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Abstract

We study a simultaneous linearizability of d–actions (and the corresponding d-dimensional
Lie algebras) defined by commuting singular vector fields in Cn fixing the origin with
a nontrivial Jordan block in the linear parts. We prove the analytic convergence of a
formal linearizing transformation under a certain invariant geometric condition for the
spectrum of d vector fields generating a Lie algebra. (cf. Example 1.6.) If the con-
dition fails and if we consider the situation where the small denominator occurs, then
we show the existence of divergent solutions of an overdetermined system of linearized
homological equations. In a smooth category, the situation is completely different. We
will show Sternberg’s theorem for a commuting system of vector fields with a Jordan
block although they do not satisfy the condition.
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1 Simultaneous normalization

Let K be K = C or K = R, and B = ∞, B = ω or B = k for some k > 0. Let Gn
B denotes a

d–dimensional Lie algebra of germs at 0 ∈ Kn of CB vector fields vanishing at 0. Let ρ be a
germ of singular infinitesimal Kd (d ≥ 2) actions of class CB

ρ : Kd −→ Gn
B. (1.1)
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We denote by ActB(Kd : Kn) the set of germs of singular infinitesimal Kd actions of class CB

in 0 ∈ Kn. By choosing a basis e1, . . . , ed ∈ Kn, the infinitesimal action can be identified with
a d–tuple of germs at 0 of commuting vector fields Xj = ρ(ej), j = 1, . . . , d (cf. [10], [17]).
We can define, in view of the commutativity relation, the action

ρ̃ : Kd ×Kn −→ Kn, (1.2)

ρ̃(s; z) = X1
s1
◦ · · · ◦Xd

sd
(z) = Xσ1

sσ1
◦ · · ·Xσd

sσd
(z), s = (s1, . . . , sd),

(1.3)

for all permutations σ = (σ1, . . . , σd) of {1, . . . , d}, where Xj
t denotes the flow of Xj. We

denote by ρlin the linear action formed by the linear parts of the vector fields defining ρ.
We shall investigate the necessary and sufficient condition for the linearization of ρ, namely,

whether there exists a CB diffeomorphism g preserving 0 such that g conjugates ρ̃ and ˜ρlin

ρ̃(s; g(z)) = g(ρ̃lin(s, z)), (s, z) ∈ Kd ×Kn. (1.4)

We recall that in [10], and [24] the linear parts were supposed to be diagonalizable, while in
[29] the existence of n− d anlalytic first integrals was required. (See also [1], [15]). Following
Katok’s argument in [17], we take a positive integer m ≤ n such that Kn is decomposed into
a direct sum of m linear subspaces invariant under all A` = ∇X`(0) (` = 1, . . . , d):

Kn = Is1 + · · ·+ Ism , dim Isj = sj, j = 1, . . . ,m,

s1 + · · ·+ sm = n. (1.5)

The matrices A1, . . . , Ad can be simultaneously brought in an upper triangular form, and we
write again A` for the matrices,

A` =


A`

1 0s1×s2 . . . 0s1×sm

0s2×s1 A`
2 . . . 0s2×sm

...
...

...
...

0sm×s1 0sm×s2 . . . A`
m

 , ` = 1, . . . , d. (1.6)

If K = C, the matrix A`
j is given by

A`
j =


λ`

j A`
j,12 . . . A`

j,1sj

0 λ`
j . . . A`

j,2sj

...
...

...
...

0 0 . . . λ`
j

 , ` = 1, . . . , d, j = 1, . . . ,m, (1.7)

with λ`
j, A

`
j,νµ ∈ C. On the other hand, if K = R, then we have, for every 1 ≤ j ≤ m two

possibilities: firstly, all A`
j (` = 1, . . . , d) are given by (1.7) with λ`

j ∈ R. Secondly, sj = 2s̃j is
even and A`

j is a s̃j × s̃j square block matrix given by

A`
j =


R2(λ

`
j, µ

`
j) A12

`,j . . . A
1s̃j

`j

0 R2(λ
`
j, µ

`
j) . . . A

2s̃j

`j
...

...
...

...
0 0 . . . R2(λ

`
j, µ

`
j)

 , ` = 1, . . . , d,

(1.8)
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where

R2(λ, µ) :=

(
λ µ
−µ λ

)
, λ, µ ∈ R, (1.9)

and Ars
`j are appropriate real matrices.

Following the decomposition (1.7) (respectively, (1.8)) we define λ̃j by

λ̃k = (λk
1, . . . , λ

k
m) ∈ Km, k = 1, . . . , d. (1.10)

Then we assume
λ̃1, · · · , λ̃d are linearly independent in Km. (1.11)

One can easily see that (1.11) is invariantly defined.
By (1.6) we define

~λj = t(λ1
j , · · · , λd

j ) ∈ Kd, j = 1, . . . ,m, (1.12)

and
Λm := { ~λ1, . . . , ~λm}. (1.13)

We define the cone Γ[Λm] by

Γ[Λm] =

{
m∑

j=1

tj ~λj ∈ Kd; tj ≥ 0, j = 1, . . . ,m,
m∑

j=1

tj 6= 0

}
. (1.14)

Definition 1.1 We say that the Kd–action ρ is a Poincaré morphism if there exists a base
Λm ⊂ Km such that Γ[Λm] is a proper cone in Km, namely it does not contain a straight real
line. If the condition is not satisfied, then, we say that the Kd action is in a Siegel domain.

Note that the definition is invariant under the choice of the basis Λm.

Remark 1.2 As to the alternative definition of a Poincaré morphism we refer to the definition
6.2.1 of [24].

Next, we introduce the notion of simultaneous resonances. For α = (α1, . . . , αm) ∈ Km,
β = (β1, . . . , βm) ∈ Km, we set 〈α, β〉 =

∑m
ν=1 ανβν . For a positive integer k we define

Zm
+ (k) = {α ∈ Zm

+ ; |α| ≥ k}. Put

ωj(α) =
d∑

ν=1

|〈λ̃ν , α〉 − λν
j |, j = 1, . . . ,m, (1.15)

ω(α) = min{ω1(α), . . . , ωm(α)}. (1.16)

Definition 1.3 We say that Λm is simultaneously nonresonant (or, in short ρ is simultane-
ously nonresonant), if

ω(α) 6= 0, ∀α ∈ Zm
+ (2). (1.17)

If (1.17) does not hold, then we say that Λm is simultaneously resonant.

Clearly, the simultaneously nonresonant condition (1.17) is invariant under the change of the
basis Λm. We state the first main result of our paper
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Theorem 1.4 Let ρ be a Poincaré morphism. Then ρ is conjugated to a polynomial action
by an holomorphic change of variables.

Remark 1.5 In case ρ has a semi simple linear part, then Theorem 1.4 is already known.
(cf. Theorem 2.1.4 of [24]).

Example 1.6. We compare our theorem with the results of Stolovitch [24] and Zung [29].
Let ρ be a R2 action in Rn, n ≥ 4 with m = 3. We choose a basis Λ2 of R3 such that

Λ2 =
{

t(1, 1, ν), t(0, 1, µ)
}
, ν, µ ∈ R. (1.18)

(cf. [13] for similar and more general reductions of commuting vector fields on the torus).
We will characterize the set of (ν, µ) ∈ R2 so that the action is a Poincaré morphism, and

determine the simultaneous resonances. By (1.14), Γ[Λ2] is generated by the set of vectors
{(1, 0), (1, 1), (ν, µ)}. Hence the action is a Poincaré morphism if and only if these vectors
generate a proper cone, namely (ν, µ) is not in the set {(ν, µ) ∈ R2; ν ≤ µ ≤ 0}. We note
that the interesting case is µ < ν ≤ 0, where every generator in (1.18) is in a Siegel domain.
Theorem 1.4 can be applied to such a case. In §3 we will show that if the action is not a
Poincaré morphism, i.e., ν < µ < 0, then there exist (ν, µ) with the density of continuum
such that the linearized overdetermined system of two homological equations has a divergent
solution.

Next we will determine (ν, µ) so that a simultaneous resonance exists. If η = (η1, η2, η3) ∈
Z3

+(2) is a simultaneous resonance, we have the following set of equations:

(1) η1 + η2 + νη3 = 1, η2 + µη3 = 0,

(2) η1 + η2 + νη3 = 1, η2 + µη3 = 1,

(3) η1 + η2 + νη3 = ν, η2 + µη3 = µ.

By elementary computations, in order that one of these equations has a solution η the (ν, µ)
satisfies the following:
a) Case ν ≤ µ ≤ 0. The resonance exists iff (ν, µ) ∈ Q− × Q−, where Q− is the set of
nonpositive rational numbers. The resonance is given by (1+(µ−ν)k,−µk, k) and ((µ−ν)k, 1−
kµ, k) where k ≥ 1/(1−ν), k ∈ Z+, and ((ν−µ)(1−k), µ(1−k), k), where k ≥ (2−ν)(1−ν),
k ∈ Z+.
b) Case ν > µ and µ ≤ 0. The resonance is given by (0,−µ/(ν − µ), 1/(ν − µ)), where
−µ/(ν − µ) ∈ Z+, 1/(ν − µ) ∈ Z+ and 2ν − µ ≤ 1.
c) Case µ > 0, ν ≤ µ. The resonance is given by (0, 0, 1/ν), when ν = µ, ν ≤ 1/2, ν−1 ∈ Z+,
(0, ν, 0), when ν = µ ≥ 2, ν ∈ Z+, ((µ − ν)/µ, 0, 1/µ), if otherwise, where (µ − ν)/µ ∈ Z+,
1/µ ∈ Z+ and ν + µ ≤ 1.
d) Case ν > µ, µ ≥ 0. The resonance is given by (ν − µ, µ, 0), where ν − µ ∈ Z+, µ ∈ Z+ and
ν ≥ 2.

Let ν be a negative rational number, ν = −k1/k2, k1, k2 ∈ Z+, k2 6= 0. Let µ be a rational
number and satisfy µ < ν. Assume that the nonlinear part of X2 is zero. If the nonlinear
part of X1 consists of the resonant terms of X2, then we have [X1, X2] = 0. We can easily
see that the linearizability of X1 holds provided µ 6= ν − 1/k2 = −(k1 + 1)/k2.

