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Abstract

We study a simultaneous linearizability of d—actions (and the corresponding d-dimensional

Lie algebras) defined by commuting singular vector fields in C" fixing the origin with
a nontrivial Jordan block in the linear parts. We prove the analytic convergence of a
formal linearizing transformation under a certain invariant geometric condition for the
spectrum of d vector fields generating a Lie algebra. (cf. Example 1.6.) If the con-
dition fails and if we consider the situation where the small denominator occurs, then
we show the existence of divergent solutions of an overdetermined system of linearized
homological equations. In a smooth category, the situation is completely different. We
will show Sternberg’s theorem for a commuting system of vector fields with a Jordan
block although they do not satisfy the condition.
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1 Simultaneous normalization

Let Kbe K=Cor K=R, and B =00, B=w or B =k for some k > 0. Let G} denotes a
d-dimensional Lie algebra of germs at 0 € K" of CP vector fields vanishing at 0. Let p be a
germ of singular infinitesimal K? (d > 2) actions of class C'P

p: K — Gn. (1.1)
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We denote by Act? (K¢ : K") the set of germs of singular infinitesimal K¢ actions of class C
in 0 € K. By choosing a basis e, ..., e; € K", the infinitesimal action can be identified with
a d-tuple of germs at 0 of commuting vector fields X7 = p(e;), j = 1,...,d (cf. [10], [17]).
We can define, in view of the commutativity relation, the action

p: K4 x K" — K", (1.2)
ps;2) =X, o0 X2 (2) = XG0 X0 (2), s=(s1,--,5q),
(1.3)

for all permutations o = (o1,...,04) of {1,...,d}, where X/ denotes the flow of X7. We
denote by py, the linear action formed by the linear parts of the vector fields defining p.

We shall investigate the necessary and sufficient condition for the linearization of p, namely,
whether there exists a CP diffeomorphism ¢ preserving 0 such that g conjugates p and pjj,

ps:9(2) = g(oim(s,2).  (s,2) €K' x K™ (14)

We recall that in [10], and [24] the linear parts were supposed to be diagonalizable, while in
[29] the existence of n — d anlalytic first integrals was required. (See also [1], [15]). Following
Katok’s argument in [17], we take a positive integer m < n such that K" is decomposed into
a direct sum of m linear subspaces invariant under all A* = VX,(0) (¢ =1,...,d):

K" = TI* 4 ... 4TI, dimI*¥ =s;,7=1,...,m,
S1 4+ Sy =M. (1.5)

The matrices A!, ..., A% can be simultaneously brought in an upper triangular form, and we
write again A¢ for the matrices,

A{ 081 >282 051 X Sm,
052 S1 A 052 Sm
Al = - 2 A L l=1,....d (1.6)
Osm><51 OSmXSQ LR Afn
If K = C, the matrix A} is given by
Ag A§7 12 DI A§7 18.7
0 X . AL
A = S s d j=1,...,m, (1.7)
0 0 AU\

J

with A?,Afw € C. On the other hand, if K = R, then we have, for every 1 < j < m two
possibilities: firstly, all Aﬁ (¢ =1,...,d) are given by (1.7) with )\g € R. Secondly, s; = 2s; is
even and A§ is a 5; X §; square block matrix given by

1s;

L L Sj
Ae _ 0 Rg(/\j,,uj) Afj /=1 d
J . . . . ) R A )



where

A
mo = (2, %) Awek (19

and Aj? are appropriate real matrices.

Following the decomposition (1.7) (respectively, (1.8)) we define i by

M= (AF M) e K™, k=1,...,d (1.10)
Then we assume 3 R
AL ... A are linearly independent in K™. (1.11)
One can easily see that (1.11) is invariantly defined.
By (1.6) we define
No=t0 A eRY, j=1,..,m, (1.12)
and .
Ao i={, . A ) (1.13)
We define the cone I'[A,,,] by

T[A,] = {thij €K% ;>0 =1,....m, » t;# 0} : (1.14)
j=1

J=1

Definition 1.1 We say that the K?-action p is a Poincaré morphism if there erists a base
A, C K™ such that T'[A,,] is a proper cone in K™, namely it does not contain a straight real
line. If the condition is not satisfied, then, we say that the K¢ action is in a Siegel domain.

Note that the definition is invariant under the choice of the basis A,,.

Remark 1.2 As to the alternative definition of a Poincaré morphism we refer to the definition

6.2.1 of [24].

Next, we introduce the notion of simultaneous resonances. For a = (a, ..., ) € K™,
B = (bi,...,0m) € K", we set (a,5) = > " a,03,. For a positive integer k we define
77 (k) ={a € Z7; |a| > k}. Put

wile) = D [(Wa)=N[,  j=1...,m, (1.15)
w(a) = min{wi(a),...,wn(a)}. (1.16)

Definition 1.3 We say that A, is simultaneously nonresonant (or, in short p is simultane-
ously nonresonant), if

w(a) # 0, Vo € Z1'(2). (1.17)
If (1.17) does not hold, then we say that A, is simultaneously resonant.

Clearly, the simultaneously nonresonant condition (1.17) is invariant under the change of the
basis A,,. We state the first main result of our paper



Theorem 1.4 Let p be a Poincaré morphism. Then p is conjugated to a polynomial action
by an holomorphic change of variables.

Remark 1.5 In case p has a semi simple linear part, then Theorem 1.4 s already known.

(cf. Theorem 2.1.4 of [24]).

Example 1.6. We compare our theorem with the results of Stolovitch [24] and Zung [29].
Let p be a R? action in R", n > 4 with m = 3. We choose a basis A, of R3 such that

Ay ={"(1,1,v),"(0,1,)}, v,u€ER, (1.18)

(cf. [13] for similar and more general reductions of commuting vector fields on the torus).

We will characterize the set of (v, 1) € R? so that the action is a Poincaré morphism, and
determine the simultaneous resonances. By (1.14), I'[As] is generated by the set of vectors
{(1,0),(1,1), (v, ;) }. Hence the action is a Poincaré morphism if and only if these vectors
generate a proper cone, namely (v, ) is not in the set {(v,p) € R% v < u < 0}. We note
that the interesting case is pu < v < 0, where every generator in (1.18) is in a Siegel domain.
Theorem 1.4 can be applied to such a case. In §3 we will show that if the action is not a
Poincaré morphism, i.e., v < u < 0, then there exist (v, ) with the density of continuum
such that the linearized overdetermined system of two homological equations has a divergent
solution.

Next we will determine (v, ;1) so that a simultaneous resonance exists. If n = (1, 12,13) €
Z%(2) is a simultaneous resonance, we have the following set of equations:

(1) mAn+vgy=1 n+ uns =0,
(2) m+n+vns=1, o+ uns =1,
(3) M+ N2 +vns =V, N2+ 13 = (L.

By elementary computations, in order that one of these equations has a solution 7 the (v, )
satisfies the following:

a) Case v < p < 0. The resonance exists iff (v,u) € Q_ x Q_, where Q_ is the set of
nonpositive rational numbers. The resonance is given by (1+(u—v)k, —pk, k) and ((p—v)k, 1—
ku, k) where k > 1/(1—v), k € Zy, and ((v—p)(1 —k), u(1 —k), k), where k > (2—v)(1 —v),
keZ,.

b) Case v > p and g < 0. The resonance is given by (0, —u/(v — u),1/(v — p)), where
—u/(v—p) €2y, 1/(v—p) € Zy and 2v — pu < 1.

c¢) Case p > 0, v < p. The resonance is given by (0,0,1/v), when v = p, v < 1/2, v1 € Z,,
(0,v,0), when v = > 2, v € Zy, ((u—v)/p,0,1/p), if otherwise, where (u — v)/u € Z,,
1/pe€Zyand v+ pu<1.

d) Case v > p, > 0. The resonance is given by (v — p, 1,0), where v — pu € Z, pp € Z and
v>2.

Let v be a negative rational number, v = —ky /ko, k1, ko € Zy, ko # 0. Let u be a rational
number and satisfy p < v. Assume that the nonlinear part of X? is zero. If the nonlinear
part of X' consists of the resonant terms of X2, then we have [X!, X?] = 0. We can easily
see that the linearizability of X' holds provided p # v — 1/ky = — (k1 + 1) /ko.

2 A Poincaré morphism

We start by showing equivalent forms of a Poincaré morphism.



