L_0 \in \mathbb{P}^2$ and $U \subset \mathbb{P}^2$ neighborhood of L_0 . $C_0 \subset U \subset \mathbb{P}^2$ reduced curve (**local**) transverse to L_0 . ω_0 1-form on C_0 .

If $\Psi_1^*\omega + \cdots \Psi_k^*\omega = 0$ then there exists a **global** algebraic curve C and a **global** holomorphic 1-form ω on C such that $C_0 \subset C$ and $\omega_0 = \omega_{|C_0}$.

holomorphic = first kind w.r.t. lines = Rosenlicht

Curvature

Algebrization

Lie's Original Formulation

A double translation surface

 $S \subset \mathbb{R}^3$ that admits two independent parametrizations of the form $(x, y) \mapsto f(x) + g(y)$. S carries a natural 4-web \mathcal{W} . The leaves tangents of \mathcal{W} cuts the hyperplane at infinity at 4 germs of curves. Lie's Theorem says that these 4 curves are contained in a degree 4 algebraic curve. Latter generalized by Wirtinger to arbitrary translation manifolds

Curvature

Algebrization

Blaschke-Howe's Formulation

A linear *k*-web carrying a complete abelian relation is algebraic.

Curvature

Algebrization

Blaschke-Howe's Formulation

A linear *k*-web carrying a complete abelian relation is algebraic.

Corollary. Every 4-web of rank 3 (maximal) is algebrizable.

▲□▶▲□▶▲□▶▲□▶ □ ● ●

▲□▶▲□▶▲□▶▲□▶ □ のQで

Algebrization

Blaschke-Howe's Formulation

A linear *k*-web carrying a complete abelian relation is algebraic.

Corollary. Every 4-web of rank 3 (maximal) is algebrizable.

Proof. The Poincaré Map

$$\begin{array}{rcl} (\mathbb{C}^2, \mathbf{0}) & \to & \mathbb{P}(\mathcal{A}(\mathcal{W})) \\ \boldsymbol{\rho} & \mapsto & \{(\eta_1, \ldots, \eta_4) \in \mathcal{A}(\mathcal{W}) \ \big| \ \eta_i(\boldsymbol{\rho}) = \mathbf{0}, \ \forall i \} \end{array}$$

is a local diffeomorphism that linearizes \mathcal{W} .

Background ○○○○○○○○○○○	Infinitesimal Automorphisms	Curvature
Algebrization		
Blaschke's Mistake		

(1933) Blaschke claimed that a similar result holds for 5-web.

Curvature

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Algebrization

Blaschke's Mistake

(1933) Blaschke **claimed** that a similar result holds for 5-web. (1936) Bol gave a **counterexample**.

Curvature

Algebrization

Blaschke's Mistake

(1933) Blaschke **claimed** that a similar result holds for 5-web. (1936) Bol gave a **counterexample**.

Bol's Exceptional 5-web \mathcal{B}_5 . Four pencil of lines + one pencil of conics. All its 3-subwebs are hexagonal. For almost 70 years it remained the only known example of non-algebrizable 5-web of maximal rank. One of its abelian relations involves the dilogarithm.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

(Pirio and Robert independently 2002)

Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

(Pirio and Robert independently 2002) Spence-Kummer 9 terms functional relation for the trilogarithm

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

(Pirio and Robert independently 2002) Spence-Kummer 9 terms functional relation for the trilogarithm

(Pirio and Pirio-Trépreau 2004)

Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

(Pirio and Robert independently 2002) Spence-Kummer 9 terms functional relation for the trilogarithm

(Pirio and Pirio-Trépreau 2004) x, y, x + y, x - y, u(x) + v(y). Theta functions and degenerations.
Algebrization

New Examples

(Chern 1985)

"In general, the determination of all webs of maximum rank will remain a fundamental problem in web geometry and the non-algebraic ones, if there are any, will be most interesting."

(Pirio and Robert independently 2002) Spence-Kummer 9 terms functional relation for the trilogarithm

(Pirio and Pirio-Trépreau 2004) x, y, x + y, x - y, u(x) + v(y). Theta functions and degenerations. (Appeared already in Buzzano 1939. Not known to be exceptional.)