2 A Poincaré morphism

We start by showing equivalent forms of a Poincaré morphism.
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Proposition 2.1 The action is a Poincaré morphism if and only if each of the following
conditions holds
i) there exist a positive constant C and an integer k0 such that

d∑
k=1

|
m∑

j=1

λk
jαj| ≥ C1|α|, ∀α ∈ Zm

+ (k0). (2.1)

ii) there exists a nonzero vector c = (c1, . . . , cd) ∈ Cd if K = C (respectively, c = (c1, . . . , cd) ∈
Rd if K = R) such that

c1λ̃
1 + · · ·+ cdλ̃

d is in a Poincaré domain, (2.2)

namely, the convex hull of the set {
∑d

j=1 cjλ
j
k; k = 1, . . . ,m} in C does not contain 0 ∈ C

(respectively,

the real parts of c1λ
1
j + · · ·+ cdλ

d
j , j = 1, . . . ,m, are positive.) (2.3)

Proof. First we show (2.1). Suppose that (2.1) does not hold. Then there exists a sequence
α` ∈ Zm

+ , ` ∈ N such that |α`| → ∞ (`→∞) and

d∑
k=1

|
m∑

j=1

λk
jα

`
j| ≤

|α`|
`
, ` ∈ N. (2.4)

By taking a subsequence, if necessary, we may assume that α`/|α`| → t0 = (t01, . . . , t
0
m) ∈

S1
`1

⋂
Rm

+ when `→∞, where S1
`1 := {x ∈ Km; ‖x‖`1 =

∑m
j=1 |xj| = 1} stands for the `1 unit

sphere. By letting `→∞ in (2.4) we get

d∑
k=1

|
m∑

j=1

λk
j t

0
j | = 0.

It follows that
∑m

j=1 t
0
j
~λj = 0. Let J ⊂ {1, . . . ,m} be such that

∑
j∈J t

0
j
~λj 6= 0. Such a set J

exists by (1.11). It follows that

0 6=
∑
j∈J

t0j
~λj = −

∑
j∈{1,...,m}\J

t0j
~λj.

Hence Γ[Λm] contains a straight line generated by
∑

j∈J t
0
j
~λj 6= 0. This contradicts the as-

sumption that Γ[Λm] is a proper cone.
Conversely, suppose that (2.1) is satisfied. We shall show that Γ[Λm] is proper. Indeed, if

otherwise, we can find t0 = (t01, . . . , t
0
m) ∈ S1

`1

⋂
Rm

+ \ 0 such that

m∑
j=1

t0jλ
k
j = 0, k = 1, . . . , d. (2.5)

Because the set {α/|α|;α ∈ Zm
+ (2)} is dense in S1

`1

⋂
Rm

+ , there exists a sequence α` ∈ Zm
+ ,

` ∈ N such that |α`| → ∞ (`→∞) and lim`→∞ α`/|α`| = t0 . Therefore, in view of (2.5), we
get

lim
`→∞

(
1

|α`|

d∑
k=1

|
m∑

j=1

λk
jα

`
j|

)
= 0,
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which contradicts (2.1)
Next, we show ii). Suppose that Γ[Λm] be a proper cone in Kd. Then we can find

c = (c1, . . . , cd) ∈ Cd such that Γ[Λm] is contained in the real half–space Pc := {z ∈
Kd, Re(

∑d
k=1 ckzk) > 0}. Therefore

0 < Re(
d∑

k=1

ck

m∑
j=1

tjλ
k
j ) =

m∑
j=1

tjRe(
d∑

k=1

ckλ
k
j ) (2.6)

for all t ∈ Rm
+ \ 0, which yields Re(

∑d
k=1 ckλ

k
j ) > 0 for j = 1, . . . ,m. We note that, if K = R,

then the use of the real part in the definition of the half–space is superfluous. Finally, we
readily see, from (2.2) that, if K = C (respectively, (2.3) if K = R), then the cone Γ[Λm] is
contained in Pc. Hence Γ[Λm] is proper. The proof is complete.

Although the following proposition is known, we give an alternative proof for the sake of
completeness. (cf. Lemma 3.1 of [25].)

Proposition 2.2 Let the action ρ be a Poincaré morphism. Then we can find a vector field
in the corresponding Lie algebra which has the same resonace as the simultaneous resonance
of ρ and is in the Poincaré domain.

Proof. By ii) of Proposition 2.2 we can find a Poincaré vector field in the Lie algebra as a
linear combination of a base corresponding to (2.2). Let cν be the numbers in (2.2), and define
λ̃0 := (λ0

1, . . . , λ
0
m) =

∑d
ν=1 cνλ̃

ν . Let S be a similtaneous resonance of ρ. Consider

〈λ̃0, α〉 − λ0
j =

d∑
ν=1

cν

(
〈λ̃ν , α〉 − λν

j

)
.

Because
∑d

ν=1 |〈λ̃ν , α〉−λν
j | 6= 0 for every α ∈ Zm

+ (2)\S, it follows that the set 〈λ̃0, α〉−λ0
j = 0

in c = (c1, . . . , cd) ∈ Cd is a hyperplane if α 6∈ S. It follows that the set

{c = (c1, . . . , cd) ∈ Cd; 〈λ̃0, α〉 − λ0
j = 0,∃j, 1 ≤ j ≤ m, ∃α ∈ Zm

+ (2) \ S}

is a countable union of nowhere dense closed set. Therefore we can find c = (c1, . . . , cd)
for which

∑d
ν=1 cνλ̃

ν satisfies the Poincaré condition and has the resonance S. This proves
Proposition 2.2.

We propose a geometric expression of a Poincaré morphism.

Definition 2.3 Let r > 0 and g be a Riemannian metric on Rn. We denote by 〈·, ·〉g and
‖ · ‖g the inner product and the norm with respect to g, respectively. We say that Xν :=∑n

j=1X
ν
j (x)∂xj

(ν = 1, . . . , d) are simultaneously transversal to the sphere ‖x‖g = r if, the
vectors Xν := (Xν

1 , . . . , X
ν
n) (ν = 1, . . . , d) satisfy

d∑
ν=1

|〈Xν , x〉g| 6= 0, ∀x, ‖x‖g = r. (2.7)

Theorem 2.4 Let r > 0. Suppose that Bν :=
∑n

j=1(A
νx)j∂xj

(ν = 1, . . . , d) be a commuting
system of semi-simple linear real vector fields in Rn. Let ρ be the action generated by {Bν}.
We choose a real nonsingular matrix P such that Λν = P−1AνP is a block diagonal matrix
given by
Λν = diag {R2(ξ

ν
1 , η

ν
1 ), . . . , R2(ξ

ν
n1
, ην

n1
), λν

n1+1, . . . , λ
ν
n} for some integer

n1 ≤ n.. Let g be a Riemannian metric defined by P tP . Then the following conditions are
equivalent.
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(a) Bν (ν = 1, . . . , d) are simultaneously transversal to the sphere ‖x‖g = r.
(b) ρ is a Poincaré morphism.
(c) There exist real numbers cν (ν = 1, . . . , d) such that

∑d
ν=1 cνBν is transversal to the sphere

‖x‖g = r.

Proof. We note that 〈x, y〉g = 〈Px, Py〉 and ‖x‖g = ‖Px‖. By inserting the relation Aν =
PΛνP−1 into (2.7) we can easily see that the simultaneous transversality condition is equivalent
to

d∑
ν=1

|〈Λνy, y〉| 6= 0, ∀y = (y1, . . . , yn), ‖y‖ = 1. (2.8)

By definition, (2.8) can be written in

d∑
ν=1

|
n1∑

j=1

ξν
j (y2

2j−1 + y2
2j) +

n∑
j=n1+1

y2
jλ

ν
j | 6= 0, ∀y, ‖y‖ = 1. (2.9)

We define t = (t1, . . . , tn), t ∈ Rn
+,
∑
tj = 1 by tj = (y2

2j−1 + y2
2j)/2 if j ≤ n1 and tj = y2

j

if j > 2n. Noting that ξν
j (y2

2j−1 + y2
2j) = 2tjξ

ν
j = tj(ξ

ν
j + iην

j + ξν
j − iην

j ) we see that (2.9) is

written in
∑d

ν=1 |
∑n

j=1 tjλ
ν
j | 6= 0 for every t ∈ Rn

+ and
∑
tj = 1. This is equivalent to (b) by

definition. Hence we have proved the equivalence of (a) and (b).
By Proposition 2.2 the condition (b) is equivalent to the existence of real numbers cν

(ν = 1, . . . , d) such that
∑d

ν=1 cνBν is a Poincaré vector field. By what we have proved in the

above (d = 1) this is equivalent to say that
∑d

ν=1 cνBν is transversal to the sphere ‖x‖g = r.
Hence we have proved Theorem 2.4.

Proof of Theorem 1.4. By Proposition 2.2 there exists a Poincaré vector field χ0 in ρ which
is in a Poincaré domain and has the same resonance as ρ. If ρ is not resonant, then we have
Theorem 1.4. In case there is a resonance of ρ, then it follows from Lemma 3.2 of [25] that,
if χ0 is normalized, then so is ρ. This completes the proof of Theorem 1.4.

3 Divergent solutions of overdetermined systems of lin-

earized homological equations

We now study the action ρlin which is in a Siegel domain and admits a Jordan block. We as-
sume that the action is formally (simultaneously) linearizable and is not a Poincaré morphism
and that the family of linear parts is Diophantine. We shall show that the unique formal
solution of a linearized homological equation diverges.

Let Cn
2{x} be the set of n vector functions of convergent power series of x without constant

and linear terms. We examine the system of the linearized homology equation

LAv = t(L1v, . . . , Ldv) = f, f := t(f1, . . . , fd) ∈ (Cn
2{x})d, (3.1)

where Lj is the Lie bracket,

Ljv = [Ajx, v] = 〈Ajx, ∂x〉v − Ajv, j = 1, . . . , d,

under the compatibility conditions

Ljfk = Lkfj, j, k = 1, . . . , d. (3.2)

First we consider a 2-C action studied in Example 1.4. We assume that there exists a vector
field in the two-dimensional Lie algebra which is not semisimple. In view of Example 1.4 we
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can choose a base X1, X2 with linear parts Aj ∈ GL(4; C) satisfying spec (A1) = {1, 1, ν, ν}
and spec (A2) = {0, 1, µ, µ}, respectively, where ν ≤ µ ≤ 0, (ν, µ) 6∈ Q×Q, and

A1 =


1 0 0 0
0 1 0 0
0 0 ν ε
0 0 0 ν

 , A2 =


0 0 0 0
0 1 0 0
0 0 µ ε0ε
0 0 0 µ

 , (3.3)

where ε 6= 0 and ε0 ∈ C. We can make |ε| > 0 arbitrarily small by an appropriate linear
change of variables.

