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3-Webs on the Plane

Holonomy

Following the leaves
one obtains germs of
diffeomorphisms in
one variable whose
equivalence class is a
local invariant of the
web. If all the possible
germs are the identity
the web is called
hexagonal .
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3-Webs on the Plane

Curvature

W = F1 ⊠ F2 ⊠ F3 Fi = {ωi = 0}

ω1 + ω2 + ω3 = 0 =⇒ ∃!γ, dωi = γ ∧ ωi , ∀i .
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3-Webs on the Plane

Curvature

W = F1 ⊠ F2 ⊠ F3 Fi = {ωi = 0}

ω1 + ω2 + ω3 = 0 =⇒ ∃!γ, dωi = γ ∧ ωi , ∀i .

κ(W) = dγ is canonically attached to W (the curvature of W).
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3-Webs on the Plane

Structure

W = F1 ⊠ F2 ⊠ F3 a 3-web on (C2, 0). Are equivalent:
1 W is hexagonal;
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W = F1 ⊠ F2 ⊠ F3 a 3-web on (C2, 0). Are equivalent:
1 W is hexagonal;
2 κ(W) = 0;
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3-Webs on the Plane

Structure

W = F1 ⊠ F2 ⊠ F3 a 3-web on (C2, 0). Are equivalent:
1 W is hexagonal;
2 κ(W) = 0;
3 there exists closed 1-forms ηi defining Fi such that

η1 + η2 + η3 = 0 .
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3-Webs on the Plane

Structure

W = F1 ⊠ F2 ⊠ F3 a 3-web on (C2, 0). Are equivalent:
1 W is hexagonal;
2 κ(W) = 0;
3 there exists closed 1-forms ηi defining Fi such that

η1 + η2 + η3 = 0 .

4 W is equivalent to the web defined by x , y and x − y .
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Abelian Relations

Definition

W = F1 ⊠ · · · ⊠ Fk Fi = {ωi = 0}

A(W) =
{

(

η1, . . . , ηk
)

∈ (Ω1
(C2,0))

k
∣

∣

∣
dηi = 0 , ηi∧ωi = 0 ,

k
∑

i=1

ηi = 0
}

.
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∣

∣
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ui : (C2, 0) → (C, 0) local submersions defining Fi then
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Abelian Relations

Definition

W = F1 ⊠ · · · ⊠ Fk Fi = {ωi = 0}

A(W) =
{

(

η1, . . . , ηk
)

∈ (Ω1
(C2,0))

k
∣

∣

∣
dηi = 0 , ηi∧ωi = 0 ,

k
∑

i=1

ηi = 0
}

.

ui : (C2, 0) → (C, 0) local submersions defining Fi then

∫

=⇒

k
∑

i=1

gi(ui) = 0
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Bol’s Bound

dimA(W) ≤
(k − 1)(k − 2)

2
.
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Abelian Relations

Bol’s Bound

dimA(W) ≤
(k − 1)(k − 2)

2
.

A(W) = A0(W) ⊇ A1(W) ⊇ · · · ⊇ Am(W) ⊇ · · · ,

Aj(W) = ker

{

A(W) −→

(

Ω1(Cn, 0)

m
j · Ω1(Cn, 0)

)k
}

,
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Abelian Relations

Bol’s Bound

dimA(W) ≤
(k − 1)(k − 2)

2
.

A(W) = A0(W) ⊇ A1(W) ⊇ · · · ⊇ Am(W) ⊇ · · · ,

Aj(W) = ker

{

A(W) −→

(

Ω1(Cn, 0)

m
j · Ω1(Cn, 0)

)k
}

,

dim
Aj(W)

Aj+1(W)
≤ k−dim

(

C · ℓj+1
1 + · · · + C · ℓj+1

k

)

= k−min(j+2, k)
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Abelian Relations

Algebraic Webs

C ⊂ P2 reduced curve. L0 ∈ P̌2 transverse to C.
L0 ∩ C = p1 + · · · + pk .
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Abelian Relations

Algebraic Webs

C ⊂ P2 reduced curve. L0 ∈ P̌2 transverse to C.
L0 ∩ C = p1 + · · · + pk .

Ψi : (P̌2, L0) → C =⇒ L ∩ C = Ψ1(L) + · · · + Ψk (L).
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Abelian Relations

Algebraic Webs

C ⊂ P2 reduced curve. L0 ∈ P̌2 transverse to C.
L0 ∩ C = p1 + · · · + pk .