Curvature

Algebrization

The simplest Examples

$$u(x,y)=x^2\pm y^2$$

Polynomial and Logarithmic Abelian Relations

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

Background

- 3-Webs on the Plane
- Abelian Relations
- Algebrization

Infinitesimal Automorphisms

- The shape of the abelian relations
- "New" Exceptional Webs

Curvature

- A Necessary condition for maximal rank
- Quasi-Parallel Webs on the Projective Plane

Background	Infinitesimal Automorphisms ●○○○○	Curvature
The shape of the abelian relations		
Action on $\mathcal{A}(\mathcal{W})$		

X infinitesimal automorphism of $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$.

X infinitesimal automorphism of $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$.

 $L_X \omega_i \wedge \omega_i = 0 \implies L_X \text{ acts on } \mathcal{A}(\mathcal{W})$

X infinitesimal automorphism of $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k$.

$$L_X \omega_i \wedge \omega_i = 0 \implies L_X \text{ acts on } \mathcal{A}(\mathcal{W})$$

Canonical First Integral

$$u_j = \int \frac{\omega_j}{\omega_j(X)}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Background

Infinitesimal Automorphisms

Curvature

The shape of the abelian relations

Shape of the Abelian Relations

If $\mathcal{F}_X \notin \mathcal{W}$ then the abelian relations turn out to be solutions of linear system of differential equations with constant coefficients.

Curvature

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

The shape of the abelian relations

Shape of the Abelian Relations

If $\mathcal{F}_X \notin \mathcal{W}$ then the abelian relations turn out to be solutions of linear system of differential equations with constant coefficients.

$$P_1(u_1)e^{\lambda_i u_1}du_1+\cdots+P_k(u_k)e^{\lambda_i u_k}du_k=0\,,$$

where the P_j 's are polynomials and the λ_i 's are eigenvalues of $L_X : \mathcal{A}(\mathcal{W}) \circlearrowleft$.

Curvature

The shape of the abelian relations

Variation of the Rank

\mathcal{W} *k*-web, *X* infinitesimal automorphism of \mathcal{W} , $\mathcal{F}_X \notin \mathcal{W}$.

Curvature

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The shape of the abelian relations

Variation of the Rank

\mathcal{W} *k*-web, *X* infinitesimal automorphism of \mathcal{W} , $\mathcal{F}_X \notin \mathcal{W}$.

$$\operatorname{rk}(\mathcal{W} \boxtimes \mathcal{F}_X) = \operatorname{rk}(\mathcal{W}) + (k-1).$$

Curvature

▲□▶▲□▶▲□▶▲□▶ □ のQで

The shape of the abelian relations

Variation of the Rank

\mathcal{W} *k*-web, *X* infinitesimal automorphism of \mathcal{W} , $\mathcal{F}_X \notin \mathcal{W}$.

$$\operatorname{rk}(\mathcal{W} \boxtimes \mathcal{F}_X) = \operatorname{rk}(\mathcal{W}) + (k-1).$$

\mathcal{W} is of maximal rank if, and only if, $\mathcal{W} \boxtimes \mathcal{F}_X$ is of maximal rank.

Curvature

"New" Exceptional Webs

Curves invariant by global holomorphic flows

Note that the curves cutted out by

$$\mathbf{x}^{\epsilon_1}\mathbf{y}^{\epsilon_2}\mathbf{z}^{\epsilon_3}\prod_{i=1}^n \left(\mathbf{x}^a\mathbf{y}^b - \lambda_i\mathbf{z}^{a+b}\right)$$

where $\epsilon_j \in \{0, 1\}$, $a, b, c \in \mathbb{N}$, $\lambda_i \in \mathbb{C}^*$,

Curvature

"New" Exceptional Webs

Curves invariant by global holomorphic flows

Note that the curves cutted out by

$$\mathbf{x}^{\epsilon_1}\mathbf{y}^{\epsilon_2}\mathbf{z}^{\epsilon_3}\prod_{i=1}^n \left(\mathbf{x}^a\mathbf{y}^b - \lambda_i\mathbf{z}^{a+b}\right)$$

where $\epsilon_j \in \{0, 1\}$, $a, b, c \in \mathbb{N}$, $\lambda_i \in \mathbb{C}^*$, are left invariant by

$$\begin{array}{rcl} \varphi: \mathbb{P}^2 \times \mathbb{C}^* & \to & \mathbb{P}^2 \\ (t, [\mathbf{x}: \mathbf{y}: \mathbf{z}]) & \mapsto & [t^{b(a-b)}\mathbf{x}: t^{a(a-b)}\mathbf{y}: t^{ab}\mathbf{z}] \end{array}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● 臣 = のへ(?)