Let ω(α) be defined by (1.16). We say that the simultaneous Diophantine order of
{spec (A1), spec (A2)} is τ0, if, for every τ > τ0 there exists C = Cτ > 0 such that

ω(α) ≥ C|α|−τ , ∀α ∈ Z4
+(2), (3.4)

while, for every τ < τ0 there exists a subsequence α` ∈ Z4
+(2) (` = 1, 2, . . .) such that

ω(α`) ≤ |α`|−τ , ` ∈ N. (3.5)

First we note that the conditions (3.4) and (3.5) for ω(α) are equivalent to the correspond-
ing ones for ‖qν‖+‖qµ‖ when q ∈ N, q →∞, where ‖t‖ = minp∈Z |p−t|. Hence the number τ0
in (3.4) and (3.5) is equal to the speed of the simultaneous approximation of ν and µ, namely
‖qν‖+ ‖qµ‖ ∼ Cq−τ0 for some constant C > 0 independent of q. Clearly, if (3.4) holds, then
we have an upper bound of τ0. By the result of M. Herman, [16], we have an upper bound
2+ε for every ε > 0 for almost all ν and µ. On the other hand, Moser showed that there exist
Liouville numbers ν and µ such that ‖qν‖+ ‖qµ‖ ≥ cq−τ for any given τ > 2. (See Theorem
2 of [22]). This implies that for every τ > 2, there exist Liouville numbers ν and µ such that
τ0 ≤ τ . We have another upper bound of τ0 if either ν or µ is an algebraic number. Indeed,
by Roth’s theorem, for any given τ > 1 there exists c > 0 such that by ‖qν‖ + ‖qµ‖ ≥ cq−τ .
Hence we have τ0 ≤ 1. Finally, by [Corollary 1B, p.27, 22], if either ν or µ is an irrational
number, then we have a lower bound τ0 ≥ 1/2.

We say that α and β are simultaneously Liouville, if (3.5) holds for every τ > 0.
Let σ ≥ 1. We say that a formal power series f(x) =

∑
α fαx

α is in a Gevrey space Gσ
2 (C4)

if fα = 0 for |α| ≤ 1 and, there exist C > 0 and R > 0 such that

|fα| ≤ CR|α||α|!σ, ∀α ∈ Z4
+.

We consider the following equation

LAv := t(L1v, L2v) = f, f = t(f1, f2) ∈ (C4
2{x})2, x ∈ C4, (3.6)

where t(f1, f2) satisfies the compatibility condition L1f2 = L2f1. Then we have

Theorem 3.1 Assume that ε0 6= 0 is a real number. Then, if (ν, µ) ∈ Q×Q and ν < µ ≤ 0,
then there exists f = t(f1, f2) ∈ (C4

2{x})2 such that L1f2 = L2f1 and Eq. (3.6) has a formal
power series solution v 6∈

⋃
1≤σ<5/2G

σ
2 (C4). Moreover, there exist (ν, µ) 6∈ Q×Q and ν < µ ≤ 0

with the density of continuum such that the same assertion holds.
Furthermore, suppose that (ν, µ) 6∈ Q×Q, (3.4), (3.5) and τ0 < +∞ hold. Then (3.6) has

a unique solution v ∈
⋂

σ>3+2τ0
Gσ

2 (C4) for every t(f1, f2) ∈ (C4
2{x})2 satisfying L1f2 = L2f1.

In order to prove Theorem 3.1, we need a function space G which is a subspace of a set of
holomorphic functions in a neighborhood of the origin. First we give the definition in the case
ε0 = 1, i.e., the nilpotent parts of A1 and A2 coincide. We define G by

G :=

f = t(f1, f2, f3, f4); fj ≡ fj(x) =
∑
α∈Cj

f j
αx

α, j = 1, 2, 3, 4

 ,
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where Cj ⊂ Z4
+(2) satisfies the following two conditions.

(1) There exist c0 > 0 and τ > τ0 such that for every α = (α1, α2, α3, α4) ∈ Cj, we have
N = α3 + α4 6= 0, |α| ≥ 2, and

|α1 − 1 + (ν − µ)N | < N−N(τ+1)cN0 , ∀α ∈ Cj (j = 1, 2),

|α1 + (ν − µ)(N − 1)| < N−N(τ+1)cN0 , ∀α ∈ Cj (j = 3, 4).

(2) The Diophantine condition for Spec(A1) holds: namely for every τ ′ < τ0 < τ ′′, there exist
c1 > 0 and c2 > 0 such that

c1N
−τ ′′ < |α1 + α2 − 1 + νN | < c2N

−τ ′ if α ∈ Cj, j = 1, 2,

c1N
−τ ′′ < |α1 + α2 + νN − ν| < c2N

−τ ′ if α ∈ Cj, j = 3, 4,

where N = α3 + α4 6= 0.

Remark 3.2 If ε0 6= 1, we replace (1) with the following (1)’.

(1)’ There exist c0 > 0 and τ > τ0 such that for every α = (α1, α2, α3, α4) ∈ Cj, we have
N = α3 + α4 6= 0, and

|ε0(α1 − 1 + α2 + νN)− (α2 + µN)| < N−N(τ+1)cN0 , if α ∈ C1.

In the case α ∈ C2, we replace α1 and α2 in the left-hand side of the above inequality with
α1 + 1 and α2 − 1, respectively. Similarly, in the case α ∈ C3 or α ∈ C4, we replace α1 and
N in the left-hand side of the above inequality with α1 + 1 and N − 1, respectively.

Remark 3.3 The space G is a normed space with the norm ‖f‖ :=
∑

α |fα|, where |fα| =∑
j |f j

α| with f being given in the definition of G.
If the conditions (1) and (2) hold, then we can easily show that the Diophantine condition

for Spec(A2) holds. Hence we have a simultaneous Diophantine condition for Spec(A1) and
Spec(A2). In the following, we will see that on the support Cj of G, the divergence of the
solutions of LA occurs.

Remark 3.4 The space G is not empty for an appropriate choice of ν and µ such that ν <
µ < 0, i.e., the action is not a Poincaré morphism. We first consider the case ε0 = 1 for
the sake of simplicity. If we construct ν and µ so as to satisfy the conditions (1) and (2)
for C1 = C2, then the conditions (1) and (2) for Cj (j = 3, 4) hold if we define C3 = C4 by
replacing α1 and N in C1 with α1 + 1 and N − 1, respectively. Hence we will consider C1.

We can easily construct an irrational number ν < 0 which satisfies (2). In fact, α1 + α2

and N are given by a continued fraction expansion of ν. Note that α1 can be taken arbitrarily.
Next, by the standard measure theoretic argument, we can show that there exist an irrational
number µ with ν − µ < 0 and the sequence {α1} such that (1) holds. By construction, we can
also choose µ < 0 such that ν < µ < 0. It follows that the action is not a Poincaré morphism.
Moreover, we can easily see that the set of ν and µ satisfying (1) and (2) has the density of
continuum.

Next we consider the case ε0 6= 1. For the sake of simplicity, we give the sketch of the proof
for C1 in the case 0 < ε0 < 1. The other cases can be treated similarly. First we construct ν
so as to satisfy (2). Then the sequence of the integers k ≡ α1 + α2 − 1 and N are also given.
In order to show that there exists µ satisfying (1)′, we consider the inequality∣∣∣∣α1 − 1 + (1− ε−1

0 )α2

N
− (ε−1

0 µ− ν)

∣∣∣∣ < N−N(τ+1)−1cN0 ε
−1
0 .
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We consider closed intervals of length 2N−N(τ+1)−1cN0 ε
−1
0 with the centers at

α1−1+(1−ε−1
0 )α2

N
,

(α1 + α2 = k + 1). Let N and one of these intervals IN are given. Then we can choose
N ′ > N and IN ′ such that IN contains IN ′. Hence we can construct a sequence of monotone
decreasing intervals. By taking a subsequence, if necessary, we see that there exists µ which
satisfies (1)′. By construction the set of µ has the density of continuum. We remark that we
can take ν̃ := ε−1

0 µ − ν > 0 if 0 < ε0 < 1. Indeed, since 1 − ε−1
0 < 0 and k/N → −ν > 0 as

k,N →∞, it follows that one can take the interval IN so that IN is contained in the positive
real axis and it is arbitrarily close to the origin. Hence we have µ = ε0(ν̃ + ν) > ε0ν > ν,
which implies that the action is not a Poincaré morphism. Similarly, we can show that there
exists µ such that the condition does not hold in other cases.

The proof of Theorem 3.1 follows from the following propositions.

Proposition 3.5 Assume that ε0 6= 0 is a real number. Then there exist ν < µ < 0, (ν, µ) 6∈
Q×Q with the density of continuum, real numbers c1, c2 and k0 > 0 such that for any g ∈ G,
g =

∑
|α|≥k0

gαx
α, there exist fj ∈ G (j = 1, 2) such that

L1f2 = L2f1, g = c1f1 + c2f2.

Moreover, B := c1A1 + c2A2 is nonresonant, and ω defined by (1.16) for Spec(B) satisfies
(3.5).

Proposition 3.6 Assume that ε0 6= 0 is a real number. Let ν, µ, c1 and c2 be as in
Proposition 3.5. Then there exists g ∈ G such that the homology equation LBv = g with
B := c1A1 + c2A2 has a unique formal power series solution v which is not contained in
∪1≤σ<5/2G

σ
2 (C4).

Remark 3.7 Our divergence results imply in the case of a single holomorphic vector field, that
generically vector fields obtained by nonlinear holomorphic perturbations are nonlinearizable
(see R. Pérez Marco [21] for more details). As to the case of smooth C∞ hyperbolic R2

actions we refer [10]. We point out that the divergence in Gevrey classes of formal solutions
of overdetermined systems of linear homological equations generalize those for the single vector
fields in the presence of nontrivial Jordan blocks (see [15]).

