Semi-complete vector fields of saddle-node type in dimension 3

Helena Reis

22 January, 2007

Complex Differential Equations

Given a holomorphic vector field X, we consider the differential equation

$$
\dot{x}=X(x)
$$

It defines a 1-dimensional foliation.
The existence Theorem of solutions guarantees a local solution for the differential equation for each initial condition.

Case $T \in \mathbb{R}$ - It is possible to define a maximal solution: constructed by analytic continuation.
U_{x} - maximal domain of definition of the solution
$\Omega=\left\{(T, x): T \in U_{x}\right\}$
Flow of X :

$$
\begin{aligned}
\Phi: \quad \Omega & \rightarrow \quad \mathbb{C}^{n} \\
(t, x) & \mapsto\left(\phi_{1}^{x}(t), \ldots, \phi_{n}^{\times}(t)\right)
\end{aligned}
$$

Case $T \in \mathbb{C}$ - In general, this is not possible

Semi-complete vector fields

Definition

M - complex manifold
X - holomorphic vector field defined on $U, U \subseteq M$.
We say that X is semi-complete in U if there exists

$$
\Phi: \Omega \subseteq \mathbb{C} \times U \rightarrow U
$$

holomorphic, $\{0\} \times U \subseteq \Omega$, such that
a) $\Phi(0, x)=x \quad \forall x \in M$
b) $X(x)=\left.\frac{d}{d T}\right|_{T=0} \Phi(T, x)$
c) $\Phi\left(T_{1}+T_{2}, x\right)=\Phi\left(T_{2}, \Phi\left(T_{1}, x\right)\right)$, when both members are defined
d) $\left(T_{i}, x\right) \in \Omega e\left(T_{i}, x\right) \rightarrow \partial \Omega \Rightarrow \Phi\left(T_{i}, x\right)$ escapes from any compact subset of U

Proposition (Rebelo)

M - complex manifold
X - complete holomorphic vector field defined on M
The restriction of X to any connected open set $U(U \subseteq M)$ is semi-complete in U.
$\forall L$ regular leaf,$\exists d T_{L}$ 1-form such that $d T_{L} \cdot X \equiv 1$

Proposition (Rebelo)

- X semi-complete in U, L regular leaf $\Rightarrow \int_{c} d T_{L} \neq 0 \forall c$ embedded

Proposition (Rebelo)

M - complex manifold
X - complete holomorphic vector field defined on M
The restriction of X to any connected open set $U(U \subseteq M)$ is semi-complete in U.
$\forall L$ regular leaf,$\exists d T_{L}$ 1-form such that $d T_{L} \cdot X \equiv 1$

Proposition (Rebelo)

- X semi-complete in U, L regular leaf
$\Rightarrow \int_{c} d T_{L} \neq 0 \forall c$ embedded
- X holomorphic vector field on U
$\forall c:[0,1] \rightarrow L, L$ regular leaf, $c(0) \neq c(1), \int_{c} d T_{L} \neq 0$
$\Rightarrow X$ is semi-complete in U

Example

- $X=x \frac{\partial}{\partial x}$ is complete (semi-complete) $\frac{d x}{d T}=x \Leftrightarrow x(T)=k e^{T}, T \in \mathbb{C}$

Example

- $X=x \frac{\partial}{\partial x}$ is complete (semi-complete) $\frac{d x}{d T}=x \Leftrightarrow x(T)=k e^{T}, T \in \mathbb{C}$
- $X=x^{2} \frac{\partial}{\partial x}$ is semi-complete but not complete

$$
\frac{d x}{d T}=x \Leftrightarrow x(T)=\frac{x_{0}}{1-x_{0} T}
$$

Example

- $X=x \frac{\partial}{\partial x}$ is complete (semi-complete)

$$
\frac{d x}{d T}=x \Leftrightarrow x(T)=k e^{T}, T \in \mathbb{C}
$$

- $X=x^{2} \frac{\partial}{\partial x}$ is semi-complete but not complete

$$
\frac{d x}{d T}=x \Leftrightarrow x(T)=\frac{x_{0}}{1-x_{0} T}
$$

- $X=x^{3} \frac{\partial}{\partial x}$ is not semi-complete

$$
\begin{aligned}
& c(t)=e^{\pi i t}, t \in[0,1] \\
& \int_{c} d T=\int_{c} \frac{d x}{x^{3}}=\left[-\frac{1}{x^{2}}\right]_{1}^{-1}=0
\end{aligned}
$$