Background

Infinitesimal Automorphisms

Curvature

"New" Exceptional Webs

Other "new" examples

Let *C* and φ be as in the previous slide.

Curvature

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

"New" Exceptional Webs

Other "new" examples

Let *C* and φ be as in the previous slide.

The web \mathcal{W}_C is preserved by the dual flow $\check{\varphi}$.

"New" Exceptional Webs

Infinitesimal Automorphisms

Curvature

Other "new" examples

Let *C* and φ be as in the previous slide.

The web W_C is preserved by the dual flow $\check{\varphi}$.

If X is an infinitesimal generator of $\check{\varphi}$ then $\mathcal{W}_C \boxtimes \mathcal{F}_X$ has maximal rank.

"New" Exceptional Webs

Other "new" examples

Let *C* and φ be as in the previous slide.

The web W_C is preserved by the dual flow $\check{\varphi}$.

If X is an infinitesimal generator of $\check{\varphi}$ then $\mathcal{W}_C \boxtimes \mathcal{F}_X$ has maximal rank.

A result of Hénaut(Nakai for webs dual to irreducible curves) says that a *k*-web, $k \ge 4$, admits at most one linearization.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

"New" Exceptional Webs

Other "new" examples

Let *C* and φ be as in the previous slide.

The web W_C is preserved by the dual flow $\check{\varphi}$.

If X is an infinitesimal generator of $\check{\varphi}$ then $\mathcal{W}_C \boxtimes \mathcal{F}_X$ has maximal rank.

A result of Hénaut(Nakai for webs dual to irreducible curves) says that a *k*-web, $k \ge 4$, admits at most one linearization.

 $deg(C) \ge 4 \implies \mathcal{W}_C \boxtimes \mathcal{F}_X$ is exceptional.

Outline

- 3-Webs on the Plane
- Abelian Relations
- Algebrization

2 Infinitesimal Automorphisms

- The shape of the abelian relations
- "New" Exceptional Webs

3 Curvature

- A Necessary condition for maximal rank
- Quasi-Parallel Webs on the Projective Plane

Background

Infinitesimal Automorphisms

Curvature ●○○○

A Necessary condition for maximal rank

Vanishing of the Curvature

If $\ensuremath{\mathcal{W}}$ has maximal rank then

|▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ | ≣ | 釣��

Curvature ●○○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

A Necessary condition for maximal rank

Vanishing of the Curvature

If $\ensuremath{\mathcal{W}}$ has maximal rank then

$$\kappa(\mathcal{W}) = \sum_{\mathcal{W}' \subset \mathcal{W}} \kappa(\mathcal{W}')$$

vanishes identically. (Mihăileanu (1941), Hénaut-Ripoll-Robert (2006))

Curvature ●○○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

A Necessary condition for maximal rank

Vanishing of the Curvature

If $\ensuremath{\mathcal{W}}$ has maximal rank then

$$\kappa(\mathcal{W}) = \sum_{\mathcal{W}' \subset \mathcal{W}} \kappa(\mathcal{W}')$$

vanishes identically. (Mihăileanu (1941), Hénaut-Ripoll-Robert (2006))

Remark: If \mathcal{W} is a global web on \mathbb{P}^2 then $\kappa(\mathcal{W})$ is rational 2-form with poles on the discriminant of \mathcal{W} .

Background

Infinitesimal Automorphisms

Curvature ○●○○

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

Background

Infinitesimal Automorphisms

Curvature ○●○○

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio) $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k.$

Curvature ○●○○

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

- $\mathcal{W}=\mathcal{F}_1\boxtimes\cdots\boxtimes\mathcal{F}_k.$
- $C \subseteq tang(\mathcal{F}_1, \mathcal{F}_2)$ irreducible

Curvature ○●○○

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio) $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k.$ $C \subseteq \operatorname{tang}(\mathcal{F}_1, \mathcal{F}_2)$ irreducible $C \nsubseteq \Delta(\mathcal{F}_2 \boxtimes \cdots \boxtimes \mathcal{F}_k)$