Proposition 2.1 The action is a Poincaré morphism if and only if each of the following
conditions holds
i) there exist a positive constant C' and an integer ko such that

d m
S Ny = Cilal,  Va € Z7 (k). (2.1)
k=1 j=1
i) there exists a nonzero vector ¢ = (cy,...,cq) € C?if K = C (respectively, c = (c1,...,cq) €
R? if K = R) such that
AN+ -+ g\ is in a Poincaré domain, (2.2)

namely, the convex hull of the set {Z;lzl cj)\i;k =1,...,m} in C does not contain 0 € C
(respectively,

the real parts of cl)\} +- 4 cd)\?, j=1,...,m, are positive.) (2.3)

Proof. First we show (2.1). Suppose that (2.1) does not hold. Then there exists a sequence
ot € Z, ¢ € N such that |of| — oo (£ — 00) and

14

d m
SO Nl g%%, {eN. (2.4)

k=1 j=1

By taking a subsequence, if necessary, we may assume that of/|af| — t° = (89,...,t0) €
Sp MRT when ¢ — oo, where S}, 1= {z € K™; [|z]|n = Y™, |2;] = 1} stands for the ¢! unit
sphere. By letting ¢ — oo in (2.4) we get

d m
DI oM =0
k=1 j=1

It follows that 3 7", j)\ =0. Let J C {1,...,m} be such that
exists by (1.11). Tt follows that

jeJ GE{L,mI\J

)\ # 0. Such a set J

jeJ J

Hence I'[A;,)] contains a straight line generated by >, ; to)\ # 0. This contradicts the as-
sumption that I'[A,,] is a proper cone.

Conversely, suppose that (2.1) is satisfied. We shall show that T'[A,,] is proper. Indeed, if
otherwise, we can find t° = (¢,...,t9,) € S} R} \ 0 such that

}:#M_m) k=1,....d. (2.5)

Because the set {a/|al;a € Z7(2)} is dense in S}, (YR, there exists a sequence of € Z7,
¢ € N such that |af| — oo (£ — 0o) and limy_, a£/|o/| =% . Therefore, in view of (2.5), we

get
1 d m
: E 0| _
(S ) o



which contradicts (2.1)
Next, we show ii). Suppose that ['[A,,] be a proper cone in K¢ Then we can find
c = (c1,...,¢4) € C? such that I'[A,,] is contained in the real half-space P. := {z €
K%, Re(3¢_, cxzi) > 0}. Therefore
d m m d
0<Re(D e Y ;M) =) tRe(D b (2.6)
j 1 k=1

k=1 j=1 j=

for all ¢ € R \ 0, which yields Re(zzzl cxA¥) >0 for j =1,...,m. We note that, if K = R,
then the use of the real part in the definition of the half-space is superfluous. Finally, we
readily see, from (2.2) that, if K = C (respectively, (2.3) if K = R), then the cone I'[A,,] is
contained in P,.. Hence I'[A,,] is proper. The proof is complete.

Although the following proposition is known, we give an alternative proof for the sake of
completeness. (cf. Lemma 3.1 of [25].)

Proposition 2.2 Let the action p be a Poincaré morphism. Then we can find a vector field
in the corresponding Lie algebra which has the same resonace as the simultaneous resonance
of p and is in the Poincaré domain.

Proof. By ii) of Proposition 2.2 we can find a Poincaré vector field in the Lie algebra as a
linear combination of a base corresponding to (2.2). Let ¢, be the numbers in (2.2), and define

A= (X9 A0 =S¢ ¢, M. Let S be a similtaneous resonance of p. Consider
~ d ~
(\0,0) =22 =3¢, ((Au,@ _ A;) .
v=1

Because Y0, [(A”, &) = \¥| # 0 for every a € Z"(2)\ S, it follows that the set (A%, @) =9 = 0
inc=(cy,...,cq) € C4is a hyperplane if a ¢ S. It follows that the set

{c=(c1,...,cq) ECd;O\O,a)—)\g:O,Hj,l <j<m,JaecZ}(2)\S}

is a countable union of nowhere dense closed set. Therefore we can find ¢ = (cq,...,¢q)
for which 25:1 ¢, A satisfies the Poincaré condition and has the resonance S. This proves
Proposition 2.2.

We propose a geometric expression of a Poincaré morphism.

Definition 2.3 Let r > 0 and g be a Riemannian metric on R". We denote by (,-), and
| - |lg the inner product and the norm with respect to g, respectively. We say that X, :=
> Xj ()0, (v =1,...,d) are simultaneously transversal to the sphere |z||, = r if, the
vectors XV .= (XV,..., X?) (v=1,...,d) satisfy

d
D X" @) £0, Vo, zlly=r. (2.7)

Theorem 2.4 Let r > 0. Suppose that B, := Y7 | (A"x);0,, (v =1,...,d) be a commuting
system of semi-simple linear real vector fields in R™. Let p be the action generated by {B,}.
We choose a real nonsingular matriz P such that A¥ = P~YAYP is a block diagonal matrix
given by

AN = diag {Ro(§7.17), -, Ra(& s mi, ) s As 1o - - > AL} for some integer

ny < n.. Let g be a Riemannian metric defined by P'P. Then the following conditions are
equivalent.



(a) B, (v=1,...,d) are simultaneously transversal to the sphere ||z||, = r

(b) pisa Pomcare morphism.

(¢) There exist real numbers ¢, (v =1,...,d) such that 3.%_ ¢,B, is transversal to the sphere
g = .

Proof. We note that (z,y), = (Pz, Py) and ||z||, = |Pz||. By inserting the relation A” =
PA”P~into (2.7) we can easily see that the simultaneous transversality condition is equivalent
to

Z! Yo #0, Yy= (), llyll =1 (2.8)

By definition, (2.8) can be written in

d ni n
S &t > w0 Yy, yl =1 (2.9)
v=1 j=1 J=n1+1

We define t = (ty,...,t,), t € R}, >3t; = L by t; = (y3;,_, +y3;)/2 if j < ny and t; = y7

if j > 2n. Noting that &/(y3; | + v3;) = 2,6 = t;(§ +in} + & — in}) we see that (2.9) is

written in 3% | > tiAj| # 0 for every t € RY and ) ¢; = 1. This is equivalent to (b) by

definition. Hence we have proved the equlvalence of (a) and (b).

By Proposition 2.2 the condition (b) is equivalent to the existence of real numbers ¢,
(v=1,...,d) such that Zizl ¢, B, is a Poincaré vector field. By what we have proved in the
above (d = 1) this is equivalent to say that Zizl ¢, B, is transversal to the sphere ||z||, = .
Hence we have proved Theorem 2.4.

Proof of Theorem 1.4. By Proposition 2.2 there exists a Poincaré vector field yq in p which
is in a Poincaré domain and has the same resonance as p. If p is not resonant, then we have
Theorem 1.4. In case there is a resonance of p, then it follows from Lemma 3.2 of [25] that,
if x¢ is normalized, then so is p. This completes the proof of Theorem 1.4.

3 Divergent solutions of overdetermined systems of lin-
earized homological equations

We now study the action py;, which is in a Siegel domain and admits a Jordan block. We as-
sume that the action is formally (simultaneously) linearizable and is not a Poincaré morphism
and that the family of linear parts is Diophantine. We shall show that the unique formal
solution of a linearized homological equation diverges.

Let C3{x} be the set of n vector functions of convergent power series of x without constant
and linear terms. We examine the system of the linearized homology equation

Lav="(Liv,...,.Lov) = f, f:="(f1,..., [2) € (C5{z})", (3.1)
where L; is the Lie bracket,
Ljv=[Ajz,v] = (Ajz,0,)v—Ajv, j=1,....d,
under the compatibility conditions
L;fr = Lt fj, g k=1,...,d. (3.2)

First we consider a 2-C action studied in Example 1.4. We assume that there exists a vector
field in the two-dimensional Lie algebra which is not semisimple. In view of Example 1.4 we

7



can choose a base X;, Xy with linear parts A; € GL(4;C) satisfying spec (4;) = {1,1,v,v}
and spec (Ay) = {0, 1, u, p}, respectively, where v < pu <0, (v, 1) € Q x Q, and

1 0 00 000 O
0100 010 O

A= 00 v e |’ Az = 0 0 pu ge |’ (3:3)
000 v 000 u

where ¢ # 0 and g9 € C. We can make |¢| > 0 arbitrarily small by an appropriate linear
change of variables.