First we will show Theorem 3.1, assuming Propositions 3.5 and 3.6.
Proof of Theorem 3.1. We will prove the former half. By the result of Example 1.6 (a),
we know that if (ν, µ) ∈ Q− × Q−, then (3.6) has an infinite resonance. It follows that (3.6)
with f = 0 has a formal power series solution v 6∈

⋃
1≤σ<5/2G

σ
2 (C4), because (3.6) is a linear

equation. Next we assume (ν, µ) 6∈ Q×Q. By Proposition 3.6 we can choose g ∈ G such that
the unique solution v of LBv = g with B = c1A1 + c2A2 is not contained in

⋃
1≤σ<5/2G

σ
2 (C4).

By Proposition 3.5 we choose fj ∈ G (j = 1, 2) such that L1f2 = L2f1 and g =
∑2

j=1 cjfj.
Because the solution v of the system of equations LAv = f is a unique solution of a single
equation LBv = g, we see that v is not contained in

⋃
1≤σ<5/2G

σ
2 (C4). This proves the former

half of the theorem.
We will prove the latter half. We consider the system of equations Ljv = fj(j = 1, 2),

where L1f2 = L2f1. Let B denote either A1 or A2. For the sake of simplicity, we assume that
B is put in a Jordan normal form with the diagonal part B0 := diag{λ1, λ2, λ3, λ3}. The off
diagonal element of B is denoted by ε1. We note that, for the equation L1v = f1 we have
λ1 = λ2 = 1, λ3 = ν, ε1 = ε, while for L2v = f2 we have λ1 = 0, λ2 = 1, λ3 = µ, ε1 = ε0ε.
The homology operator corresponding to B is given by

LBv = 〈B0x, ∂x〉v + ε1R[v]−Bv, v ∈ C4
2{x}, (3.7)

〈B0x, ∂x〉v =
∑
|α|≥2

(λ1α1 + λ2α2 + λ3(α3 + α4))vαx
α, (3.8)
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where v(x) =
∑

|α|≥2 vαx
α and

R[v] =
∑
|α|≥2

(α3 + 1)v(α1,α2,α3+1,α4−1)x
α. (3.9)

For g(x) = t(g1, g2, g3, g4) ∈ C4
2{x} we expand gk(x) in the Taylor series gk(x) =

∑
α gα;kx

α.
For nonnegative integers N , α1 and α2 we define Vk and Gk by

Vk := t{v(α1,α2,N−`,`);k}N
`=0, Gk := t{g(α1,α2,N−`,`);k}N

`=0 (k = 1, 2, 3, 4).

In view of (3.9), the equation LBv = g is equivalent to

(λ1α1 + λ2α2 + λ3N − λ1)V1 + ε1MNV1 = G1, (3.10)

(λ1α1 + λ2α2 + λ3N − λ2)V2 + ε1MNV2 = G2, (3.11)

(λ1α1 + λ2α2 + λ3(N − 1))V3 + ε1MNV3 = G3 + ε1V4, (3.12)

(λ1α1 + λ2α2 + λ3(N − 1))V4 + ε1MNV4 = G4, (3.13)

where MN is given by

MN =



0 0 0 . . . 0 0 0
N 0 0 . . . 0 0 0
0 N − 1 0 . . . 0 0 0
0 0 N − 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 0 0
0 0 0 . . . 0 1 0


, N ≥ 1, (3.14)

and M0 = 0.
Let f j(x) = t(f j

1 (x), . . . , f j
4 (x)) and let f j

k(x) =
∑

α f
j
α;kx

α (j = 1, 2; k = 1, . . . , 4) be

the Taylor expansion of f j
k(x). We substitute the expansions of v and f j into the equations

Ljv = f j. For every (α1, α2) ∈ Z2
+ and N ∈ Z+ such that α1 + α2 + N ≥ 2 we compare the

coefficients of xα (α3 + α4 = N) with homogeneous degree α1 + α2 +N . If we set

F j = t(F j
1 , F

j
2 , . . . , F

j
4 ), F j

k = t{f j
(α1,α2,N−r,r);k}

N
r=0, j = 1, 2; k = 1, . . . , 4, (3.15)

and V = t(V1, V2, . . . , V4), Vk := t{v(α1,α2,N−`,`);k}N
`=0 (k = 1, 2, 3, 4), H = t(0, 0, V4, 0), then we

can write the system of equations Ljv = f j (j = 1, 2) in the following form

AV = F 1 + εH, BV = F 2 + εε0H, (3.16)

where the matrices A and B are the block diagonal matrices given by

A := diag{A1,A2,A3,A4} = diag


(α1 + α2 + νN − 1)Id+ εMN)
(α1 + α2 + νN − 1)Id+ εMN)
(α1 + α2 + νN − ν)Id+ εMN)
(α1 + α2 + νN − ν)Id+ εMN)

 , (3.17)

B := diag{B1,B2,B3,B4} = diag


(α2 + µN)Id+ ε0εMN)

(α2 + µN − 1)Id+ ε0εMN)
(α2 + µN − µ)Id+ ε0εMN)
(α2 + µN − µ)Id+ ε0εMN)

 . (3.18)
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We will construct a formal power series solution V from (3.16). Because (ν, µ) 6∈ Q × Q
either ν or µ is an irrational number. Suppose that ν is an irrational number. We want to
show that for each k = 1, . . . , 4 either Ak or Bk is nonsingular. In order to see this, suppose
that |α| = α1 + α2 + N ≥ 2. If N 6= 0, 1, then by the irrationality of ν, the matrices Ak

(k = 1, . . . , 4) are nonsingular. If N = 0 or N = 1, then by the condition α1 + α2 + N ≥ 2,
Ak (k = 1, . . . , 4) are nonsingular. Similarly, if µ is an irrational number, then we can show
that either Ak or Bk is nonsingular for each k = 1, . . . , 4.

First we will determine V4. By inductive arguments and L1f
2 = L2f

1 we get

v(α1,α2,N−`,`);4 =
∑̀
r=0

(−ε1)
r

(λ1α1 + λ2α2 + λ3(N − 1))r+1

× (N − `+ r)!

(N − `)!
g(α1,α2,N−`+r,`−r);4 (3.19)

for ` = 0, 1, . . . , N , provided λ1α1 + λ2α2 + λ3(N − 1) 6= 0. Note that, if A4 is nonsingular,
then (3.19) is valid for λ1 = λ2 = 1, λ3 = ν, ε1 = ε, g(α1,α2,N−`+r,`−r);4 = f 1

(α1,α2,N−`+r,`−r);4,

while if B4 is nonsingular, then (3.19) is valied for λ1 = 0, λ2 = 1, λ3 = µ, ε1 = ε0ε,
g(α1,α2,N−`+r,`−r);4 = f 2

(α1,α2,N−`+r,`−r);4. Similar explicit formulas are derived for vα1,α2,N−`,`;k,

k = 1, 2. As to the term v(α1,α2,N−`,`);3, there appears the term ε1V
N
4 in the right-hand side of

(3.12).
By (3.4) we have

|α1 + α2 + νN − ν|+ |α2 + µN − µ| ≥ C|α1 + α2 +N |−τ (3.20)

for some C > 0. It follows that either |α1+α2+νN−ν| ≥ C|α1+α2+N |−τ/2 or |α2+µN−µ| ≥
C|α1+α2+N |−τ/2 holds. Suppose that the former estimate holds. We have the same estimate
in case the latter inequality holds. Without loss of generality we may assume that C < 2. Let
τ be such that τ > τ0. Then we have

|α1 + α2 + ν(N − 1)|r+1 ≥ (C/2)r+1|α1 + α2 +N |−τ(r+1)

≥ (C/2)N+1|α1 + α2 +N |−τ(N+1). (3.21)

Noting that (N − `+ r)!/(N − `)! ≤ N !, we see from (3.19) that if
g(α1,α2,N−`+r,`−r);4 has a Gs estimate, namely, g(α1,α2,N−`+r,`−r);4 = O((α1+α2+N)!s−1) modulo
exponential factors, then v(α1,α2,N−`,`);4 = O((α1 + α2 +N)!s+τ ). Especially, if s = 1, then we
have v(α1,α2,N−`,`);4 = O((α1 + α2 + N)!τ+1). Similarly, we can easily see that v(α1,α2,N−`,`);j

(j = 1, 2, 4) have the estimate v(α1,α2,N−`,`);j = O((α1 + α2 +N)!τ+1).
Next we determine v(α1,α2,N−`,`);3 by a similar relation like (3.19). We can easily see that

there appears v(α1,α2,N−`,`);4 in the right-hand side of the recurrence relation. Hence the right-
hand side is O((α1 + α2 + N)!τ+1). It follows that v(α1,α2,N−`,`);3 = O((α1 + α2 + N)!2τ+2).
Since τ > τ0 is arbitray, v(α1,α2,N−`,`);3 = O((α1 + α2 + N)!σ) for σ > 2 + 2τ0. This ends the
proof of Theorem 3.1.

Proof of Proposition 3.5. The eigenvalues of B := c1A1 + c2A2 is given by c1, c1 + c2, c1ν+ c2µ
with multiplicity. We shall show that there exists a set E ⊂ R2 with Lebesgue measure zero
such that if (c1, c2) 6∈ E, then B is nonresonant. For every α = (α1, . . . , α4) ∈ Z4

+, |α| ≥ 2,
the resonance relations are given by

c1α1 + (c1 + c2)α2 + (c1ν + c2µ)(α3 + α4) = c1, (3.22)

and the ones with c1 in the right-hand side replaced by c1 + c2 and c1ν + c2µ, respectively.
Because the argument is similar, we consider the first relation. It follows from (3.22) that

c1(α1 + α2 + ν(α3 + α4)− 1) + c2(α2 + µ(α3 + α4)) = 0.
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Because (ν, µ) 6∈ Q×Q and |α| ≥ 2, we can easily see that either α1 +α2 + ν(α3 +α4)− 1 6= 0
or α2 +µ(α3 +α4) 6= 0 holds. Hence the set of (c1, c2) ∈ R2 satisfying (3.22) is a straight line.
Therefore the set E of all (c1, c2) satisfying a resonance relations has Lebesgue measure zero.

In order to see that Spec(B) satisfies (3.5), let ω̃j(α) (α ∈ Z4
+) be defined by (1.15) for B.