Lemma (Rebelo)

X 1-dimensional meromorphic vector field $X=f(x) \partial / \partial x$
X semi-complete $\Rightarrow X$ admits a holomorphic extension to the origin and $J_{0}^{2} X \not \equiv 0$.
$f(0)=f^{\prime}(0)=0 \Rightarrow X$ analytically conjugated to $x^{2} \partial / \partial x$

Theorem (Rebelo)
X holomorphic vector field on \mathbb{C}^{2}
p isolated singularity of X
X semi-complete $\Rightarrow J_{p}^{2} X \not \equiv 0$

Camacho/Sad's Theorem allows us to reduce the problem in dimension 2 to the 1-dimensional case.

```
Conjecture (Ghys)
X holomorphic vector field on (\mathbb{C}
0\in\mp@subsup{\mathbb{C}}{}{3}\mathrm{ isolated singularity}
X semi-complete
| J
```

The semi-complete vector fields in dimension 2, with an isolated singularity, were completely classified by Ghys and Rebelo.

Difficulties in dimension 3

- There exists vector fields without separatrix

Difficulties in dimension 3

- There exists vector fields without separatrix
- The characterization in dimension 2 uses the Seidenberg's Theorem: In dimension 3 we have some results of dessingularization (Cano, Panazzolo), but not so powerful like the Seidenberg one for dimension 2.

Difficulties in dimension 3

- There exists vector fields without separatrix
- The characterization in dimension 2 uses the Seidenberg's Theorem: In dimension 3 we have some results of dessingularization (Cano, Panazzolo), but not so powerful like the Seidenberg one for dimension 2.
- In dimension 2: the exceptional divisor is an algebraic invariant curve In dimension 3: the exceptional divisor is $\mathbb{C P}(2)$ not admitting, in general, an algebraic invariant curve

Difficulties in dimension 3

- There exists vector fields without separatrix
- The characterization in dimension 2 uses the Seidenberg's Theorem: In dimension 3 we have some results of dessingularization (Cano, Panazzolo), but not so powerful like the Seidenberg one for dimension 2.
- In dimension 2: the exceptional divisor is an algebraic invariant curve In dimension 3: the exceptional divisor is $\mathbb{C P}(2)$ not admitting, in general, an algebraic invariant curve
- Irreducible cases:
- exactly 3 eigenvalues different from zero
- exactly 2 eigenvalues different from zero
- exactly 1 eigenvalues different from zero

The are no acceptable normal forms for the last case.

Semi-complete vector fields in dimension 3

Saddle-node

All results presented here are valid for higher dimension since $\left(\lambda_{1} \ldots, \lambda_{n-1}\right)$ belongs to the Poincaré domain.
\mathcal{F} - saddle-node foliation
normal form
$X:\left\{\begin{array}{l}\dot{x}=x^{p+1} \\ \dot{y}=y \lambda_{1}+x A(x, y, z) \\ \dot{z}=z \lambda_{2}+x B(x, y, z)\end{array}\right.$
formal normal form

$$
Y:\left\{\begin{array}{l}
\dot{x}=x^{p+1} \\
\dot{y}=y\left(\lambda_{1}+\alpha_{1} x\right) \\
\dot{z}=z\left(\lambda_{2}+\alpha_{2} x\right)
\end{array}\right.
$$

Proposition

\mathcal{F} admits a semi-complete representative $\Rightarrow p=1$

Proof.
Let L be a regular leaf, $L \nsubseteq\{x=0\}$

$$
d T=\frac{d x}{x^{p+1}}, \quad c(t)=\left(r e^{2 \pi i t / p}, 0,0\right) \Rightarrow \int_{c_{L}} d T=0
$$

where c_{L} is the lift of c to L.
$p \geq 2 \Rightarrow c_{L}$ is an embedded curve $\Rightarrow X$ cannot be semi-complete.
For $f X$, the time form is given by $d T=\frac{d x}{x^{p+1} f(x, y, z)}$. It is sufficient to restrict to a sector of amplitude greater than $2 \pi / p$ but less than 2π. The problem is reduced to the 1-dimensional case since in such sector $y=y(x)$ and $z=z(x)$.