Let w(a) be defined by (1.16). We say that the simultaneous Diophantine order of
{spec (A1), spec (A2)} is 7o, if, for every 7 > 7y there exists C' = C; > 0 such that

w(a) > Cla|™™, Va € Zi(2), (3.4)
while, for every T < 7y there exists a subsequence oy € Z4(2) (¢ =1,2,...) such that
w(ap) < |ag|™, ¢ eN. (3.5)

First we note that the conditions (3.4) and (3.5) for w(«) are equivalent to the correspond-
ing ones for ||qv||+||qu|| when ¢ € N, ¢ — oo, where ||¢|| = minyez [p—t|. Hence the number 7,
in (3.4) and (3.5) is equal to the speed of the simultaneous approximation of v and x, namely
llav|l + llgp|| ~ Cq~™ for some constant C' > 0 independent of ¢. Clearly, if (3.4) holds, then
we have an upper bound of 75. By the result of M. Herman, [16], we have an upper bound
2+ ¢ for every € > 0 for almost all  and p. On the other hand, Moser showed that there exist
Liouville numbers v and p such that ||qv|| + ||gu| > c¢™7 for any given 7 > 2. (See Theorem
2 of [22]). This implies that for every 7 > 2, there exist Liouville numbers v and p such that
To < 7. We have another upper bound of 7 if either v or u is an algebraic number. Indeed,
by Roth’s theorem, for any given 7 > 1 there exists ¢ > 0 such that by |lqv|| + |lqu| > cqg™".
Hence we have 75 < 1. Finally, by [Corollary 1B, p.27, 22|, if either v or u is an irrational
number, then we have a lower bound 7, > 1/2.

We say that o and  are simultaneously Liouville, if (3.5) holds for every 7 > 0.

Let o > 1. We say that a formal power series f(z) =, fox® is in a Gevrey space G3(C*)
if fo =0 for || <1 and, there exist C' > 0 and R > 0 such that

|fa] < CRall”, Va ezt
We consider the following equation
Lav:="L,Lyw) = f, f="f,f) € (Cy{x})?* zeC (3.6)
where (f1, f2) satisfies the compatibility condition L, fo = Lo f;. Then we have

Theorem 3.1 Assume that g # 0 is a real number. Then, if (v,pu) € QX Q and v < pu <0,
then there exists f = '(f1, f2) € (C3{x})? such that Ly fo = Laof; and Eq. (3.6) has a formal
power series solution v & <, 5 G5(CY). Moreover, there exist (v, 1) € QxQ andv < < 0
with the density of continuum such that the same assertion holds.

Furthermore, suppose that (v, ) € Q x Q, (3.4), (3.5) and 19 < +o0 hold. Then (3.6) has
a unique solution v € (4,5, G3(C*) for every '(fi1, f2) € (Co{x})? satisfying L1 fo = Lafi.

In order to prove Theorem 3.1, we need a function space G which is a subspace of a set of
holomorphic functions in a neighborhood of the origin. First we give the definition in the case
g0 = 1, i.e., the nilpotent parts of A; and A, coincide. We define G by

g = f:t(f17f2,f3,f4); fj Ef}(l‘) = Z fixav j: 1a27374 )

ael;



where C; C Z% (2) satisfies the following two conditions.
(1) There exist ¢ > 0 and 7 > 7y such that for every a = (a1, a2, a3,a4) € C;, we have
N=as+a; #0, |a| > 2, and

lay — 1+ (v —p)N| < NNTHIN D Yo e € (5 =1,2),
lay + (v —p)(N —1)] < NN va € €5 (5 = 3,4).

(2) The Diophantine condition for Spec(A;) holds: namely for every 7 < 75 < 7", there exist
c¢; > 0 and ¢y > 0 such that

ClNiTN<|061+062—1+VN‘<62N77J if &GCj,j:1,2,
aNT <l +ay+uN —v| < N7 if a€Cy =34,

where N = a3 + ay # 0.
Remark 3.2 If ¢y # 1, we replace (1) with the following (1)’

(1) There exist co > 0 and T > 7y such that for every a = (aq, s, a3, 4) € C;, we have
N=a3+a, #0, and

co(ar — 14+ s+ vN) — (ag + puN)| < N~NOFUN - if e O
K 0

In the case o € Cy, we replace ay and oy in the left-hand side of the above inequality with
a1 + 1 and as — 1, respectively. Similarly, in the case a € Cs or a € Cy, we replace aq and
N in the left-hand side of the above inequality with oy + 1 and N — 1, respectively.

Remark 3.3 The space G is a normed space with the norm || f|| := >, |fal, where |f,| =
>, | f2] with f being given in the definition of G.

If the conditions (1) and (2) hold, then we can easily show that the Diophantine condition
for Spec(As) holds. Hence we have a simultaneous Diophantine condition for Spec(A;) and
Spec(Az). In the following, we will see that on the support C; of G, the divergence of the
solutions of L occurs.

Remark 3.4 The space G is not empty for an appropriate choice of v and p such that v <
i < 0, i.e., the action is not a Poincaré morphism. We first consider the case ¢y = 1 for
the sake of simplicity. If we construct v and p so as to satisfy the conditions (1) and (2)
for Cy = Cy, then the conditions (1) and (2) for C; (j = 3,4) hold if we define C5 = Cy by
replacing oy and N in C7 with oy + 1 and N — 1, respectively. Hence we will consider C1.

We can easily construct an irrational number v < 0 which satisfies (2). In fact, oy + ao
and N are given by a continued fraction expansion of v. Note that oy can be taken arbitrarily.
Next, by the standard measure theoretic argument, we can show that there exist an irrational
number p with v — u < 0 and the sequence {an} such that (1) holds. By construction, we can
also choose p < 0 such that v < p < 0. It follows that the action is not a Poincaré morphism.
Moreover, we can easily see that the set of v and p satisfying (1) and (2) has the density of
continuum.

Nezxt we consider the case eg # 1. For the sake of simplicity, we give the sketch of the proof
for C in the case 0 < ¢g < 1. The other cases can be treated similarly. First we construct v
so as to satisfy (2). Then the sequence of the integers k = a; + ag — 1 and N are also given.
In order to show that there exists p satisfying (1), we consider the inequality

ap — 14+ (1 — g
N

. (6allu . l/) < N_N(TH)_lcéngl.



-1
We consider closed intervals of length 2N‘N(T+1)_1cévsgl with the centers at w,

(n + ay = k+1). Let N and one of these intervals Iy are given. Then we can choose
N" > N and Iy such that Iy contains Iy,. Hence we can construct a sequence of monotone
decreasing intervals. By taking a subsequence, if necessary, we see that there exists p which
satisfies (1)'. By construction the set of u has the density of continuum. We remark that we
can take 7 = eyt —v >0 if 0 < g9 < 1. Indeed, since 1 —e;* < 0 and k/N — —v > 0 as
k, N — oo, it follows that one can take the interval In so that Iy is contained in the positive
real axis and it is arbitrarily close to the origin. Hence we have p = eo(0 + v) > gov > v,
which tmplies that the action is not a Poincaré morphism. Similarly, we can show that there
exists p such that the condition does not hold in other cases.

The proof of Theorem 3.1 follows from the following propositions.

Proposition 3.5 Assume that g # 0 is a real number. Then there exist v < p <0, (v, p) &
Q x Q with the density of continuum, real numbers c1, co and kg > 0 such that for any g € G,
g= Z|a|2k0 gax®, there exist f; € G (j = 1,2) such that

Lifo=Laf1, g=-cifi+cafo.

Moreover, B := c1 Ay + c2As is nonresonant, and w defined by (1.16) for Spec(B) satisfies
(3.5).

Proposition 3.6 Assume that ¢ # 0 is a real number. Let v, pu, c¢; and cy be as in
Proposition 3.5. Then there exists g € G such that the homology equation Lgv = g with
B = 1Ay 4+ Ay has a unique formal power series solution v which is not contained in
Ut<o<s2G3(CY).

Remark 3.7 Our divergence results imply in the case of a single holomorphic vector field, that
generically vector fields obtained by nonlinear holomorphic perturbations are nonlinearizable
(see R. Pérez Marco [21] for more details). As to the case of smooth C* hyperbolic R?
actions we refer [10]. We point out that the divergence in Gevrey classes of formal solutions
of overdetermined systems of linear homological equations generalize those for the single vector
fields in the presence of nontrivial Jordan blocks (see [15]).

First we will show Theorem 3.1, assuming Propositions 3.5 and 3.6.