Then there exists K > 0 such that ω̃j(α) ≤ Kωj(α) for j = 1, . . . , 4 and all α ∈ Z4
+. It follows

that (3.5) holds for ω̃j(α).
Let (c1, c2) 6∈ E and g ∈ G be given. We want to solve the system of equations

L1f
2 = L2f

1, c1f
1 + c2f

2 = g. (3.23)

By expanding f j(x) = t(f j
1 , f

j
2 , . . . , f

j
4 ) into the Taylor series we define F j by (3.15). We sim-

ilarly define G = t(G1, G2, . . . , G4), Gk = {g(α1,α2,N−r,r),k}N
r=0, where g(x) = t(g1, g2, . . . , g4),

gk(x) =
∑

α gα,kx
α. We set H1 := t(0, 0, F 1

4 , 0) and H2 := t(0, 0, F 2
4 , 0). We substitute the ex-

pansions of f j and g into (3.23). For every (α1, α2) ∈ Z2
+ andN ∈ Z+ such that α1+α2+N ≥ 2

we compare the coefficients of xα of homogeneous degree α1 + α2 + N . Then we can write
(3.23) in the following form

AF 2 − BF 1 − εH2 + εε0H
1 = 0, c1F

1 + c2F
2 = G, (3.24)

where A and B are given by (3.17) and (3.18).
First we will construct a formal power series solution F j (j = 1, 2) of (3.24) for a given G.

Because we know that (cf. the proof of Theorem 3.1) either Ak or Bk is nonsingular for each
k = 1, 2, . . . , 4, it follows from (3.24) that

AkF
2
k − BkF

1
k = 0, c1F

1
k + c2F

2
k = Gk, k = 1, 2, 4.

Assuming that Ak is nonsingular we obtain F 2
k = A−1

k BkF
1
k , and hence c1F

1
k + c2A−1

k BkF
1
k =

Gk. It follows that

F 1
k = (c1 + c2A−1

k Bk)
−1Gk = (c1Ak + c2Bk)

−1AkGk, (3.25)

if c1Ak + c2Bk is nonsingular. The last condition holds if (c1, c2) is not contained in a set of
Lebesgue measure zero in R2, which may depend on α1, α2, N . We have similar relations if Bk

is nonsingular.
In case k = 3, we obtain A3F

2
3 − B3F

1
3 = ε(F 2

4 − ε0F
1
4 ) instead of AkF

2
k − BkF

1
k = 0. A

simple computation yields that

F 1
3 = (c1A3 + c2B3)

−1A3G3 − εc2(c1A3 + c2B3)
−1(F 2

4 − ε0F
1
4 ).

By taking the union of all exceptional sets of (c1, c2) with α1, α2 andN in the set of nonnegative
integers such that α1 + α2 + N ≥ 2, we see that there exists a unique formal power series
solution f j(x) (j = 1, 2) of (3.23), provided (c1, c2) is not in an exceptional set of Lebesgue
measure zero.

We will show the convergence of f j(x) (j = 1, 2). It is sufficient to prove the convergence
of f 1(x) since we may take c1 6= 0 in view of the choice of c1 in the above argument. By the
definition of G and (2), we can easily see that L−1

1 exists on G, namely

L−1
1 L1 = L1L

−1
1 = Id on G.

Let g ∈ G. Then it follows from (3.23) and the relation L1f2 = L2f1 that L1g = c1L1f1 +
c2L2f1. Hence we have

g = c1f1 + c2L
−1
1 L2f1.
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Now we have
L−1

1 L2 = L2L
−1
1 = (L2 − ε0L1)L

−1
1 + ε0Id, on G.

By definition, we have

L2 − ε0L1 = 〈A2x, ∂x〉 − ε0〈A1x, ∂x〉+ ε0A1 − A2.

Hence, L2 − ε0L1 is semi-simple. By the condition (2) and the proof of the latter half of
Theorem 3.1, it follows that the absolute value of the coefficient of xα of L−1

1 g (g =
∑

α gαx
α)

is bounded by N (τ ′′+1)NCN |gα| for some C > 0, where τ ′′ > τ0 can be taken arbitrarily close
to τ0. On the other hand, the operator (L2− ε0L1) is the one which multiplies the coefficients
of xα with (α2 + µN − ε0(α1 + α2 − 1 + νN)) for the first component. We have similar
expressions for other components. By the condition (1)′, the absolute value of the term is
bounded by N−N(τ+1)cn0 for some τ > τ0. Because τ ′′ > τ0 can be taken arbitrarily close
to τ0, the growth NN(τ ′′+1)Cn which comes from L−1

1 is absorbed by the term N−N(τ+1)cn0 .
Therefore, the operator (L2−ε0L1)L

−1
1 maps G to G. By taking k0 sufficiently large, the norm

of (L2 − ε0L1)L
−1
1 on the space G ∩ {g =

∑
α gαx

α; |α| > k0} can be made arbitrarily small.
In view of the construction of c1 and c2 we may assume that c1 + c2ε0 6= 0. Writing

g = c1f1 + c2L
−1
1 L2f1 = (c1 + c2ε0 +R)f1,

where R = (ε0L1−L2)L
−1
1 , and by noting that R preserves homogeneous polynomials, we see

that (c1 + c2ε0 +R)−1 exists as a map from G to G. Therefore we have f1 ∈ G. This completes
the proof of Proposition 3.5.

Proof of Proposition 3.6 : Let g be the convergent power series defined by gα;k = 0 for
k = 1, 2, 3 and all α ∈ Z4

+(2); gα1,α2,α3,α4;4 = 0 if α4 ≥ 1; g(α1,α2,N,0);4 = 1 for (α1, α2, N, 0) ∈ C4,
where C4 is given in the definition of G. We want to solve LBv = g. Let λj be the eigenvalues
of B. By the same argument as in the proof of Theorem 3.1 we have the formula (3.19). Then
we have

v(α1,α2,0,N);4 = (−ε1)
N(λ1α1 + λ2α2 + λ3(N − 1))−N−1N !, (3.26)

for all (α1, α2, N) ∈ C4. We can easily see from the conditions (1) and (2) of the definition of
G that Spec(A2) also satisfies (2). It follows that Spec(B) = Spec(c1A1 + c2A2) also satisfies
the following estimate: for every τ ′ < τ0 we can find a constant C > 0 and a subsequence
{(α1,k, α2,k, Nk)}∞k=1 such that

|(λ1α1,k + λ2α2,k + λ3(Nk − 1))−1| ≥ CN τ ′

k , ∀k ∈ N.

Therefore, by (3.26)

|v(α1,k,α2,k,0,Nk);4| ≥ (C|ε1|)NkN
(Nk+1)τ ′

k Nk!, k ∈ N, α1 ∈ Z+(2). (3.27)

Because ε1 6= 0, τ ′ < τ0 and 1/2 ≤ τ0, (3.27) and Stirling’s formula, N ! ≥ CNNN ,∀N ∈ Z+

lead to the assertion. This ends the proof of Proposition 3.6.

Example 3.8 We give an example of a formal Gevrey linearization. (cf. Theorem 3.1.) We
consider

LΛu = R(x+ u), Λ =

 1 0 0
0 −τ −1
0 0 −τ

 , (3.28)

where τ > 0 is an irrational number. For C � 1, let f be an analytic function f(x1, x2) =∑
α fαx

α1
1 x

α2
2 , where the summation with respect to α is taken for α ∈ Z2

+(2) such that 1 <
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α1− τα2 < C, α1 +α2 →∞. We define R(x) = t(x2
1, x2f(x1, x2), 0). Then we shall show that

the unique solution of (3.28) is in G2.
Indeed, we may look for the solution of the equation in the form u = t(x2

1, x2w(x), 0). We
can easily see that w satisfies the equation

(x1∂x1 − τx2∂x2 − τx3∂x3 + x3∂x2)w = (1 + w)f(x1 + x2
1, x2(1 + w)) ≡ g(x). (3.29)

We substitue the expansion w(x) =
∑

αwαx
α into (3.29). We can easily see that the sum of

the expansion of w(x) can be taken for α such that α1− τ(α2 +α3) > 1, because the support of
f satisfies the property and the left-hand side operator of (3.29) maps functions with support
in α1 − τ(α2 + α3) > 1 to those with the same property. If we expand g(x) =

∑
α gαx

α, then
by the same calculations as in (3.19) we obtain

w(α1,N−`,`) =
∑̀
r=0

1

(α1 − τN)r+1

(N − `+ r)!

(N − `)!
g(α1,N−`+r,`−r), r = 0, 1, . . . , `. (3.30)

If we can show that g(α1,N−`+r,`−r) = O((`− r)!) modulo terms of order Kα1+N (K > 0), then
we can easily see that w(α1,N−`,`) = O(`!). This proves that the solution u of (3.29) is in G2.

If α1 + N = 2, then no term from w appears in g(α1,N−`+r,`−r) in (3.30). Hence, by the
analyticity assumption of f , we obtain the desired estimate for wα with α1 +N = 2, α2 +α3 =
N . Suppose that we have w(α1,N−`,`) = O(`!) up to α1 +N < ν for some ν > 2. Then by the
definition of g(x) = (1 + w)f(x1 + x2

1, x2(1 + w)) and simple computations of the substitution
of a Gevrey power series into an analytic functions, we see that g(α1,N−`,`) = O(`!). Hence, by
the inductive argument we obtain the desired estimate, w(α1,N−`,`) = O(`!), α1 +N = ν. This
completes the proof.

We will briefly mention the general case of d − actions. We suppose that there exist j,
1 ≤ j ≤ m and `0, 1 ≤ `0 ≤ d such that A`0

j in (1.7) admits only one dimensional eigenspace,

i.e., the geometric multiplicity of λ`
j is one. For a positive integer r we define the r square

nilpotent matrix Nr by

Nr =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . . . . .

...
0 0 0 . . . 0 1
0 0 0 . . . 0 0

 . (3.31)

By assumption we have
A`0

j = λ`0
j Id+ εNsj

, ε 6= 0. (3.32)

By the explicit description of the centralizers of matrices (cf. [14]) all other matrices have the
following form

A`
j = λ`

jId+

sj−1∑
k=1

ε`j
k (Nsj

)k ε`j
k ∈ C, k = 1, . . . , sj − 1. (3.33)

We have

Theorem 3.9 Assume (3.32). Then there exist ε
`j

k in (3.33), λ`
j, (` = 1, 2, . . . , d; j =

1, 2, . . . , n) with the density of continuum such that the followings hold:
(i) The simultaneously nonresonant condition (1.17) and the following condition hold.