Curvature ○●○○

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

 $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k.$

$$\begin{split} & C \subseteq \operatorname{tang}(\mathcal{F}_1, \mathcal{F}_2) \text{ irreducible} \\ & C \nsubseteq \Delta(\mathcal{F}_2 \boxtimes \cdots \boxtimes \mathcal{F}_k) \end{split}$$

If $\kappa(\mathcal{W})$ is holomorphic along C then C is

Curvature ○●○○

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

 $\mathcal{W}=\mathcal{F}_1\boxtimes\cdots\boxtimes\mathcal{F}_k.$

 $C \subseteq \operatorname{tang}(\mathcal{F}_1, \mathcal{F}_2) \text{ irreducible} \\ C \nsubseteq \Delta(\mathcal{F}_2 \boxtimes \cdots \boxtimes \mathcal{F}_k)$

If $\kappa(W)$ is holomorphic along C then C is \mathcal{F}_1 -invariant or

・ロト・日本・日本・日本・日本・日本

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

 $\mathcal{W} = \mathcal{F}_1 \boxtimes \cdots \boxtimes \mathcal{F}_k.$

$$\begin{split} & C \subseteq \operatorname{tang}(\mathcal{F}_1, \mathcal{F}_2) \text{ irreducible} \\ & C \nsubseteq \Delta(\mathcal{F}_2 \boxtimes \cdots \boxtimes \mathcal{F}_k) \end{split}$$

If $\kappa(W)$ is holomorphic along *C* then *C* is \mathcal{F}_1 -invariant or *C* is left invariant by $\beta(\mathcal{F}_2, \mathcal{F}_3 \boxtimes \cdots \boxtimes \mathcal{F}_k)$.

A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

 $\mathcal{W}=\mathcal{F}_1\boxtimes\cdots\boxtimes\mathcal{F}_k.$

$$\begin{split} & C \subseteq \operatorname{tang}(\mathcal{F}_1, \mathcal{F}_2) \text{ irreducible} \\ & C \nsubseteq \Delta(\mathcal{F}_2 \boxtimes \cdots \boxtimes \mathcal{F}_k) \end{split}$$

If $\kappa(W)$ is holomorphic along *C* then *C* is \mathcal{F}_1 -invariant or *C* is left invariant by $\beta(\mathcal{F}_2, \mathcal{F}_3 \boxtimes \cdots \boxtimes \mathcal{F}_k)$.

 $\beta(\mathcal{F}, \mathcal{W})$ is the \mathcal{F} -barycenter of \mathcal{W} .

Background	Infinitesimal Automorphisms	Curvature ○○●○
Quasi-Parallel Webs on the Projective Plane		
Classification		

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$

Background

Curvature ○○●○

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$ $\mathcal{L}_i \text{ pencil of } parallel \text{ lines (base point at } \infty)$

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$ $\mathcal{L}_i \text{ pencil of } parallel \text{ lines (base point at } \infty)$ If $k \ge 4$ and \mathcal{W} is exceptional then deg $(\mathcal{F}) \in \{1, 2, 3\}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Quasi-Parallel Webs on the Projective Plane

Classification

$$\begin{split} \mathcal{W} &= \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k \\ \mathcal{L}_i \text{ pencil of } parallel \text{ lines (base point at } \infty) \\ \text{If } k \geq 4 \text{ and } \mathcal{W} \text{ is exceptional then } \text{deg}(\mathcal{F}) \in \{1,2,3\}. \end{split}$$

Moreover

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 の < @

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$ \mathcal{L}_i pencil of *parallel* lines (base point at ∞) If $k \ge 4$ and \mathcal{W} is exceptional then deg $(\mathcal{F}) \in \{1, 2, 3\}$.

Moreover

 $deg(\mathcal{F}) = 3 \implies k = 4$ and there exists an unique example.
Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$ \mathcal{L}_i pencil of *parallel* lines (base point at ∞) If $k \ge 4$ and \mathcal{W} is exceptional then deg $(\mathcal{F}) \in \{1, 2, 3\}$.

Moreover

 $deg(\mathcal{F}) = 3 \implies k = 4$ and there exists an unique example. $deg(\mathcal{F}) = 2 \implies k = 5$ and there exists an unique example.