Proof of Theorem 3.1.  We will prove the former half. By the result of Example 1.6 (a),
we know that if (v, u) € Q- x Q_, then (3.6) has an infinite resonance. It follows that (3.6)
with f = 0 has a formal power series solution v & U<, 5/, G3(C*), because (3.6) is a linear
equation. Next we assume (v, 1) € Q x Q. By Proposition 3.6 we can choose g € G such that
the unique solution v of Lgv = g with B = ¢ A + ¢ Ay is not contained in U1S0<5/2 G3(CY).
By Proposition 3.5 we choose f; € G (j = 1,2) such that Ly fo = Lyf; and g = 232‘:1 cifj-
Because the solution v of the system of equations L v = f is a unique solution of a single
equation Lpv = g, we see that v is not contained in (J;<, 5/ G5(C*). This proves the former
half of the theorem.

We will prove the latter half. We consider the system of equations L;v = f;(j = 1,2),
where L fo = Lo f1. Let B denote either A; or A,. For the sake of simplicity, we assume that
B is put in a Jordan normal form with the diagonal part B® := diag{\;, A2, A3, A3}. The off
diagonal element of B is denoted by €;. We note that, for the equation Liv = f; we have
Al =X =1, A3 = v, €1 = ¢, while for Lyv = f, we have Ay = 0,y = 1, A3 = 1, €1 = €p€.
The homology operator corresponding to B is given by

Lpv = (B%,0,)v+ e R[v] — B, v € Cy{z}, (3.7)
(B2,0:)v = ) (Mo + Aaaa + Ag(s + 0u))vaz®, (3.8)
|a[>2
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where v(z) = 37,150 Vaz® and

Rl = Y (054 1)tayanas+10i-nT" (3.9)

|af>2

For g(x) = *(91, 92, 93, 92) € C3{x} we expand gi(z) in the Taylor series gp(z) = Y, Gort®.
For nonnegative integers N, a; and as we define V;, and Gy by

Vi = t{U(a17a27N_g7g);k}éV:0, Gy = t{g(al,aQ,N—Z,K);k}év:() (k =1,2,3, 4)

In view of (3.9), the equation Lgv = g is equivalent to

(/\10{1 + /\2(){2 + /\3N — )\1)‘/1 + €1MN‘/1 = Gl, (310)
(Arar + Agag + AN — )Vo + e MyVy = G, (3.11)
()\1011+)\2012+)\3(N— 1))%+€1MN‘/:J, = G3+€1‘/4, (312)
()\10[1 + )\2042 + )\3(N — 1))‘/4 —+ €1MNV21 = G4, (313)
where My is given by
0 0 0 0O 0 O
N 0 0 0O 0 O
0 N-—-1 0 ... 0 0 O
My = 0 0 N-2 .. 0 0 0], ~N>1, (3.14)
0 0 2 0
0 0 0 0 0

and Mgy = 0.

Let fi(z) = t(ff(x),...,fi(m)) and let fé(:c) = Zafi;kxa (j = 1,2k =1,...,4) be
the Taylor expansion of f,f:(:v) We substitute the expansions of v and f7 into the equations
Ljv = f7. For every (aq,a2) € Z% and N € Z, such that a; + az + N > 2 we compare the
coefficients of z* (a3 + a4 = N) with homogeneous degree oy + ap + N. If we set

FI=YF F,. .. F)), F =" conamatico: J=12k=1.4, (3.15)

and V =*(V1, Va, ..., Vi), Vi := "{0(ar.00n—t0)k b oo (K =1,2,3,4), H="(0,0,V},0), then we
can write the system of equations L;v = f7 (j = 1,2) in the following form

AV =F' +cH, BV = F?+egH, (3.16)

where the matrices A and B are the block diagonal matrices given by

(Oél + oo + vN — 1)Id+€MN)
ST T (061+062+VN—1)]CZ+8MN)
A = diag{A,, Ay, A3, Ay} = diag (on + o + UN — ) Id + eMy) | (3.17)
(q + a9 +vN —v)Id + eMy)
(062 -+ /LN)Id -+ EOEMN)
B = diag{B:, By, By, By} — diag | (@2 TN~ DId+cey) (3.18)

(042 + /JJN — ,u)]d + €0€MN)
(ag + puN — p)Id + g My)
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We will construct a formal power series solution V' from (3.16). Because (v,u) ¢ Q x Q
either v or y is an irrational number. Suppose that v is an irrational number. We want to
show that for each k = 1,...,4 either A, or By is nonsingular. In order to see this, suppose
that |a| = a1 + @ + N > 2. If N # 0,1, then by the irrationality of v, the matrices A
(k=1,...,4) are nonsingular. If N =0 or N = 1, then by the condition a; + s + N > 2,
A (k=1,...,4) are nonsingular. Similarly, if x4 is an irrational number, then we can show
that either Ay or By is nonsingular for each k =1,...,4.
First we will determine V. By inductive arguments and L, f? = Lo f! we get

l
Ular,a0, N=,0)4 = Tz; (Arag + Agag + A3(N = 1))7+!

(N —=LC+7)!
Wg(al,azwfew,prm (3.19)

for ¢ =0,1,..., N, provided \ja; + Asan + A\3(N — 1) # 0. Note that, if A, is nonsingular,
then (3.19) is Vahd for \i = Ao =1, A3 = v, €1 = €, (1,00, N—tr0—1) f(aha%N )it
while if B, is nonsingular, then (3 19) is valied for \y = 0,y = 1 A3 = [, €1 = €g&,
9(ar 02, N—l4rf—r)d = f(al’% N—ttr0—r) . Similar explicit formulas are derlved for va, as,N—t,0:k
k =1,2. As to the term v(%%N_g’g );3, there appears the term 51\/4 in the right-hand side of
(3.12).

By (3.4) we have

log +as +vN —v| + |ag + uN — p| > Clag +ag + N| 77 (3.20)

for some C' > 0. It follows that either |a;+ao+vN—v| > Claj+as+N|"7/2 or |ag+puN —pu| >
Clai+as+N|~77/2 holds. Suppose that the former estimate holds. We have the same estimate
in case the latter inequality holds. Without loss of generality we may assume that C' < 2. Let
7 be such that 7 > 75. Then we have

> (0/2)r+1|&1 + ay +N|—’T(T‘+1)
> (C/2)N g + ag + N|7TOHD, (3.21)

Noting that (N — ¢+ r)!/(N — £)! < NI, we see from (3.19) that if

G(ar a0, N—t4r,0—r);4 has a G° estimate, namely, g(a, ag,N—t+re—r)a = O((@1+a2+N)!*~1) modulo
exponential factors, then v(a, ap nv—e,04 = O((1 + aa + N)I**7). Especially, if s = 1, then we
have v(a, as,N—t,0:a = O((aq + as + N)!I"H1). Similarly, we can easily see that v, ay,N—t,0);
(j = 1,2,4) have the estimate v(ay ap,n—t,0;; = O((et1 + g + N)I™T1).

Next we determine v(q, a,,n—¢,0);3 by a similar relation like (3.19). We can easily see that
there appears v(q, a,,N—¢,¢):4 i the rlght hand side of the recurrence relation. Hence the right-
hand side is O((oq 4+ az + N)!I"™1). Tt follows that v(a, s n—t03 = O((cn + ag + N)I*7F2).
Since T > 7 is arbitray, v(a, as,n-t,03 = O((a1 + ag + N)!?) for o > 2 + 27y. This ends the
proof of Theorem 3.1.

|Oél + (6D) + V(N — 1)|T+1

Proof of Proposition 3.5. The eigenvalues of B := ¢; A; + ¢ As is given by ¢y, ¢1 + ¢o, c1v + o
with multiplicity. We shall show that there exists a set £ C R? with Lebesgue measure zero
such that if (¢1,c2) € E, then B is nonresonant. For every a = (aq,...,a4) € Z2, |a| > 2,
the resonance relations are given by

craq + (e + e)ag + (v + cop) (a3 + ay) = ¢, (3.22)

and the ones with ¢; in the right-hand side replaced by c¢; + ¢ and civ + cop, respectively.
Because the argument is similar, we consider the first relation. It follows from (3.22) that

ci(ar +ag +v(az +ay) — 1) + ca(az + p(as +ay)) = 0.
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Because (v, 1) € Q x Q and |a| > 2, we can easily see that either oy +as +v(az+ay) —1#0
or ay + p(az + ay) # 0 holds. Hence the set of (¢, c2) € R? satisfying (3.22) is a straight line.
Therefore the set F of all (¢, ¢o) satisfying a resonance relations has Lebesgue measure zero.
In order to see that Spec(B) satisfies (3.5), let w;(a) (o € Z%) be defined by (1.15) for B.
Then there exists K > 0 such that @;(a) < Kwj(a) for j =1,...,4 and all a € Z1. Tt follows
that (3.5) holds for @;(a).
Let (¢1,¢2) € FE and g € G be given. We want to solve the system of equations