Ψi : (P̌2, L0) → C =⇒ L ∩ C = Ψ1(L) + · · · + Ψk (L).
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Abelian Relations

Algebraic Webs

C ⊂ P2 reduced curve. L0 ∈ P̌2 transverse to C.
L0 ∩ C = p1 + · · · + pk .

Ψi : (P̌2, L0) → C =⇒ L ∩ C = Ψ1(L) + · · · + Ψk (L).

Abel’s Theorem =⇒ (Ψ1 ⊕ · · · ⊕ Ψk)∗H0(C, ωC) →֒ A(WC)
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Algebrization

Converse to Abel’s Theorem

L0 ∈ P̌2 and U ⊂ P2 neighborhood of L0.
C0 ⊂ U ⊂ P2 reduced curve (local ) transverse to L0.
ω0 1-form on C0.
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Algebrization

Converse to Abel’s Theorem

L0 ∈ P̌2 and U ⊂ P2 neighborhood of L0.
C0 ⊂ U ⊂ P2 reduced curve (local ) transverse to L0.
ω0 1-form on C0.

If Ψ∗
1ω + · · ·Ψ∗

kω = 0 then there exists a global algebraic curve
C and a global holomorphic 1-form ω on C such that C0 ⊂ C
and ω0 = ω|C0

.
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Algebrization

Converse to Abel’s Theorem

L0 ∈ P̌2 and U ⊂ P2 neighborhood of L0.
C0 ⊂ U ⊂ P2 reduced curve (local ) transverse to L0.
ω0 1-form on C0.

If Ψ∗
1ω + · · ·Ψ∗

kω = 0 then there exists a global algebraic curve
C and a global holomorphic 1-form ω on C such that C0 ⊂ C
and ω0 = ω|C0

.

holomorphic = first kind w.r.t. lines = Rosenlicht
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Algebrization

Lie’s Original Formulation

A double translation surface
S ⊂ R3 that admits two independent
parametrizations of the form
(x , y) 7→ f (x) + g(y). S carries a
natural 4-web W. The leaves
tangents of W cuts the hyperplane at
infinity at 4 germs of curves. Lie’s
Theorem says that these 4 curves
are contained in a degree 4 algebraic
curve. Latter generalized by
Wirtinger to arbitrary translation
manifolds.
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Blaschke-Howe’s Formulation

A linear k-web carrying a complete abelian relation is algebraic.
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Algebrization

Blaschke-Howe’s Formulation

A linear k-web carrying a complete abelian relation is algebraic.

Corollary. Every 4-web of rank 3 (maximal) is algebrizable.
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Algebrization

Blaschke-Howe’s Formulation

A linear k-web carrying a complete abelian relation is algebraic.

Corollary. Every 4-web of rank 3 (maximal) is algebrizable.

Proof. The Poincar é Map

(C2, 0) → P(A(W))

p 7→ {(η1, . . . , η4) ∈ A(W)
∣

∣ ηi(p) = 0, ∀i}

is a local diffeomorphism that linearizes W.
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Blaschke’s Mistake

(1933) Blaschke claimed that a similar result holds for 5-web.
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(1933) Blaschke claimed that a similar result holds for 5-web.
(1936) Bol gave a counterexample.
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Algebrization

Blaschke’s Mistake

(1933) Blaschke claimed that a similar result holds for 5-web.
(1936) Bol gave a counterexample.

Bol’s Exceptional 5-web B5. Four
pencil of lines + one pencil of conics. All
its 3-subwebs are hexagonal. For almost
70 years it remained the only known
example of non-algebrizable 5-web of
maximal rank. One of its abelian
relations involves the dilogarithm.
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New Examples

(Chern 1985)
“In general, the determination of all webs of maximum rank will remain a

fundamental problem in web geometry and the non-algebraic ones, if there

are any, will be most interesting.”
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“In general, the determination of all webs of maximum rank will remain a

fundamental problem in web geometry and the non-algebraic ones, if there

are any, will be most interesting.”

(Pirio and Robert independently 2002)
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(Pirio and Robert independently 2002)
Spence-Kummer 9 terms functional relation for the trilogarithm
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New Examples

(Chern 1985)
“In general, the determination of all webs of maximum rank will remain a

fundamental problem in web geometry and the non-algebraic ones, if there

are any, will be most interesting.”