There exists a sequence α` ∈ Zn
+(2), ` ∈ N and a positive number c0 such that |α`| → ∞

(`→∞) and
0 < ω(α`) ≤ c0, ` ∈ N. (3.34)

(ii) There exists an f := t(f1, f2, . . . , fd) ∈ (Cσ
2{x})d satisfying (3.2) such that v = L−1

A f is
not contained in the set

⋃
1≤σ<2G

σ
2 (Cn).
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4 Sternberg’s theorem for commuting vector fields

The results in section 2 imply that the simultaneous linearization of a Poincaré morphism with
a Jordan block is reduced essentially to the Poincaré–Dulac theorem for a single vector field
in an analytic category. On the other hand, in view of the results in section 3, the reduction
seems impossible if the action is not a Poincaré morphism.

In this section we shall illustrate that the situtation is completely different in a smooth
category. We consider two commuting vector field in R4 which are in a Siegle domain and
only one of the two has a linear part with nontrivial Jordan block. Obviously, the action is
not a Poincaré morphism. We will show that they are simultaneously linearizable in Ck for
every k ≥ 1.

Let X(y) and Y (y) be commuting C∞ vector fields with the common singular point at the
origin 0 ∈ R4. Suppose that ∇X(0) = A, ∇Y (0) = B, where

A =


1 0 0 0
0 1 0 0
0 0 −ν 0
0 0 0 −ν

 , (4.1)

B =


0 0 0 0
0 1 0 0
0 0 −µ ε
0 0 0 −µ

 , ε 6= 0. (4.2)

We assume that the action is not a Poincaré morphism, namely, (cf. Example 4.1)

ν > µ > 0, ν ∈ R \Q. (4.3)

We also note that the irrationality of ν implies that X, and hence the pair (X, Y ) is nonreso-
nant. Then we have

Theorem 4.1 Suppose that the conditions (4.1), (4.2) and (4.3) are verified. Let m ≥ 1 be
an integer. Then there exists a Cm change of the variables y = u(x) = x + v(x), v(0) = 0,
∇v(0) = 0 near the origin which transforms both X and Y to their linear parts.

We need to prepare lemmas in order to prove our theorem. In view of Sternberg’s theorem
we assume, without loss of generality, that X is linear, i.e.

Xv(y) = 〈∇v(y), Ay〉. (4.4)

Let R(y) = (R1(y), R2(y), R3(y), R4(y)) be the nonlinear part of Y

Y f(y) = 〈∇f(y), By +R(y)〉. (4.5)

Suppose that the change of variables y = u(x) = x+v(x), v(0) = 0, ∇v(0) = 0 linearizes both
the vector fields X and Y . Then we can easily see that v(x) satisfies the system of homology
equations

〈∇v(x), Bx〉 −Bv = R(x+ v(x)), (4.6)

and
〈∇v(x), Ax〉 − Av = 0. (4.7)
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We write x = (x1, x2, x
′′) and z = (z1, z

′). Let c1 > 0 and 0 < c2 ≤ 1 be constants. Then
we define

Ω = {x′ = (x2, x3, x4) = (x2, x
′′) ∈ R3; |x2| < c1, |x′′| < c2}, (4.8)

Ω1 = {x1 ∈ R; |x1| < 1} × Ω. (4.9)

Then we have

Lemma 4.2 Let k = ∞ or k ≥ 1 be an integer. Let L be given by

L =
2∑

j=1

xj∂xj
− ν

4∑
k=3

xk∂xk
.

Then a Ck solution of

Lf(x)− f(x) = 0, x = (x1, x2, x3, x4) ∈ Ω1, (4.10)

(respectively,

Lw(x) + νw(x) = 0 x = (x1, x2, x3, x4) ∈ Ω1) (4.11)

is given by

f(x) = x1ϕ±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, (4.12)

or

f(x) = x2ϕ±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, (4.13)

(respectively, by

w(x) = |x1|−νψ±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0 ), (4.14)

where ϕ±(z) ∈ Ck(Ω) (respectively ψ±(z) ∈ Ck(Ω).)

Proof. Let L be the operator given in the lemma. We want to solve (4.10) and (4.11). First
we solve (4.10) in the region x1 > 0. If we set f(x) = x1ϕ(x) (resp. f(x) = x2ψ(x)), then we
have that

Lϕ(x) = 0, (resp. Lψ(x) = 0). (4.15)

By the theorem in page 61 of [2], the solutions of (4.15) are given by the first integral of the
corresponding characteristic equation. For the sake of simplicity, we consider the equation
Lϕ(x) = 0. The characteristic equation is given by

dx1

x1

=
dx2

x2

= −dx3

νx3

= −dx4

νx4

. (4.16)

If we integrate (4.16) by taking x1 as an independent variable, then we obtain

x2 = x1x
0
2, x3 = x−ν

1 x0
3, x4 = x−ν

1 x0
4, (4.17)

where x0
2, x

0
3, x

0
4 are certain constants. It follows that the first integral ϕ+(x) is given by

ϕ+(x) ≡ ϕ̃+

(
x2

x1

, x3x
ν
1, x4x

ν
1

)
= ϕ̃+(x0

2, x
0
3, x

0
4), (4.18)
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for some differentiable function ϕ̃+. Hence, the general solution of (4.10) in x1 > 0 is given
by f(x) = x1ϕ+(x) (resp. f(x) = x2ϕ+(x) for possibly different ϕ+).

In case x1 < 0 we make the same argument by replacing x1 with −x1. We see that there
exists ϕ−(x) such that f(x) = x1ϕ−(x) (resp. f(x) = x2ϕ−(x) for possibly different ϕ−. )

Next we consider the equation (4.11). We set w(x) = |x1|−νψ(x). For the sake of simplicity
we consider the case x1 > 0. The case x1 < 0 can be treated similarly if we replace x1 with
−x1. We can easily see that ψ satisfies Lψ = 0. Hence it follows from the above argument
that

w(x) = x−ν
1 ψ+(x) = x−ν

1 ψ̃+

(
x2

x1

, x3x
ν
1, x4x

ν
1

)
. (4.19)

This ends the proof. 2

By the commutativity we see that every component of v = R(x) = (R1, . . . , R4) satisfies
either (4.10) or (4.11). Hence, by Lemma 4.1 we have

Rj(x) = xjΨ
j
±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, j = 1, 2, (4.20)

Rj(x) = |x1|−νΨj
±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, j = 3, 4

(4.21)

for some functions Ψj
±. In the following we will cut off Rj(x) with a smooth function being

identically equal to 1 in some neighborhood of the origin and with support contained in a
small neighborhhood of the origin, which we give in the proof of Theorem 4.1. For the sake
of simplicity, we denote the modified Rj(x) with the same letter. We set

z1 = x2/x1, z2 = x3|x1|ν , z3 = x4|x1|ν . (4.22)

For every x1 6= 0, we define Ψj
±(z) by (4.20) and (4.21), namely

Ψj
±(z) = x−1

j Rj(x1, x1z1, |x1|−νz2, |x1|−νz3), for ± x1 > 0, j = 1, 2,

(4.23)

Ψj
±(z) = |x1|νRj(x1, x1z1, |x1|−νz2, |x1|−νz3), for ± x1 > 0, j = 3, 4.

(4.24)

We can easily see that Ψj
± ∈ C∞(R3

z) (j = 1, 2, 3, 4).
By (4.7) and simple computations we see that every component of v(x) = (v1(x), . . . , v4(x))

satisfies either (4.10) or (4.11). It follows from Lemma 4.1 that every component of v has an
expression

vj(x) = xjϕ
j
±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, j = 1, 2, (4.25)

and
vj(x) = |x1|−νϕj

±(
x2

x1

, x3|x1|ν , x4|x1|ν), for ± x1 > 0, j = 3, 4, (4.26)

for some ϕj
±.

We substitute the transformation (4.22) and (4.25), (4.26) into (4.6), and we rewrite (4.6)
as an equation of z for the unknown functions ϕj

±(z) with a parameter x1. Recalling that
vj = xjϕ

j
± and vj = |x1|−νϕj

± we obtain

x2∂x2v1 = x1z1∂z1ϕ
1
±(z), x3∂x3v1 = x1z2∂z2ϕ

1
±(z), (4.27)

x4∂x4v1 = x1z3∂z3ϕ
1
±(z), x4∂x3v1 = x1z3∂z2ϕ

1
±(z), (4.28)
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and we have similar relations for v2 = x2ϕ
2
±(x) and vj = |x1|−νϕj

±(x). In fact we have

〈∇v1(x), Bx〉 = x1Lϕ1
±(z), for ± x1 > 0, (4.29)

〈∇v2(x), Bx〉 − v2(x) = x2Lϕ2
±(z), for ± x1 > 0, (4.30)

〈∇vj(x), Bx〉 = |x1|−νLϕj
±(z), for ± x1 > 0, j = 3, 4, (4.31)

where

Lf(z) = z1∂z1f(z)− (µz2 − εz3)∂z2f(z)− µz3∂z3f(z). (4.32)

We define ϕ±(z) = tr(ϕ1
±(z), ϕ2

±(z), ϕ3
±(z), ϕ4

±(z)).