Lif? = Lyf', af' tef’=g (3.23)

By expanding f7(x) =*(f, f],..., f]) into the Taylor series we define F7 by (3.15). We sim-
ilarly define G = “(G1,Ga,...,G4), Gx = {J(ar,a0.N—r.r)k g, Where g(z) = (g1, g2, .., ga),
gr(x) =, garr® We set H' :=1(0,0, F},0) and H? := (0,0, FZ,0). We substitute the ex-
pansions of f7 and g into (3.23). For every (ay, as) € Z% and N € Z, such that oy +as+N > 2
we compare the coefficients of £ of homogeneous degree a; + as + N. Then we can write
(3.23) in the following form

AF? — BF' —e¢H? 4+ ecgH' = 0, aF'+ e F? =G, (3.24)

where A and B are given by (3.17) and (3.18).

First we will construct a formal power series solution F7 (j = 1,2) of (3.24) for a given G.
Because we know that (cf. the proof of Theorem 3.1) either Ay or By is nonsingular for each
k=1,2,...,4, it follows from (3.24) that

A F2 = BoF =0, o F' 4+ cF2 =Gy k=124

Assuming that Ay is nonsingular we obtain F? = A, 'ByF}{, and hence ¢, F} + co A, ' By F}l =
G.. It follows that

F} = (c1+ A Be) 7 G = (a1 Ak + e2By) Ay, (3.25)

if c1. Ay + coBy. is nonsingular. The last condition holds if (¢1,¢y) is not contained in a set of
Lebesgue measure zero in R?, which may depend on oy, as, N. We have similar relations if By
is nonsingular.

In case k = 3, we obtain A3F§ — B3Fy = e(F} — eoF}) instead of A F? — By}l = 0. A
simple computation yields that

Fsl = (c1 Az + C263)_1-/43(;3 —eco(cr Az + 0253)_1(F42 — 80F41).

By taking the union of all exceptional sets of (¢y, ¢2) with oy, as and N in the set of nonnegative
integers such that a; + as + N > 2, we see that there exists a unique formal power series
solution f7(z) (j = 1,2) of (3.23), provided (c;,c2) is not in an exceptional set of Lebesgue
measure zero.

We will show the convergence of f7(z) (j = 1,2). It is sufficient to prove the convergence
of f1(x) since we may take c¢; # 0 in view of the choice of ¢; in the above argument. By the
definition of G and (2), we can easily see that L; ! exists on G, namely

Li'Ly =L L7*=1d on G.

Let g € G. Then it follows from (3.23) and the relation L;fo = Lof; that Lig = ¢ L1 f1 +
coLs fi. Hence we have

g=cifi + L] Lofi.
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Now we have
L1_1L2 = Lng_l = (LQ - €0L1>L1_1 + Eold, on g

By definition, we have
LQ — 80L1 = <A2£C, 8z> — €0<A1.§C, 395) + 80141 — AQ.

Hence, Ly — 9L, is semi-simple. By the condition (2) and the proof of the latter half of
Theorem 3.1, it follows that the absolute value of the coefficient of 2% of L1 g (g = Y, gax®)
is bounded by N +DNCON|g,.| for some C' > 0, where 77 > 7, can be taken arbitrarily close
to 7p. On the other hand, the operator (Ly —e¢Ly) is the one which multiplies the coefficients
of 2% with (g + uN — go(a; + ag — 1 + vN)) for the first component. We have similar
expressions for other components. By the condition (1)’, the absolute value of the term is
bounded by N=N+Den for some 7 > 75. Because 7 > 75 can be taken arbitrarily close
to 7p, the growth N¥"+DC™ which comes from L' is absorbed by the term N~-N(+Ucp.
Therefore, the operator (L, —eoL1)L;* maps G to G. By taking ko sufficiently large, the norm
of (Ly — eoLy1) Ly on the space G N {g =", gax%; |a| > ko} can be made arbitrarily small.
In view of the construction of ¢; and ¢, we may assume that ¢; + coeg # 0. Writing

g=cfi+cli'Lafi = (c1 + cago + R) f1,

where R = (egL1 — L) L', and by noting that R preserves homogeneous polynomials, we see
that (c; + cogg + R) ™! exists as a map from G to G. Therefore we have f; € G. This completes
the proof of Proposition 3.5.

Proof of Proposition 5.6 :  Let g be the convergent power series defined by g, = 0 for
k=1,2,3and all @ € Z%(2); gayan,05.00:0 = 01 s > 1; g(ay,a0,8,00:4 = 1 for (a1, an, N, 0) € Cy,
where C} is given in the definition of G. We want to solve Lgv = g. Let A\; be the eigenvalues
of B. By the same argument as in the proof of Theorem 3.1 we have the formula (3.19). Then
we have

U(a17a2707N);4 = (—61)N()\1061 + )\2062 + )\3(N — 1))_N_1N!, (326)

for all (a1, g, N) € Cy. We can easily see from the conditions (1) and (2) of the definition of
G that Spec(A,) also satisfies (2). It follows that Spec(B) = Spec(c1A; + c2As) also satisfies
the following estimate: for every 7/ < 79 we can find a constant C' > 0 and a subsequence
{(o1 s Q2 s Ni) 1324 such that

|(Marg + Asaoy + As(N, — 1)1 > CONJ', Yk eN.
Therefore, by (3.26)
Vi anonpdl = (Clel ) NN ke Ny ag € Z4(2). (3.27)

Because 1 # 0, 7/ < 79 and 1/2 < 7y, (3.27) and Stirling’s formula, N! > CNNN VN € Z,
lead to the assertion. This ends the proof of Proposition 3.6.

Example 3.8 We give an example of a formal Gevrey linearization. (cf. Theorem 3.1.) We
consider

1 0 0
Lau = R(x + u), A=|0 —7 -1 |, (3.28)
0 0 -7

where T > 0 is an irrational number. For C' > 1, let f be an analytic function f(x1,zs) =
Yoo o @s?, where the summation with respect to « is taken for a € Z2(2) such that 1 <
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a;—Tag < C, ay +ag — 0o. We define R(x) = Y22, xof (21, 72),0). Then we shall show that
the unique solution of (3.28) is in G*.

Indeed, we may look for the solution of the equation in the form u = '(2%, zow(x),0). We
can easily see that w satisfies the equation

(xlaocl - Tanxz - 7_~T30x3 + x3ax2)w = (1 + w)f(ml + 33%, .2?2(1 + w)) = g(x) (329)

We substitue the expansion w(zx) = Y wax® into (3.29). We can easily see that the sum of
the expansion of w(x) can be taken for a such that oy — (g + a3) > 1, because the support of
f satisfies the property and the left-hand side operator of (3.29) maps functions with support
in oq — T(ag + ag) > 1 to those with the same property. If we expand g(x) =) gax®, then
by the same calculations as in (3.19) we obtain

‘ 1 (N =0 +7)!

wal, —00) =
N T L (g — 7N (N = )

If we can show that g, N—t+re—r) = O((€ — 1)) modulo terms of order KN (K > 0), then
we can easily see that W, n—re) = O(L). This proves that the solution u of (3.29) is in G.

If ay + N = 2, then no term from w appears in o, N—ttro—r) i1 (8.30). Hence, by the
analyticity assumption of f, we obtain the desired estimate for w, with a; + N = 2, ag+ a3 =
N. Suppose that we have wia, N—r0 = OL!) up to oy + N < v for some v > 2. Then by the
definition of g(x) = (1 +w)f(z1 + 23, 22(1 +w)) and simple computations of the substitution
of a Gevrey power series into an analytic functions, we see that g, n—ee) = O(L!). Hence, by
the inductive argument we obtain the desired estimate, w(a, N—r,) O(ﬁ‘), oy + N =v. This
completes the proof.

g(al,N—Z—i—T,f—T)a T = 0, ]_, e ,g. (330)

We will briefly mention the general case of d — actions. We suppose that there exist j,
1 <j<mand /4y, 1</y<dsuch that Afo in (1.7) admits only one dimensional eigenspace,
i.e., the geometric multiplicity of )\g is one. For a positive integer r we define the r square

nilpotent matrix N, by
01 0 ... 0
00 1 ...0

N.=1 + ¢+ .. . 1. (3.31)

o O
o O
o O
]
—

By assumption we have
l _ ¢
AP =XId+¢eN,, €#0. (3.32)
By the explicit description of the centralizers of matrices (cf. [14]) all other matrices have the

following form
Sj— 1

AL=XNTId+ > d(N,)F gl eCk=1,...5—1 (3.33)

We have

Theorem 3.9 Assume (3.32). Then there exist Eij in (3.33), )\ﬁ, ¢ =1,2,....,d;5 =
1,2,...,n) with the density of continuum such that the followings hold:
(i) The simultaneously nonresonant condition (1.17) and the following condition hold.