(Pirio and Robert independently 2002)
Spence-Kummer 9 terms functional relation for the trilogarithm

(Pirio and Pirio-Trépreau 2004)
x , y , x + y , x − y , u(x) + v(y). Theta functions and degenerations.
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Algebrization

New Examples

(Chern 1985)
“In general, the determination of all webs of maximum rank will remain a

fundamental problem in web geometry and the non-algebraic ones, if there

are any, will be most interesting.”

(Pirio and Robert independently 2002)
Spence-Kummer 9 terms functional relation for the trilogarithm

(Pirio and Pirio-Trépreau 2004)
x , y , x + y , x − y , u(x) + v(y). Theta functions and degenerations.

(Appeared already in Buzzano 1939. Not known to be exceptional.)



logo

Background Infinitesimal Automorphisms Curvature

Algebrization

The simplest Examples

u(x , y) = x2
± y2

Polynomial and

Logarithmic

Abelian Relations
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Action on A(W)

(joint with David Marin and Luc Pirio)

X infinitesimal automorphism of W = F1 ⊠ · · · ⊠ Fk .
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The shape of the abelian relations

Action on A(W)

(joint with David Marin and Luc Pirio)

X infinitesimal automorphism of W = F1 ⊠ · · · ⊠ Fk .

LXωi ∧ ωi = 0 =⇒ LX acts on A(W)



logo

Background Infinitesimal Automorphisms Curvature

The shape of the abelian relations

Action on A(W)

(joint with David Marin and Luc Pirio)

X infinitesimal automorphism of W = F1 ⊠ · · · ⊠ Fk .

LXωi ∧ ωi = 0 =⇒ LX acts on A(W)

Canonical First Integral

uj =

∫

ωj

ωj(X )
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If FX /∈ W then the abelian relations turn out to be solutions of
linear system of differential equations with constant coefficients.
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The shape of the abelian relations

Shape of the Abelian Relations

If FX /∈ W then the abelian relations turn out to be solutions of
linear system of differential equations with constant coefficients.

P1(u1)e
λiu1du1 + · · · + Pk (uk )eλiuk duk = 0 ,

where the Pj ’s are polynomials and the λi ’s are eigenvalues of
LX : A(W) 	.
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W k-web, X infinitesimal automorphism of W, FX /∈ W.
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Variation of the Rank

W k-web, X infinitesimal automorphism of W, FX /∈ W.

rk(W ⊠ FX ) = rk(W) + (k − 1) .
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The shape of the abelian relations

Variation of the Rank

W k-web, X infinitesimal automorphism of W, FX /∈ W.

rk(W ⊠ FX ) = rk(W) + (k − 1) .

W is of maximal rank if, and only if, W ⊠ FX is of maximal rank.
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“New” Exceptional Webs

Curves invariant by global holomorphic flows

Note that the curves cutted out by

xǫ1yǫ2zǫ3

n
∏

i=1

(

xayb − λiz
a+b

)

where ǫj ∈ {0, 1}, a, b, c ∈ N, λi ∈ C∗,
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“New” Exceptional Webs

Curves invariant by global holomorphic flows

Note that the curves cutted out by

xǫ1yǫ2zǫ3

n
∏

i=1

(

xayb − λiz
a+b

)

where ǫj ∈ {0, 1}, a, b, c ∈ N, λi ∈ C∗, are left invariant by

ϕ : P2 × C∗ → P2

(t , [x : y : z]) 7→ [tb(a−b)x : ta(a−b)y : tabz]
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Let C and ϕ be as in the previous slide.
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The web WC is preserved by the dual flow ϕ̌.

If X is an infinitesimal generator of ϕ̌ then WC ⊠ FX has
maximal rank.
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Other “new” examples

Let C and ϕ be as in the previous slide.

The web WC is preserved by the dual flow ϕ̌.

If X is an infinitesimal generator of ϕ̌ then WC ⊠ FX has
maximal rank.

A result of Hénaut(Nakai for webs dual to irreducible curves)
says that a k-web, k ≥ 4, admits at most one linearization.
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“New” Exceptional Webs

Other “new” examples

Let C and ϕ be as in the previous slide.

The web WC is preserved by the dual flow ϕ̌.

If X is an infinitesimal generator of ϕ̌ then WC ⊠ FX has
maximal rank.