Theorem
Let \mathcal{F} be a saddle-node foliation on $\left(\mathbb{C}^{3}, 0\right), 0$ isolated singularity. \mathcal{F} is associated to a semi-complete vector field iff it admits

$$
\left\{\begin{array}{l}
\dot{x}=x^{2} \\
\dot{y}=y\left(\lambda_{1}+\alpha_{1} x\right) \\
\dot{z}=z\left(\lambda_{2}+\alpha_{2} x\right)
\end{array}\right.
$$

as normal form, with $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}^{n-1}$.

The proof is divided in two steps:

Proposition
X semi-complete, then

1. X has holomorphic central manifold (hcm)
2. the holonomy relative to the hcm is trivial

The reciprocal is also valid.

Proposition

X has hcm and the holonomy is trivial iff X is analytically conjugated to its formal normal form and $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}^{2}$.

Theorem (Theorem of Malmquist)
Let \hat{H} be the unique formal transformation conjugating X and its formal normal form. There exist holomorphic transformations $H_{1,2}$ defined on sectors $S_{1,2} \times\left(\mathbb{C}^{n-1}, 0\right)$, covering a neighborhood of the origin, such that
a) $H_{1,2}$ is a holomorphic conjugation between X and its formal normal form
b) $H_{1,2} \stackrel{\sim}{\rightarrow} \hat{H}$ in $S_{1,2}$, as $x \rightarrow 0$

Solution of the formal normal form:

$$
\left\{\begin{array}{l}
y(x)=c x^{\alpha_{1}} e^{-\frac{\lambda_{1}}{x}} \\
z(x)=d x^{\alpha_{2}} e^{-\frac{\lambda_{2}}{x}}
\end{array}\right.
$$

(c, d) works like a parametrization of the leaf

Let $g_{+}=\left.\left(H_{2} \circ H_{1}^{-1}\right)\right|_{s_{+}}$and $g_{-}=\left(H_{2} \circ H_{1}^{-1}\right) \mid s_{-}$

Let $\varphi_{i, Q}=(Q, \lambda)-\lambda_{i}$

on the left case

$$
g_{+}:\left\{(c, d) \mapsto\left(c+a_{100}+a_{101} d, d+a_{200}\right)\right\}
$$

while on the right one

$$
g_{+}:\left\{(c, d) \mapsto\left(c+a_{100}, d+a_{300}+a_{210} c+a_{220} c^{2}\right)\right\}
$$

In the first case

$$
g_{-}:\left\{(c, d) \mapsto\left(c+\sum_{\substack{Q \neq(1,0) \\ Q \neq 0,0) \\ Q \neq(0,1)}} a_{1 i j} c^{i} d^{j}, d+\sum_{\substack{Q \neq(0,1) \\ Q \neq(0,0)}} a_{2 i j} c^{i} d^{j}\right\} .\right.
$$

Proposition

\mathcal{F} admits a hcm iff $a_{100}=a_{200}=0$.

Lemma

X, as above, is semi-complete in a neighbourhood of the origin \Rightarrow there is no translation, i.e., $a_{100}=a_{200}=0$.

Proof.

$\{y=0, z=0\}-\mathrm{hcm}$ for the formal normal form
$L \supset H_{1}^{-1}(\{y=0, z=0\})$
$c(t)=\left(r e^{2 \pi i t}, 0,0\right), t \in[0,1], c_{L}$ - the lift of c to L

$$
\int_{c_{L}} d T_{L}=\int_{r e^{2 \pi i t}} \frac{d x}{x^{2}}=0
$$

X is semi-complete $\Rightarrow c_{L}$ is closed $\Rightarrow\left(a_{100}, a_{200}\right)=(0,0) \Rightarrow X$ has hcm

Lemma

X semi-complete \Rightarrow holonomy relative to the hcm is trivial.

Proof.
$L_{0}-\mathrm{hcm}$
c_{0} - lift of c to L_{0}, which is closed
L regular leaf, $L \nsubseteq\{x=0\}$
c_{L} - lift of c to L

$$
\int_{C_{L}} d T_{L}=\int_{e^{2 \pi i t}} \frac{d x}{x^{2}}=0
$$

X semi-complete $\Rightarrow c_{L}$ is closed for all $L \Rightarrow$ the holonomy is trivial

Other representatives must be considered, but conclusions are the same.

- Assume there is no holomorphic central manifold/ holonomy is not trivial
- The curve c_{L} cannot be closed
- It is possible to continue the curve. The new curve is embedded and the integral over the new curve vanishes.