There exists a sequence of € Z7(2), £ € N and a positive number cy such that |of| — oo
(¢ — o0) and

0 <w(a) <cy, (eN. (3.34)

(ii) There exists an f = t(fi, f2,..., fa) € (C{x})? satisfying (3.2) such that v = L,'f is
not contained in the set J,.,_, G5(C").
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4 Sternberg’s theorem for commuting vector fields

The results in section 2 imply that the simultaneous linearization of a Poincaré morphism with
a Jordan block is reduced essentially to the Poincaré-Dulac theorem for a single vector field
in an analytic category. On the other hand, in view of the results in section 3, the reduction
seems impossible if the action is not a Poincaré morphism.

In this section we shall illustrate that the situtation is completely different in a smooth
category. We consider two commuting vector field in R* which are in a Siegle domain and
only one of the two has a linear part with nontrivial Jordan block. Obviously, the action is
not a Poincaré morphism. We will show that they are simultaneously linearizable in C* for
every k > 1.

Let X (y) and Y (y) be commuting C* vector fields with the common singular point at the
origin 0 € R*. Suppose that VX (0) = A, VY (0) = B, where

10 0 O
01 0 O
A= 00 —v 0 ’ (4.1)
00 0 -v
00 0 0
01 0 0
B = 00 —p = , €#0. (4.2)
00 0 —pu
We assume that the action is not a Poincaré morphism, namely, (cf. Example 4.1)
v>pu>0rveR\Q. (4.3)

We also note that the irrationality of v implies that X, and hence the pair (X,Y) is nonreso-
nant. Then we have

Theorem 4.1 Suppose that the conditions (4.1), (4.2) and (4.3) are verified. Let m > 1 be
an integer. Then there exists a C™ change of the variables y = u(x) = x + v(x), v(0) = 0,
Vu(0) = 0 near the origin which transforms both X and Y to their linear parts.

We need to prepare lemmas in order to prove our theorem. In view of Sternberg’s theorem
we assume, without loss of generality, that X is linear, i.e.

Xo(y) = (Voly), Ay). (4.4)
Let R(y) = (R1(y), R2(y), R3(y), R4(y)) be the nonlinear part of Y
Yf(y) = (Vf(y), By + R(y)). (4.5)

Suppose that the change of variables y = u(z) = z+v(z), v(0) = 0, Vv(0) = 0 linearizes both
the vector fields X and Y. Then we can easily see that v(z) satisfies the system of homology
equations

(Vu(z), Bx) — Bv = R(x + v(z)), (4.6)

and
(Vo(z), Az) — Av = 0. (4.7)
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We write z = (21,22, 2") and z = (z1,2’). Let ¢; > 0 and 0 < ¢ < 1 be constants. Then
we define
Q= {2 = (29,23, 74) = (22,2") ER?; |23 < 1, |7"] < &2}, (4.8)

0 = {371 € R, ‘Lﬁl’ < 1} x €. (49)

Then we have

Lemma 4.2 Let k =00 or k > 1 be an integer. Let L be given by

2 4
L= E 10y — V E 21,00, -
j=1 k=3

Then a C* solution of

Lf(z)— f(x) = 0, x=(x1,%2,23,24) € O, (4.10)
(respectively,
Lw(z) +vw(x) = 0 x=(x1,%2,23,24) € ) (4.11)
1S given by
flx) = $1¢i(i—j,$3|$1|y,x4|$1|”), for a1 >0, (4.12)
or
flx) = xgwi(i—j,x3|x1|”,x4|$1|”), for £z >0, (4.13)
(respectively, by
w(x) = ]:L’1|”wi(i—i,x?,]:c1|”,:c4]:c1|”), for £x1>0), (4.14)

where @1 (z) € C*(Q) (respectively 1+(z) € C*(Q).)

Proof. Let L be the operator given in the lemma. We want to solve (4.10) and (4.11). First
we solve (4.10) in the region z; > 0. If we set f(z) = z1p(z) (resp. f(x) = x91p(x)), then we
have that

Lo(x) =0, (resp. Lip(z) = 0). (4.15)

By the theorem in page 61 of [2], the solutions of (4.15) are given by the first integral of the
corresponding characteristic equation. For the sake of simplicity, we consider the equation
Lo(x) = 0. The characteristic equation is given by

d d d d
¢ _ 0% _ _GTs _ 04 (4.16)
T o VX3 VX4
If we integrate (4.16) by taking z; as an independent variable, then we obtain
Ty = 110y, 13 = 27729, 14 = 27729, (4.17)

where 9, 23, ¥ are certain constants. It follows that the first integral ¢ (z) is given by

~ T2 v v -
90-1-(*/1;) = P+ (x_l)x3xlvx4x1) = 90-1-(33(2)756%’1'2)7 (418)
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for some differentiable function @,. Hence, the general solution of (4.10) in z; > 0 is given
by f(z) = x104 () (resp. f(z) = xop4(x) for possibly different ¢ ).

In case x; < 0 we make the same argument by replacing x; with —x;. We see that there
exists ¢_(z) such that f(x) = z1p_(z) (resp. f(x) = x9p_(z) for possibly different ¢_. )

Next we consider the equation (4.11). We set w(z) = |z1|7"4(z). For the sake of simplicity
we consider the case x1 > 0. The case 1 < 0 can be treated similarly if we replace z; with
—x1. We can easily see that 1 satisfies L1y = 0. Hence it follows from the above argument
that

—v —v,7 T v v
w(x) ="y () = 27"y (x—j,xg)xl,mxl) ) (4.19)

This ends the proof. O
By the commutativity we see that every component of v = R(z) = (Ry, ..., Ry) satisfies
either (4.10) or (4.11). Hence, by Lemma 4.1 we have

R;i(z) = xj\lfzt(%,x3|x1|”,a:4|x1|”), for 2, >0, j=1,2, (4.20)
1
Ri(zx) = yx1|—vmi(%,x3|x1|ax4|m1|V), for +2,>0, j=3,4
1
(4.21)

for some functions ¥7.. In the following we will cut off R;(x) with a smooth function being
identically equal to 1 in some neighborhood of the origin and with support contained in a
small neighborhhood of the origin, which we give in the proof of Theorem 4.1. For the sake
of simplicity, we denote the modified R;(x) with the same letter. We set

2 = Ta/x1, 20 = w3|x1]”, 23 = w4la1]”. (4.22)
For every x; # 0, we define ¥7_(2) by (4.20) and (4.21), namely

W (2) = 2y Rj(wy, wy2, 1| 20, 4| TV zs), for £a1 >0, j=1,2,

(4.23)
Vo (z) = |o1|"Rj(z1, 2121, |v1| V22, |01 V23), for £y >0, j=3,4.

(4.24)

We can easily see that ¥/, € C>(R3) (j = 1,2,3,4).

By (4.7) and simple computations we see that every component of v(z) = (v1(z), ..., v4(2))
satisfies either (4.10) or (4.11). It follows from Lemma 4.1 that every component of v has an
expression

. T )
vj(x) = xjwi(;j,m3|x1|”,m4|x1|”), for £2, >0, j=1,2, (4.25)

and
N v v .
vj(x) = |21 @ft(x—j,:cglxﬂ ,wqlx]”), for £z >0, j=3,4, (4.26)

for some .