A result of Hénaut(Nakai for webs dual to irreducible curves)
says that a k-web, k ≥ 4, admits at most one linearization.

deg(C) ≥ 4 =⇒ WC ⊠ FX is exceptional.
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Vanishing of the Curvature

If W has maximal rank then

κ(W) =
∑

W ′⊂W

κ(W ′)

vanishes identically.
(Mihăileanu (1941), Hénaut-Ripoll-Robert (2006) )
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A Necessary condition for maximal rank

Vanishing of the Curvature

If W has maximal rank then

κ(W) =
∑

W ′⊂W

κ(W ′)

vanishes identically.
(Mihăileanu (1941), Hénaut-Ripoll-Robert (2006) )

Remark: If W is a global web on P2 then κ(W) is rational
2-form with poles on the discriminant of W.
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Holomorphicity of the Curvature

(joint with Luc Pirio)

W = F1 ⊠ · · · ⊠ Fk .

C ⊆ tang(F1,F2) irreducible
C * ∆(F2 ⊠ · · · ⊠ Fk )
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(joint with Luc Pirio)
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C ⊆ tang(F1,F2) irreducible
C * ∆(F2 ⊠ · · · ⊠ Fk )

If κ(W) is holomorphic along C then C is
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A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

W = F1 ⊠ · · · ⊠ Fk .

C ⊆ tang(F1,F2) irreducible
C * ∆(F2 ⊠ · · · ⊠ Fk )

If κ(W) is holomorphic along C then C is F1-invariant or C is
left invariant by β(F2,F3 ⊠ · · · ⊠ Fk ).
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A Necessary condition for maximal rank

Holomorphicity of the Curvature

(joint with Luc Pirio)

W = F1 ⊠ · · · ⊠ Fk .

C ⊆ tang(F1,F2) irreducible
C * ∆(F2 ⊠ · · · ⊠ Fk )

If κ(W) is holomorphic along C then C is F1-invariant or C is
left invariant by β(F2,F3 ⊠ · · · ⊠ Fk ).

β(F ,W) is the F-barycenter of W.
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W = F ⊠ L1 ⊠ · · · ⊠ Lk
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Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
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Quasi-Parallel Webs on the Projective Plane

Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.
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Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover



logo

Background Infinitesimal Automorphisms Curvature

Quasi-Parallel Webs on the Projective Plane

Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover
deg(F) = 3 =⇒ k = 4 and there exists an unique example.
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Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover
deg(F) = 3 =⇒ k = 4 and there exists an unique example.
deg(F) = 2 =⇒ k = 5 and there exists an unique example.



logo

Background Infinitesimal Automorphisms Curvature

Quasi-Parallel Webs on the Projective Plane

Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover
deg(F) = 3 =⇒ k = 4 and there exists an unique example.
deg(F) = 2 =⇒ k = 5 and there exists an unique example.
When deg(F) = 1 the web W is induced by one of the
symmetric 1-forms below
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Quasi-Parallel Webs on the Projective Plane

Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover
deg(F) = 3 =⇒ k = 4 and there exists an unique example.
deg(F) = 2 =⇒ k = 5 and there exists an unique example.
When deg(F) = 1 the web W is induced by one of the
symmetric 1-forms below

d(xy) · (dxk − dyk )
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Quasi-Parallel Webs on the Projective Plane

Classification

W = F ⊠ L1 ⊠ · · · ⊠ Lk

Li pencil of parallel lines (base point at ∞)
If k ≥ 4 and W is exceptional then deg(F) ∈ {1, 2, 3}.

Moreover
deg(F) = 3 =⇒ k = 4 and there exists an unique example.
deg(F) = 2 =⇒ k = 5 and there exists an unique example.
When deg(F) = 1 the web W is induced by one of the
symmetric 1-forms below

d(xy) · (dxk − dyk )

d(xy) · dx · dy · (dxk−2 − dyk−2)
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1 Maximal Rank
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General Lines of the Proof

1 Maximal Rank =⇒ vanishing of curvature =⇒ strong
conditions on the pencil of polars of F
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5 elementary representation theory to conclude.


	Background
	3-Webs on the Plane
	Abelian Relations
	Algebrization

	Infinitesimal Automorphisms
	The shape of the abelian relations
	``New'' Exceptional Webs

	Curvature
	A Necessary condition for maximal rank
	Quasi-Parallel Webs on the Projective Plane