Lemma 4.3 We have the expression

Rj(x+ v(x)) = xjE
j
±(z, ϕ±(z)), for ± x1 > 0, j = 1, 2, (4.33)

where Ej
±(z, w) is given by

Ej
±(z, w) = (1 + wj)Ψ

j
±

(
z1

1 + w2

1 + w1

, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν
)

(4.34)

and
Rj(x+ v(x)) = |x1|−νEj

±(z, ϕ±(z)) for ± x1 > 0, j = 3, 4, (4.35)

with

Ej
±(z, w) = |1 + w1|−νΨj

±

(
z1

1 + w2

1 + w1

, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν
)
. (4.36)

Proof. We have

x2 + v2(x)

x1 + v1(x)
=

x2(1 + ϕ2
±(z))

x1(1 + ϕ1
±(z))

=
x2

x1

1 + ϕ2
±(z)

1 + ϕ1
±(z)

= z1

1 + ϕ2
±(z)

1 + ϕ1
±(z))

. (4.37)

(x3 + v3(x))|x1 + v1|ν = (x3 + |x1|−νϕ3
±(z))|x1|ν |1 + ϕ1

±(z)|ν

= (x3|x1|ν + ϕ3
±(z))|1 + ϕ1

±(z)|ν

= (z2 + ϕ3
±(z))|1 + ϕ1

±(z)|ν . (4.38)

(x4 + v4(x))|x1 + v1|ν = (x4 + |x1|−νϕ4
±(z))|x1|ν |1 + ϕ1

±(z)|ν

= (x4|x1|ν + ϕ4
±(z))|1 + ϕ1

±(z)|ν

= (z3 + ϕ4
±(z))|1 + ϕ1

±(z)|ν . (4.39)

Hence, if j = 1, 2, we get

Rj(x+ v(x)) = (xj + vj(x))

× Ψj
±(
x2 + v2(x)

x1 + v1(x)
, (x3 + v3(x))|x1 + v1|ν , (x4 + v4)|x1 + v1(x)|ν)

= xj(1 + ϕj
±)Ψj

±

(
z1

1 + ϕ2
±

1 + ϕ1
±
, (z2 + ϕ3

±)|1 + ϕ1
±|ν , (z3 + ϕ4

±)|1 + ϕ1
±|ν
)
,

(4.40)
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which yields (4.33). Similarly, we can readily prove (4.35). The proof of the lemma is complete.
2

Now we are ready to write explicitly the reduction of the overdetermined system for v:
(XA −A)v = 0, (Xb −B)v = R(x+ v(x)) into a 4× 4 system of equations for ϕ±(z) in z ∈ Ω
with a parameter x1. Then the new system of semilinear homological equations for ϕ± is
written as follows

(L − B̃)(ϕ±) = E±(z, ϕ±(z)), E±(z, w) = (E1
±(z, w), . . . , E4

±(z, w)),

(4.41)

where Ej
±(z, w) are given by (4.34) and (4.36) and

B̃ =


0 0 0 0
0 0 0 0
0 0 −µ ε
0 0 0 −µ

 . (4.42)

We prepare a lemma.

Lemma 4.4 Let ν > 0 be an irrational number. Let f(x) and w(x) be smooth solutions of
(4.10) and (4.11) in Ω1, respectively satisfying that

f(0) = w(0) = 0 (4.43)

∇f(0) = ∇w(0) = 0. (4.44)

We cut off f(x) and w(x) with a smooth function being identically equal to 1 in some neigh-
borhood of the origin and with support contained in a small neighborhhood of the origin. For
the sake of simplicity we denote the modified functions with the same letter. Let ϕ±(z) and
ψ±(z) be defined by (4.12), (4.13) and (4.14), respectively by the same way as (4.23) and
(4.24). Then, for every α ∈ Z3

+, we have

∂α
z Θ(z1, 0) = 0, ∀z = (z1, 0) ∈ Ω, (4.45)

with Θ = ϕ± and Θ = ψ±.

Proof. Because ν is an irrational number we can easily see, from (4.10) and (4.11) that
every f(x) and w(x) satisfying (4.43) and (4.44) are flat at the origin, namely all derivatives
∂α

x f(x), ∂α
xw(x) (α ∈ N4) vanish at the origin x = 0. Let Θ(z) = ϕ±(z), and set f(x) =

x1ϕ±(x2/x1, x3|x1|ν , x4|x1|ν), x1 6= 0. Then we have

∂α′

x

(
x−1

1 f(x)
)

= ∂α′

x ϕ±(x2/x1, x3|x1|ν , x4|x1|ν) (4.46)

= x−α2
1 |x1|ν(α3+α4)∂α2

z1
∂α3

z2
∂α4

z3
ϕ±(z)

∣∣
z1=x2/x1,z2=x3|x1|ν ,z3=x4|x1|ν

. (4.47)

We let x tend to zero so as to satisfy x2/x1 = z1, z2 = x3|x1|ν = 0 and z3 = x4|x1|ν = 0. Then
we have

∂α2
z1
∂α3

z2
∂α4

z3
ϕ±(z1, 0, 0) = lim

x→0
xα2

1 |x1|−ν(α3+α4)∂α′

x

(
x−1

1 f(x1, x2, 0, 0)
)

= 0, (4.48)

because f(x) is flat at the origin. The other cases will be proved similarly. 2

Remark. Let ϕ±(z) ∈ Ck(Ω) be given. Assume that (4.45) is satisfied for Θ = ϕ± up to
some finite |α|. Then the function f(x) defined by (4.12) gives a finitely smooth solution of
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(4.10) if ν is an irrational number. Indeed, the finite smoothness at x1 = 0 follows from the
argument of Lemma 4.4.

In order to solve (4.41) we introduce a function space. Let N ≥ 1 and k ≤ N be integers.
Let 0 < c′2 < c2 ≤ 1 be a constant. Then we define

‖V ‖k;N = sup
z∈R3,0<|z′|≤c′2

∑
|α|≤k

|z′||α|
∣∣∂α

z

(
|z′|−NV (z)

)∣∣ , (4.49)

|V (z)| = (
3∑

j=1

|Vj(z)|2)1/2, V (z) = (V1(z), V2(z), V3(z)).

The set of all Ck functions V (z) such that ‖V ‖k,N <∞ is a Banach space Bk;N with the norm
‖·‖k;N . Then we have

Lemma 4.5 i) For any integers k ≥ 0 and 0 ≤ ` ≤ N , there exists a constant Ck,N > 0 such
that

‖u‖k;` ≤ Ck,N‖u‖k;N , ∀u ∈ Bk;N . (4.50)

ii) For every f, g ∈ Bk;N we have fg ∈ Bk;N and there exists a constant Ck,N > 0 such that

‖fg‖k;N ≤ Ck,N‖f‖k;N‖g‖k;N , ∀f, g ∈ Bk;N . (4.51)

Proof. Because |z′| ≤ 1, we have, for |α| ≤ k

|z′||α|∂α(|z′|−`u(z)) = |z′||α|∂α(|z′|N−`|z′|−Nu(z))

= |z′||α|
∑

β+γ=α

∂β|z′|N−`∂γ(|z′|−Nu(z)) ≤ C1 sup |z′||γ||∂γ(|z′|−Nu(z))|

for some C1 > 0. This proves i).
In order to prove ii) we have, for |α| ≤ k

|z′||α||∂α(|z′|−Nfg)| ≤
∑

β+γ=α

|z′||β||∂β(|z′|−Nf)||z′||γ||∂γg|

≤ C2‖f‖k;N‖g‖k,0 ≤ C3‖f‖k;N‖g‖k,N . (4.52)

Here C2 > 0 and C3 > are constants. This proves ii) . 2

Let C be given by

C =

 1 0 0
0 −µ ε
0 0 −µ

 . (4.53)

Then we define the operator Q by

QV = −
∫ ∞

0

e−tB̃V (etCz)dt, V = (V1, . . . , V4) = (ϕ1
±, ϕ

2
±, ϕ

3
±, ϕ

4
±). (4.54)

We can easily see that U = QV gives the solution of (L − B̃)U = V . Then we have

Lemma 4.6 Let the integers k and N satisfy that 0 ≤ k < N − µ and µ(k+ 1−N) + k < 0.
Then there exists Ck,N(Ω) > 0 such that

‖QV ‖k;N ≤ Ck,N(Ω) ‖V ‖k;N , ∀V ∈ Bk;N . (4.55)
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Proof. First we note that

etCz = (etz1, e
−µtz2 + e−µtεtz3, e

−µtz3), (4.56)

e−tB̃V = (V1, V2, e
µt(V3 − εtV4), e

µtV4). (4.57)

Hence we have

V (etCz) = V (etz1, e
−µt(z2 + εtz3), e

−µtz3)

= e−µNt((z2 + εtz3)
2 + z2

3)
N/2Ṽ (etCz), (4.58)

where Ṽ (ζ) = V (ζ)/|ζ ′|N . It follows that the right-hand side integral of (4.54) converges,
because the growing term eµt in e−tB can be absorbed by e−µNt, (µ > 0). First we consider
the case k = 0. By (4.57) and (4.58) we have

‖QV ‖0;N = sup
z∈R3,0<|z′|≤c′2

(
1

|z′|N

∫ ∞

0

∣∣∣e−tB̃V (etCz)
∣∣∣ dt)

≤ sup
z∈R3,0<|z′|≤c′2

(
1

|z′|N

∫ ∞

0

(1 + |ε|t)eµt
∣∣V (etCz)

∣∣ dt)
≤ sup

(
1

|z′|N

∫ ∞

0

(1 + |ε|t)eµ(1−N)t((z2 + |ε|tz3)
2 + z2

3)
N/2
∣∣∣Ṽ (etCz)

∣∣∣ dt) .
(4.59)

On the other hand we note that

|z′|−N((z2 + |ε|tz3)
2 + z2

3)
N/2 ≤ |z′|−N(|z′|+ |ε|t|z3|)N ≤ (1 + |ε|t)N . (4.60)

In order to estimate Ṽ (etCz) we note the following inequality

e−µt(|z2 + εtz3|2 + z2
3)

1/2 ≤ |z′|(1 + |ε|t)e−µt ≤ |z′| ≤ c′2, (4.61)

because we have |ε| < µ. It follows that

|Ṽ (etCz)| ≤ sup
z∈R3,0<|z′|≤c′2

|Ṽ (z)|. (4.62)

It follows that the right-hand side of (4.59) is estimated in the following way

≤ sup
z∈R3,0<|z′|≤c′2

|Ṽ (z)|
∫ ∞

0

(1 + |ε|t)N+1eµ(1−N)tdt ≤ C‖V ‖0;N (4.63)

for some C > 0 independent of V . It follows that ‖QV ‖0;N ≤ C‖V ‖0;N for some C > 0.
Next we will estimate the derivative |z′||α|∂α

z (|z′|−NQV ). By Leibnitz rule it is sufficient to
estimate the term |z′||α|∂γ|z′|−N∂α−γ(QV ), where α ≥ γ. By simple computations, we have
|z′||α|∂γ|z′|−N ≤ C1|z′|−N+|α|−|γ| for some C1 > independent of z′. On the other hand, we have

∂α−γ(QV ) = −∂α−γ

∫ ∞

0

e−tB̃((z2 + εtz3)
2 + z2

3)
N/2e−µNtṼ (etCz)dt

= −
∑

β≤α−γ

∫
e−tB̃−µNt∂β

z ((z2 + εtz3)
2 + z2

3)
N/2∂α−γ−βṼ (etCz)dt. (4.64)

We can easily see ∣∣∂β
z ((z2 + εtz3)

2 + z2
3)

N/2
∣∣ ≤ C2(1 + |ε|t)N |z′|N−|β| (4.65)
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for some C2 > 0. If we set α− β − γ = δ, δ = (δ1, δ2, δ3), then we have

∂α−β−γṼ (etCz) = etδ1−µ(δ2+δ3)t(∂δ1
1 ∂

δ2
2 (εt∂2 + ∂3)

δ3Ṽ )(etCz). (4.66)

It follows that

|z′||α|∂γ|z′|−N |∂α−γ(QV )|

≤ C3|z′|−N+|α|−|γ|
∑

β

∫ ∞

0

eµt−µNt|∂β
z ((z2 + εtz3)

2 + z2
3)

N/2|

× |∂α−γ−βṼ (etCz)|dt

≤ C3|z′|−N+|α|−|γ|
∑

β

∫ ∞

0

eµt−µNt(1 + |ε|t)N+1|z′|N−|β||∂α−γ−βṼ (etCz)|dt

≤ C4

∫ ∞

0

∑
|ξ|=|α−β−γ|≤k

|z′||ξ||(∂ξ
z Ṽ )(etCz)|(1 + |ε|t)N+1+|ξ|eµt−µNt+|α|tdt.