We substitute the transformation (4.22) and (4.25), (4.26) into (4.6), and we rewrite (4.6)
as an equation of z for the unknown functions ¢’ (z) with a parameter z;. Recalling that
v; = ;0% and v; = |21| 7). We obtain

D901 = 1210,,0%(2), 305,01 = 11220.,04 (2), (4.27)

240,01 = 01230.,00(2), 405,01 = 11230.,0% (2), 4.28)
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and we have similar relations for vy = z9¢% () and v; = |xq|7”

(Vui(x), Bx) = 2,.LpL(2), for +x; >0,
(Vuy(x), Br) — vy(x) = 29L7%(2), for £+ a1 >0,
(Vvj(z), Bx) = |z1| VL) (2), for +a1 >0, j =34,

where

Lf(z) = 210, f(2) = (p22 — €23)0, f(2) — pz305, f(2).
We define ¢4 (2) = "(pL(2), ¥2(2), ¢l (2), ¢i(2))-
Lemma 4.3 We have the expression

Rij(z +v(x)) = 2;EL(2,04(2)), for £2,>0, j=1,2,

where E%(z,w) is given by

- 1+
Fl(z,w) = (1 + w;) V% (21 T 52, (20 + w3)|1 + wy|”, (25 + wa)|1 + wl‘u>
1
and '
Ri(x +v(x)) = |z1| " EL(2, 91 (2)) for £x1 >0, j=3,4,
with

1+ wq

Ei(z,w) = |1 —|—U}1|_V\I/Zt <er,w1

,(22 —|—w3)|1 +w1|”, (23 +w4)|1 —|—w1|”> .

Proof. We have

vy ua(r) (14 9i(2))
1 + i () z1(1+ pi(2))
ol +9i(z) 1+ ¢i(2)

altel(z) T+ eh()
23+ |21] YL () [ |1 + ok (o))
w3l | + ()1 + o (2)]”

2+ L)1+ L)

o+ 1] ek () [ 1L+ ok (o))
il + L)L+ ph ()]

2+ 9L(2)1+ pL(2)".

(w3 +v3(x))|z1 +01|” =

(x4 +v4(2)) |21 +01|" =

o~ o~ o~ o~ o~ o~

Hence, if j = 1,2, we get

T +U1($

] j 1+S02 v v
— o+ AW (a2 Gt DI+ Gt eI+ )
+
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goft(x) In fact we have

(4.29)
(4.30)
(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)



which yields (4.33). Similarly, we can readily prove (4.35). The proof of the lemma is complete.
(Il

Now we are ready to write explicitly the reduction of the overdetermined system for v:
(Xa—Aw =0, (Xy,— B)v=R(x+v(x)) into a 4 x 4 system of equations for ¢, (z) in z € {2
with a parameter x;. Then the new system of semilinear homological equations for ¢y is
written as follows

(‘C_B)(SO:E) = E:I:(Z790:t(z))> E:t(z>w) = (Ezlt(z>w)>"'aEfl:(z7w))7

(4.41)
where E’.(z,w) are given by (4.34) and (4.36) and
00 O 0
B= 8 8 —Ou g (4.42)
00 0 —pu

We prepare a lemma.

Lemma 4.4 Let v > 0 be an irrational number. Let f(z) and w(x) be smooth solutions of
(4.10) and (4.11) in Q, respectively satisfying that

F0) = w(0)=0 (4.43)
Vf(0) = Vw(0)=0. (4.44)

We cut off f(x) and w(x) with a smooth function being identically equal to 1 in some neigh-
borhood of the origin and with support contained in a small neighborhhood of the origin. For
the sake of simplicity we denote the modified functions with the same letter. Let pi(z) and
Yy (z) be defined by (4.12), (4.13) and (4.14), respectively by the same way as (4.23) and
(4.24). Then, for every o € Z7, we have

090(2,0) =0, Vz = (z1,0) € Q, (4.45)
with © = o1 and © =Y.

Proof. Because v is an irrational number we can easily see, from (4.10) and (4.11) that
every f(z) and w(z) satisfying (4.43) and (4.44) are flat at the origin, namely all derivatives
0% f(x), 0%w(x) (o € N?) vanish at the origin z = 0. Let O(2) = p1(2), and set f(z) =
v+ (o)1, w3|21|”, 24|21]"), 21 # 0. Then we have

0Y (z7' f(x)) = 0% o (wa/my, w3|a1|”, wa|1]") (4.46)
= xl_a2‘xl’V(a3+a4)az2a?2382490i(2)‘zlzxz/ml,zgzxg\m\”,Z3=x4\x1\” . (4.47)

We let x tend to zero so as to satisfy xo/xq = 21, 290 = x3|21|” = 0 and 23 = x4|x1]” = 0. Then
we have

0220205 ¢2(21,0,0) = lim |y |Trlesten 9o’ (27! f (21, 22,0, 0)) = 0, (4.48)

21 TR2 723

because f(x) is flat at the origin. The other cases will be proved similarly. O
Remark. Let ¢i(z) € C*(Q) be given. Assume that (4.45) is satisfied for © = ¢4 up to
some finite |«|. Then the function f(z) defined by (4.12) gives a finitely smooth solution of
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(4.10) if v is an irrational number. Indeed, the finite smoothness at z; = 0 follows from the
argument of Lemma 4.4.

In order to solve (4.41) we introduce a function space. Let N > 1 and k < N be integers.
Let 0 < ¢, < ¢3 <1 be a constant. Then we define

Viey = e o (12/17MV (2)) | 4.49
1 ||k;N Z€R3,2g£’|§c’2|§k|2:’ | (|Z| (Z))| ( )

3

VR = QiR V(z) = (Vi(2), Va(2), Va(2)).

=1

The set of all C* functions V(z) such that ||V ||z x < oo is a Banach space B,y with the norm
[/l 4~ Then we have

Lemma 4.5 i) For any integers k > 0 and 0 < ¢ < N, there ezists a constant Cy y > 0 such
that
lullke < Chnllulleny,  Vu € Byn. (4.50)

ii) For every f,g € By.n we have fg € B,y and there exists a constant Cy y > 0 such that

I fgllen < Cenllfllnllglin,  Yf, g € Bin. (4.51)

Proof. Because |2'| < 1, we have, for |a| < k

#1910 (|2'"u(2)) = |2/[*10°(|#] 12TV u(2)
= [ Y0 1Y (1N u(z)) < Crsup 2707 (12N u(2)))
B+y=a

for some C; > 0. This proves i).
In order to prove ii) we have, for |a| < k

I ) [ S E i o (R Al | B e
Bty=a
< Gl fllknligllvo < Coll fln gl (4.52)

Here Cy > 0 and C3 > are constants. This proves ii) . O
Let C' be given by

1 0 0
C=10 - < | (4.53)
0 0 —u
Then we define the operator () by
QV: —/ eftBV(etCZ)dt, VI (‘/1,,‘/21) = (@liﬂoia(ﬂi,@i) (454)
0

We can easily see that U = QV gives the solution of (£ — B )U = V. Then we have

Lemma 4.6 Let the integers k and N satisfy that 0 <k < N —p and u(k+1—N)+k <0.
Then there exists Cy n(2) > 0 such that

1QVlky < Cen() IViy s VV € B, (4.55)
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Proof. First we note that

eC2 = (e'z, e Mz + e Metzs, e zy), (4.56)
e BV = (Wi, Va, (Vs — etViy), e V). (4.57)
Hence we have
V(') = V(e'zy, e (2 + ctzs), e M 23)

= eV (2 + etzs)? 4+ 22NV (€192), (4.58)

where V(¢) = V(¢)/|¢'|N. Tt follows that the right-hand side integral of (4.54) converges,
because the growing term e#* in e7* can be absorbed by e #"* (1 > 0). First we consider
the case k = 0. By (4.57) and (4.58) we have

1 =
Vloy = _sw (o [ e viecs|a)

z2€R3,0< 2’| <)

1 o0
< sup <|Z’|N/0 (14 |e|t)e }V(etcz)’dt)

z€R3,0< 2’| <c)