Proposition

X has hcm and the holonomy is trivial iff X is analytically conjugated to its formal normal form and $\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}^{2}$.

The idea of the proof is to use induction over $|Q|$:

$$
\begin{gathered}
a_{i Q}=0, \quad \forall Q:|Q| \leq q: a_{i Q} \text { in } g_{+} \\
\Rightarrow a_{i Q}=0, \quad \forall Q:|Q|=q+1: a_{i Q} \text { in } g_{+}
\end{gathered}
$$

The hypothesis is verified for $|Q|=0$
g_{+}is polynomial \Rightarrow the induction stops in a finite number of steps.

By the appearence of the terms expressions $x^{\alpha_{i}}$ in the solutions of the formal normal form

$$
\text { trivial holonomy } \Rightarrow\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{Z}^{2}
$$

In the 3-dimensional case

$$
\begin{gathered}
g_{+}:\left\{(c, d) \mapsto\left(c+a_{100}+a_{101} d, d+a_{200}\right)\right\} \\
g_{-} \circ g_{+}=i d \Leftrightarrow\left\{\begin{array}{c}
\left(\left(c+a_{101} d\right)+\sum_{\substack{Q \neq(1,0) \\
Q \neq 0,0) \\
Q \neq(0,1)}} a_{1 i j}\left(c+a_{101} d\right)^{i} d^{j}\right) e^{2 \pi i \alpha_{1}}=c \\
\left(\left(d+\sum_{\substack{Q \neq(0,1) \\
Q \neq(0,0)}} a_{2 i j}\left(c+a_{101} d\right)^{i} d^{j}\right) e^{2 \pi i \alpha_{2}}=d\right.
\end{array}\right.
\end{gathered}
$$

$$
g_{-} \circ g_{+}=i d \quad \leftrightarrow \quad n-1 \text { equations }
$$

Assume $a_{i Q}=0, \forall Q:|Q| \leq q$ such that $a_{i Q} \in g_{+}$
Fix Q_{0} such that $\left|Q_{0}\right|=q+1$ and $a_{i} Q_{0} \in g_{+}$for some i
Assume $\left\{i:\left(Q_{0}, \gamma\right)-\gamma_{i} \in R\right\}=\{1, \ldots, k\}$
$\Rightarrow c^{Q_{0}}$ can appear only on the $i^{\text {th }}$ equation when $Q=e_{j}$ is allowed in the $i^{t h}$ component of g_{-}, for some $j=1, \ldots, k-1$.

Thus we get the system

$$
\left(\begin{array}{ccccc}
1 & a_{1 e_{2}} & a_{1 e_{3}} & \ldots & a_{1 e_{k}} \\
a_{2 e_{1}} & 1 & a_{2 e_{3}} & \ldots & a_{2 e_{k}} \\
a_{3 e_{1}} & a_{3 e_{2}} & 1 & \ldots & a_{3 e_{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{k e_{1}} & a_{k e_{2}} & a_{k e_{3}} & \ldots & 1
\end{array}\right) \cdot\left(\begin{array}{c}
a_{1 Q_{0}} \\
a_{2 Q_{0}} \\
a_{3 Q_{0}} \\
\vdots \\
a_{k Q_{0}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

Property

$a_{i Q}$ in $g_{-} \Leftrightarrow(Q, \lambda)-\lambda_{i} \notin R$

$$
\begin{gathered}
a_{i e_{j}}: \quad\left(e_{j}, \lambda\right)-\lambda_{i}=\lambda_{j}-\lambda_{i} \\
a_{j e_{i}}: \quad\left(e_{i}, \lambda\right)-\lambda_{j}=\lambda_{i}-\lambda_{j} \\
\lambda_{j}-\lambda_{i} \notin R \Rightarrow \lambda_{i}-\lambda_{j} \in R
\end{gathered}
$$

It is possible to rearrange the variable in order that

$$
A=\left(\begin{array}{ccccc}
1 & a_{1 e_{2}} & a_{1 e_{3}} & \ldots & a_{1 e_{k}} \\
0 & 1 & a_{2 e_{3}} & \ldots & a_{2 e_{k}} \\
0 & 0 & 1 & \ldots & a_{3 e_{k}} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Thus, by induction $g_{+}=i d \Rightarrow g_{-}=i d$ also.

Proposition

Up to analytic conjugation, two vector fields of saddle-node type, with hcm, are analytically equivalent iff the holonomies relatively to the hcm are analytically conjugated.