(4.67)

In order to estimate |z′||ξ||(∂ξ
z Ṽ )(etCz)|, we set ζ = etCz. Then we have

|z′||ξ||(∂ξ
z Ṽ )(etCz)| = |(e−tCζ)′||ξ||(∂ξṼ )(ζ)|

≤ eµ|ξ|t|(∂ξṼ )(ζ)|((ζ2 + εtζ3)
2 + ζ2

3 )|ξ|/2

≤ eµkt(1 + |ε|t)k|ζ ′||ξ||(∂ξṼ )(ζ)| ≤ ‖V ‖k;Ne
µkt(1 + |ε|t)k. (4.68)

By assumption we have (1 + k − N)µ + |α| ≤ (1 + k − N)µ + k < 0. Hence the right-hand
side integral in (4.67) converges. Therefore we see that the right-hand side of (4.67) can be
estimated by C5‖V ‖k;N . 2

Proof of Theorem 4.1. By setting ϕ± = QV , (4.41) is equivalent to

V = E±(z,QV ). (4.69)

We define the sequence V j
± (j = 0, 1, 2, . . .) by

V 0
± = E±(z, 0), V 1

± = E±(z,QV 0
±)− E±(z, 0), (4.70)

and
V j+1
± = E±(z, V 0

± + · · ·+ V j
±)− E±(z, V 0

± + · · ·+ V j−1
± ), j = 1, 2, . . . (4.71)

Let the integers k and N satisfy that 0 ≤ k < N − µ and µ(k + 1−N) + k < 0. We will
show the convergence of

∑∞
j=0 V

j
±. By definition we have V 0

± = E±(z, 0) = Ψ±(z). Next we
have

V 1
± = E±(z,QV 0

±)− E±(z, 0) = QV 0
±

∫ 1

0

∇wE±(z, τQV 0
±)dτ. (4.72)

Let ε′ > 0 be a small constant chosen later, and suppose that

‖Ψ±‖k;N < ε′, ‖∇Ψ±‖k;N < ε′. (4.73)

Then, by Lemma 4.6 and the definition of V 0
± we have

‖τQV 0
±‖k;N ≤ c1‖V 0

±‖k;N = c1‖Ψ±‖k;N < c1ε
′ (4.74)
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for some c1 > 0 independent of Ψ±. Here we recall from (4.70) that V 0
± = E±(z, 0) and

E±(z, 0) = Ψ±(z) by (4.34) and (4.36).
In order to estimate ‖∇wE±(·, τQV 0

±)‖k;N , we set w = (w1, . . . , w4) = τQV 0
± and

ζ = (ζ1, ζ
′) =

(
z1

1 + w2

1 + w1

, (z2 + w3)|1 + w1|ν , (z3 + w4)|1 + w1|ν
)
.

The differentiation ∂α
z (∇wE±(z, τQV 0

±)) consists of terms which are product of ∂β∇Ψ±(ζ)
(α ≥ β) and the differentiations of w. First, the product of differentiations of w is bounded
by a constant in view of (4.74). On the other hand, in order to estimate

|z′||β||∂β∇Ψ±(ζ)| ≤ |z′||β||ζ ′|−|β||ζ ′||β||∂β∇Ψ±(ζ)| ≤ |z′||β||ζ ′|−|β|‖∇Ψ±‖k;N ,

we consider |z′||β||ζ ′|−|β|. By Lemma 4.2 we see that w3 and w4 can be divisable by z2
2 + z2

3 ,
respectively. By the smallness of w, the term |z′||β||ζ ′|−|β| can be bounded by a constant.
Hence, if ε′ > 0 is sufficiently small, then we obtain, by the definition of E±(z, w) in (4.41),
(4.34) and (4.36),

‖∇wE±(·, τQV 0
±)‖k;N ≤ c2‖∇Ψ±‖k;N < c2ε

′ (4.75)

for some c2 > 0 independent of ε′ and Ψ±.
It follows from (4.72) that

‖V 1
±‖k;N ≤ ‖QV 0

±‖k;N

∫ 1

0

‖∇wE±(z, τQV 0
±)‖k;Ndτ ≤ c1c2ε

′2.

In order to show the general case, we assume that ‖V j
±‖k;N ≤ cj1c

j
2ε
′j+1 for j = 0, 1, 2, . . . , k.

Then we have

‖
k∑

j=0

V j
±‖k;N ≤

k∑
j=0

cj1c
j
2ε
′j+1 ≤ ε′

1− c1c2ε′
. (4.76)

By definition we have

V k+1
± = E±(z,Q(V 0

± + · · ·+ V k
±)− E±(z,Q(V 0

± + · · ·+ V k−1
± )

= QV k
±

∫ 1

0

∇wE±(z,Q(V 0
± + · · ·+ V k−1

± ) + τQV k
±)dτ. (4.77)

By the apriori estimate (4.76) and Lemma 4.4 the substitution in the right-hand side of (4.77)
is well defined. Moreover, by the same argument as in the proof of (4.75) we see that

‖∇wE±(z,Q(V 0
± + · · ·+ V k−1

± ) + τQV k
±)‖k;N ≤ c2ε

′.

It follows from (4.77) that

‖V k+1
± ‖k;N ≤ ‖QV k

±‖k;Nc2ε
′
∫ 1

0

dτ ≤ ck+1
1 ck+1

2 ε′k+2.

Hence we have the estimate of V j
± for j = k + 1. It follows that the series V± :=

∑∞
j=0 V

j
±

converges in Bk;N and V± is a solution of (4.69). We note that, by (4.76) V± satisfies the
estimate ‖V±‖k;N ≤ ε′(1− c1c2ε

′)−1, and V± is divisable by |z′|2.
Next we verify the smallness assumption (4.73) uniformly with respect to x1 6= 0 in

some neighborhood of x1 = 0. Because the argument is similar we consider the condi-
tion ‖Ψ±‖k;N < ε′. In view of the definition of Ψ± in (4.23) and (4.24), we estimate
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x−1
j Rj(x1, x1z1, |x1|−νz2, |x1|−νz3), (j = 1, 2) and |x1|νRj(x1, x1z1, |x1|−νz2, |x1|−ν), (j = 3, 4)

with x1 6= 0 close to 0. Because the argument is similar, we consider the case j = 1. We have

|z′||α|
∣∣∂α

z (|z′|−NΨ1
±(z))

∣∣ = x−1
1 |z′||α|

∣∣∂α
z (|z′|−NR1(x1, x1z1, |x1|−νz2, |x1|−νz3))

∣∣ . (4.78)

By Lemma 4.4 we have that, for every positive integer p, the term

R1(x1, x1z1, |x1|−νz2, |x1|−νz3)|z′|−p

is smooth at z = 0. Because

|z′|p = (|x1|ν |x1|−ν |z′|)p = (|x1|ν |x′′|)p, x′′ = (x3, x4),

and |x′′| is bounded by the support condition of Rj, the negative power |z′|−N in the right-
hand side of (4.78) is absorbed by |z′|p if p is sufficiently large. On the other hand, if the
differentiation ∂α

z is applied to R1(x1, x1z1, |x1|−νz2, |x1|−νz3), then the negative power of |x1|
appears. These terms are also uniformly bounded when x1 → 0, because there appears positive
power of |x1| from |z′|p. Because all derivatives of R(x) at the origin vanish, we see that the
right-hand side of (4.78) can be made arbtrarily small if we cut off R(x) in a sufficiently small
neighborhood of the origin. This proves that we have (4.73).

We set ϕ± = QV± ∈ Bk;N , and ϕ±(z) = (ϕ1
±(z), ϕ2

±(z), ϕ3
±(z), ϕ4

±(z)). The function ϕ± is
a solution of (4.41). Then we define vj(x) (j = 1, 2, 3, 4) by (4.25) and (4.26). For a given
integer m, we can easily see that vj(x) is a Cm function if we take k and N in Bk;N sufficiently
large. If we rewrite (4.41) with the variable x, then we see that v is a solution of (4.6), where
the nonlinear part R is modified by a cutoff function. In order to show that v is a solution of
the original (4.6) we will show the apriori estimate of v. Indeed, if |x+ v| < ε′′ for sufficiently
small ε′′, then v is a solution of (4.6). By Lemma 4.6 and the uniform estimate of V± in x1 we
know that φ1

±(z) is uniformly bounded in z and x1. It follows that v1(x) = x1φ
1
± is arbitrarily

small if x1 is sufficiently small. Similarly we can show that v2(x) = x2φ
2 is small by the

estimate of V±. On the other hand, we have x3 + v3(x) = x3 + |x1|−νφ3
±(z). Because φ3

± is
divisable by |z′|2 and |z′| = |x1|ν |x′′|, by Lemma 4.4 we see that |x3 + v3(x)| < ε′′ uniformly in
x1. Similarly we can show the same estimate for x4 + v4. Therefore we see that v is a solution
of (4.6). This completes the proof.
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1978, see also Théorème de Siegel, nombres de Bruno e polynômes quadratic, Astérisque
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