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Plan of  this talk

• Review 1-D implosion

• Eye candy

• Ueda’s semi-attracting world (+ upgrades)

• Eggbeater dynamics

• Semi-parabolic Implosion



Quadratic family {pc = z2 + c}, parametrized by c ∈ C.

Mandelbrot set M = {c ∈ C : Jc is connected.}

Almost an example of the solenoid.

The Julia set of the map

(x, y) "→ (x2 + c + εy, x)

gives a solenoid if |ε| and |c| are small. The following example,
computed by S. Ushiki (Kyoto University) shows a solenoid,
just after “parabolic implosion.”

• Local expansion (instability of orbits)
Lyapunov exponent

λ(x) = lim
n→∞

1

n
log |fn(x)′|

• geometric (fractal) shape of dynamical sets
• statistical behavior (invariant measures, entropy)

General Principle:

Hausdorff dimension =
Entropy

Lyapunov exponent

Example 1.
p(z) = z2

Example 2.
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attracting fixed point

attracting 2-cycle

attracting 3-cycle 



The Julia sets in each hyperbolic component are 
structurally stable, which implies that  P-->J(P)  is 
continuous in each hyperbolic component (and even 
defines a “holomorphic motion”).

bifurcation: (attracting fixed point --> repelling fixed point + attracting 2-cycle) 

The passage from one hyperbolic 
component to another can be continuous.  
For example:



Bifurcation of the Cauliflower



c=0.251

(Local) Parabolic Dynamics

f : z !→ z + z2 + · · · f−1 : z !→ z − z2 + · · ·

Φ+ : B+ → C Φ− : B− → C

Φ+ ◦ f = Φ+ + 1 Φ− ◦ f−1 = Φ− − 1

Parabolic Implosion: J 1
2
%= limε→0+ J 1

2
+ε

The “inner curls” of J 1
2
+ε suddenly disappear.
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Lavaurs, Douady, Zinsmeister, ...
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Forward (attracting) basin
Backward (repelling) basin

Fundamental domains

(Local) Parabolic Dynamics
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Forward and backward Fatou coordinates on the 
attracting and repelling basins:

We map the crescent in the forward basin to  C  by the 
Fatou coordinate                  

then we “graph” the Fatou coordinate 

inside the image basin by showing the level sets of the real 
and imaginary parts.  Our pictures are not the “normal” 

ones, since they take place only inside the crescents.
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View of the 1-D quadratic map with  c = .25  Note critical points (not part 
of the most local picture).  View is truncated above (level curves are 
straight) and below (leave basin).  There is a lot of gray, and then we 

encounter the “lower half” of this picture.  Note the periodicity.



Move to 2-D mappings:

Σ = {(θj)j∈Z : θj+1 = 2θj}

f(x, y) = ((1 + a)x − ay + x2 + bx3 + cx4, x)

10

is a biholomorphic map.  We have  b = c = 0 in most 
pictures.  The Jacobian is constant (= a).  The origin (0,0)  is 
fixed, and the eigenvalues at the origin are  1  and  a.   We 
work only with the case  0<|a|<1.  Values such as  a = 0.3  

are “very large”.



2-D map with Jacobian = 0.15



1-D degree 4 map with 2 parabolic basins



2-D degree 4 map with 2 parabolic basins;  Jacobian  =  0.3
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Forward and backward Fatou coordinates on the 
attracting and repelling basins:

A (partially defined) dynamical system on the overlap of 
forward/backward basins is given by the “transition function” 
or “Lavaurs map” (essentially visible in the previous pictures) 

between the two Fatou coordinates:

gα := (Φ+)−1 ◦ Tα ◦ Φ−, Tα(w) = w + α
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The translation parameter      is arbitrary since the Fatou coordinates are only 
defined modulo additive constants.  The maps commute, and the pair  

                        defines a new dynamical system.  We define the dynamically 
invariant set: 

α
(f, gα)

K(f, gα) := {z : gn
α(z) ∈ Kf , ∀n ≥ 0}, J(f, gα) =

∂K(f, gα)

gα := (Φ+)−1 ◦ Tα ◦ Φ−, Tα(w) = w + α
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Theorem. For any sequence εj → 0 with Im(εj) ≈
c(Re(εj)2), there is an α such that

lim sup
εj→0

J 1
4
+εj

⊃ J(p 1
4
, gα).

p(z) = z2 + 1
4

α
(f, gα)

K∞(f, gα) := {z : gn
αfm(z) ∈ B, ∀n, m ≥ 0}

K(f, gα) := {z : gn
α(z) ∈ Kf , ∀n ≥ 0},

J(f, gα) = ∂K(f, gα)

gα := (Φ−)−1 ◦ Tα ◦ Φ+, Tα(w) = w + α

(Local) Parabolic Dynamics

f : z (→ z + z2 + · · · f−1 : z (→ z − z2 + · · ·

Φ+ : B → C Φ− : B− → C Φ− : Σ → C

Φ+ : B+ → C Φ− : B− → C

3



Julia-Lavaurs set:

Here we apply a map      to a 
point of the filled Julia set of  
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The red point is not in the filled 
Julia-Lavaurs set because it escapes.  
Lavaurs-Julia sets give a “geometric 

estimate” on the amount of 
discontinuity that takes place in 

parabolic implosion:

Theorem. For εj → 0 with Im(εj) ≈ c(Re(εj)2),
there is a subsequence and α such that

lim inf
εj→0

J 1
4
+εj

⊃ J(p 1
4
, gα).

p(z) = z2 + 1
4
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Φ+ : B+ → C Φ− : B− → C
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Another view of the Julia-Lavaurs set

Recipe: we intersect with a fundamental domain 
(crescent), which is conformally equivalent to a 

cylinder.  Each “end” of the cylinder is equivalent to 
a disk.  Now draw the dynamically invariant 

Lavaurs-Julia set in the cylinder or disk.



Previous Julia-Lavaurs set redrawn inside the cylinder

And inside the upper disk



Effect of  varying the parameter for the 1-D map  c = .25
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a = 0.1,  alpha =  -2.8

The dynamical sets 
of the transition 
maps measure 

parabolic implosion 
(as in the 1-D case):



a = 0.1,  alpha =  0

a = 0.1,  alpha =  1.5



a = 0.2,  alpha =  -3.5 a = 0.2,  alpha =  -2.8



Pictures are in the cylinder;  alpha = 0; 
parameter  a = 0 means map is 1-dimensional.

a = −.5 a = −.3 + .4i a = .3 + .4i a = .5

Φ− : Σ → C is a conformal equivalence, and the
quotient Σ/f ∼= C/Z is a cylinder.

Σβ → e2 !!" Σ0 = line at infinity → e1 !!" ΣB

Σγ → 0 → 1 → · · · → 7 !!" ΣC
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a = 0.6,  alpha =  2.0

Dynamical set drawn inside the “disk at infinity” in the cylinder.