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$

 \mathcal{L}_i pencil of *parallel* lines (base point at ∞) If $k \ge 4$ and \mathcal{W} is exceptional then deg(\mathcal{F}) $\in \{1, 2, 3\}$.

Moreover

 $deg(\mathcal{F}) = 3 \implies k = 4$ and there exists an unique example. $deg(\mathcal{F}) = 2 \implies k = 5$ and there exists an unique example. When $deg(\mathcal{F}) = 1$ the web \mathcal{W} is induced by one of the symmetric 1-forms below

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$

 \mathcal{L}_i pencil of *parallel* lines (base point at ∞) If $k \ge 4$ and \mathcal{W} is exceptional then deg(\mathcal{F}) $\in \{1, 2, 3\}$.

Moreover

 $deg(\mathcal{F}) = 3 \implies k = 4$ and there exists an unique example. $deg(\mathcal{F}) = 2 \implies k = 5$ and there exists an unique example. When $deg(\mathcal{F}) = 1$ the web \mathcal{W} is induced by one of the symmetric 1-forms below

$$d(xy) \cdot (dx^k - dy^k)$$

Quasi-Parallel Webs on the Projective Plane

Classification

 $\mathcal{W} = \mathcal{F} \boxtimes \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k$

 \mathcal{L}_i pencil of *parallel* lines (base point at ∞) If $k \ge 4$ and \mathcal{W} is exceptional then deg(\mathcal{F}) $\in \{1, 2, 3\}$.

Moreover

 $deg(\mathcal{F}) = 3 \implies k = 4$ and there exists an unique example. $deg(\mathcal{F}) = 2 \implies k = 5$ and there exists an unique example. When $deg(\mathcal{F}) = 1$ the web \mathcal{W} is induced by one of the symmetric 1-forms below

$$d(xy) \cdot (dx^k - dy^k) d(xy) \cdot dx \cdot dy \cdot (dx^{k-2} - dy^{k-2})$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Background

Infinitesimal Automorphisms

Curvature ○○○●

Quasi-Parallel Webs on the Projective Plane

Background

Infinitesimal Automorphisms

Curvature 0000

Quasi-Parallel Webs on the Projective Plane

General Lines of the Proof

• Maximal Rank \implies vanishing of curvature

Background

Infinitesimal Automorphisms

Curvature ○○○●

Quasi-Parallel Webs on the Projective Plane

General Lines of the Proof

• Maximal Rank \implies vanishing of curvature \implies strong conditions on the pencil of polars of \mathcal{F}

Curvature ○○○●

Quasi-Parallel Webs on the Projective Plane

General Lines of the Proof

Maximal Rank ⇒ vanishing of curvature ⇒ strong conditions on the pencil of polars of *F* ⇒ bound on the degree of *F*

Quasi-Parallel Webs on the Projective Plane

- Maximal Rank ⇒ vanishing of curvature ⇒ strong conditions on the pencil of polars of *F* ⇒ bound on the degree of *F*
- Intermediary degrees case by case analysis.
- \bigcirc \mathcal{F} has degree one

Quasi-Parallel Webs on the Projective Plane

- Maximal Rank ⇒ vanishing of curvature ⇒ strong conditions on the pencil of polars of *F* ⇒ bound on the degree of *F*
- Intermediary degrees case by case analysis.
- \bigcirc \mathcal{F} has degree one \implies exists infinitesimal automorphism

Quasi-Parallel Webs on the Projective Plane

- Maximal Rank ⇒ vanishing of curvature ⇒ strong conditions on the pencil of polars of *F* ⇒ bound on the degree of *F*
- Intermediary degrees case by case analysis.
- \bigcirc \mathcal{F} has degree one \implies exists infinitesimal automorphism

Quasi-Parallel Webs on the Projective Plane

- Maximal Rank ⇒ vanishing of curvature ⇒ strong conditions on the pencil of polars of *F* ⇒ bound on the degree of *F*
- Intermediary degrees case by case analysis.
- \bigcirc \mathcal{F} has degree one \implies exists infinitesimal automorphism
- $\ \, {}^{\bullet} \mathcal{L}_1 \boxtimes \cdots \boxtimes \mathcal{L}_k \text{ regular on } \mathbb{C}^2 \implies \text{Abelian Relations are} \\ \text{essentially polynomial}$
- lementary representation theory to conclude.