< sup (|z}|N /000(1 Fleft)e M (2 + |eftzy)? + 22)N/2 [T (efC2) dt) ‘
(4.59)
On the other hand we note that
217N (22 + [eltzs)® + 23)™2 < [N (1] + Jeftl2s)™ < (1 + [eft)™. (4.60)
In order to estimate V (e'“2) we note the following inequality
e M |2y + etzs|? + 22)V2 < |2)(1 + |et)e ™™ < |7| < o, (4.61)
because we have |¢| < p. It follows that
[V (e!€2)] < sup IV (2)). (4.62)
2€R3,0<|2/|<c)
It follows that the right-hand side of (4.59) is estimated in the following way
< sup IV (2)| /00(1 + [e|t)NHerU=Mtar < OV o (4.63)
2€R3,0<|2/|<d) 0

for some C' > 0 independent of V. It follows that ||QV|o.n < C||V|o.n for some C' > 0.
Next we will estimate the derivative |2/|/®l0%(|2/|~NQV). By Leibnitz rule it is sufficient to

estimate the term |2/|®97|2/|~N9*=7(QV), where a@ > 7. By simple computations, we have

|21/ | =N < ||~ NHlel=hl for some C) > independent of 2. On the other hand, we have

aa—v(Qv) — _aa—v/ e—tB((Z2 + 5t23)2 + Z§)N/2€_“Nt‘7(€tcz)dt
0

= — Z /etB“Ntaf((zg + etzs)? + 22)N29T PV (€€ 2)dt. (4.64)

B<La—y

We can easily see

|8f((z2 + etzs)? + zg)Nﬂ] < Co(1+ |€\t)N\z’|N_|ﬁ‘ (4.65)
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for some Cy > 0. If we set « — 3 — v =9, 6 = (1,09, d3), then we have
8a_ﬁ_71~/(etcz) = etél_“(62+53)t(8f1832 (etdy + (93)53 f/)(etoz). (4.66)
It follows that
||| N o (QV)]
Cy| 2’|V Hled=hl Z /OOO Mt INY DB ((2y 4 etzs)? + 22)N/?|
B

IN

x 0077V (%) |dt
Col/[He T [ e (1 ey VY0 (e
ERRAL

IA

IN

6’4/ Z ’Z/||€\‘<8§‘~/>(et0z)|(1 + ’€‘t>N+1+|£\eut—uNt+|a|tdt.

0 |¢|=la—B—~|<k

(4.67)
In order to estimate |2/|l€l[(84V)(e!C2)|, we set ¢ = e'Cz. Then we have
£ [(EV) (e “2)] = |(e79¢)|N(0* V) ()]
< VYOG + £t6s)* + ¢) V2
< L [T VO] S IV llrnvet™ (L + [eft)". (4.68)

By assumption we have (1 +k — N)u+ |a] < (1 +k — N)u+ k < 0. Hence the right-hand
side integral in (4.67) converges. Therefore we see that the right-hand side of (4.67) can be
estimated by C5||V||jn. O

Proof of Theorem 4.1. By setting ¢+ = QV, (4.41) is equivalent to

V = EL(z,QV). (4.69)
We define the sequence Vi (7=0,1,2,...) by
VY =FEi(2,0), V!=E.(z,QV))— E(z,0), (4.70)

and
VIt =B (2, V04 + VD) = Eu(z, V24 + VI, j=1,2,... (4.71)

Let the integers k and N satisfy that 0 <k < N —pand pu(k+1— N)+k < 0. We will
show the convergence of 3722 V{. By definition we have VY = E.(2,0) = Wi (2). Next we
have

1
Vi = Ei(z,QV)) — Ei(2,0) = QV? / VoEi(z, 7QVY)dr. (4.72)
0

Let € > 0 be a small constant chosen later, and suppose that
H\I}in;N < 5/, “V\Ifin’]\[ <. (473)
Then, by Lemma 4.6 and the definition of V we have

I7QVE ey < cal[VE kv = 1| Vs |ley < i€’ (4.74)
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for some ¢; > 0 independent of Wy. Here we recall from (4.70) that V? = E.(2,0) and
Ei(2,0) = U,(z) by (4.34) and (4.36).

In order to estimate |V, Ex(, TQVY) |k, We set w = (wy, ..., ws) = TQVY and
1+w v v
€= (6:6) = (312, (ot w1 4wl o wdlt + ).
+ wy

The differentiation 9%(V,,E+(z,7QVY)) consists of terms which are product of 9°VW, (¢)
(v > () and the differentiations of w. First, the product of differentiations of w is bounded
by a constant in view of (4.74). On the other hand, in order to estimate

12 PN0Pw s ()] < [P 1719 PN0P W ()] < |21 1PNV B 4 g,

we consider |2/|I?!|¢/|714l. By Lemma 4.2 we see that ws and w4 can be divisable by 22 + 22,
respectively. By the smallness of w, the term |2/|"”l|¢’| 7/l can be bounded by a constant.
Hence, if ¢’ > 0 is sufficiently small, then we obtain, by the definition of FL(z,w) in (4.41),
(4.34) and (4.36),

VW B (- 7QV) kv < e VIL|[v < o€’ (4.75)

for some ¢, > 0 independent of & and V..
It follows from (4.72) that

1
V2w < 1QV2 / IV 0B (2, TQVO) wdr < crene
0

In order to show the general case, we assume that ||V{||pn < ¢lcje*! for j =0,1,2,... k.
Then we have i i
. L e
Vileny < dee™ < —— 4.76
H; i”k,N_]z:; 142 = 1—cicoe’ ( )

By definition we have
VI = Bi(z, QY+ + V) - BEi(z,QVP + -+ VET

1
= ij;’/ VoEi(z,QVY + -+ VEY + 7QVE)dr. (4.77)
0

By the apriori estimate (4.76) and Lemma 4.4 the substitution in the right-hand side of (4.77)
is well defined. Moreover, by the same argument as in the proof of (4.75) we see that

IV Br(2,QVY + -+ VED) +7QVE) iv < e,

It follows from (4.77) that
1
IWVE e < 1QVEvead’ / dr < .
0

Hence we have the estimate of V{ for j = k + 1. It follows that the series Vi := Z;io 1%
converges in By,y and V. is a solution of (4.69). We note that, by (4.76) V. satisfies the
estimate ||[Vi|lry < €'(1 — creee’)™!, and Vi is divisable by |2/|%.

Next we verify the smallness assumption (4.73) uniformly with respect to z; # 0 in
some neighborhood of z; = 0. Because the argument is similar we consider the condi-
tion [|[Ui|gny < €. In view of the definition of Wy in (4.23) and (4.24), we estimate
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o Rj(wy, m121, 11| 7z, 21 2s), (5 = 1,2) and ||V R (21, w121, |21 2, |2 7Y), (5 = 3,4)
with x; # 0 close to 0. Because the argument is similar, we consider the case j = 1. We have

2oz (1L (2))| = 2 O (1Y R, vz, ||z, | [V2))[ - (4.78)
By Lemma 4.4 we have that, for every positive integer p, the term
Ry(zy, 2121, 21| 20, |21 7V 23)|2"| 7P
is smooth at z = 0. Because
217 = (a1 DP = (e [7]2"])7, 2" = (w3, 24),

and |2”| is bounded by the support condition of R;, the negative power |2/|~" in the right-
hand side of (4.78) is absorbed by |2/|P if p is sufficiently large. On the other hand, if the
differentiation 0% is applied to Ry(z1, x121, |x1| 29, |T1]7"23), then the negative power of |x|
appears. These terms are also uniformly bounded when x; — 0, because there appears positive
power of |z;| from |2/|P. Because all derivatives of R(x) at the origin vanish, we see that the
right-hand side of (4.78) can be made arbtrarily small if we cut off R(x) in a sufficiently small
neighborhood of the origin. This proves that we have (4.73).

We set o = QVi € Byn, and 4 (2) = (pL(2), ¥1(2), ¢L(2), ¥L(2)). The function ¢y is
a solution of (4.41). Then we define v/(z) (j = 1,2,3,4) by (4.25) and (4.26). For a given
integer m, we can easily see that v’(z) is a C™ function if we take k and N in By sufficiently
large. If we rewrite (4.41) with the variable z, then we see that v is a solution of (4.6), where
the nonlinear part R is modified by a cutoff function. In order to show that v is a solution of
the original (4.6) we will show the apriori estimate of v. Indeed, if |x + v| < &” for sufficiently
small €”, then v is a solution of (4.6). By Lemma 4.6 and the uniform estimate of V in x; we
know that ¢} (z) is uniformly bounded in z and ;. It follows that vy (x) = ;4L is arbitrarily
small if z; is sufficiently small. Similarly we can show that vy(z) = z9¢? is small by the
estimate of Vi. On the other hand, we have z3 4+ v3(z) = x3 + |21|7V¢3(2). Because ¢3 is
divisable by |2/|> and |2/| = |z1]"|z"|, by Lemma 4.4 we see that |z3 + v3(z)| < ” uniformly in
x1. Similarly we can show the same estimate for x4 4+ v4. Therefore we see that v is a solution
of (4.6). This completes the proof.
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