Applications of
 Parabolic Renormalization

Hiroyuki Inou \& Mitsuhiro Shishikura

 (Kyoto University)Local Holomorphic Dynamics
Pisa, January 22-26, 2007

When a parabolic point is perturbed....

$$
f_{0}(z)=z+z^{2}
$$

Discontinuous change of Julia sets, etc.

Inou's talk

$$
\begin{aligned}
& f_{0}(z)=z+a_{2} z^{2}+\ldots \quad a_{2} \neq 0 \\
& E_{f_{0}}=\Phi_{\text {attr }} \circ \Phi_{\text {rep }}^{-1} \quad \text { horn map }=\text { Ecalle-Voronin invariant } \\
& \text { Want to consider iteration }
\end{aligned}
$$

$$
\mathbb{C} / \mathbb{Z} \ni z, \quad E_{f_{0}}(z), E_{f_{0}}^{2}(z), E_{f_{0}}^{3}(z), \ldots
$$

$\mathcal{R}_{0} f_{0}=\operatorname{Exp}^{\sharp} \circ E_{f_{0}} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \quad$ Parabolic renormalization
$\operatorname{Exp}^{\sharp}(z)=e^{2 \pi i z}: \mathbb{C} / \mathbb{Z} \xrightarrow{\simeq} \mathbb{C}^{*}$
Want to iterate the process

$$
f_{0} \rightsquigarrow \mathcal{R}_{0} f_{0} \rightsquigarrow \mathcal{R}_{0}^{2} f_{0} \rightsquigarrow \mathcal{R}_{0}^{3} f_{0} \rightsquigarrow \ldots
$$

Main Theorem I: $\quad \exists \mathcal{F}_{1} \quad \mathcal{R}_{0}\left(\mathcal{F}_{1}\right) \subset \mathcal{F}_{1}$

Continued fraction and Renormalization

(for rotation-like dynamics)

$$
\begin{array}{r}
\alpha=\frac{1}{a_{1}+\alpha_{1}}=\frac{1}{a_{1}+\frac{1}{a_{2}+\alpha_{2}}}=\cdots=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots}}} \\
\alpha_{0}=\alpha \in(0,1) \backslash \mathbb{Q}, \quad a_{n}=\left[\frac{1}{\alpha_{n-1}}\right] \in \mathbb{N}, \quad \alpha_{n}=\frac{1}{\alpha_{n-1}}-a_{n} \in(0,1)
\end{array}
$$

$\alpha \quad \longleftrightarrow T_{\alpha}: x \mapsto x+\alpha$ on \mathbb{R} / \mathbb{Z}
convergents $\frac{p_{n}}{q_{n}} \rightarrow \alpha \longleftrightarrow T_{\alpha}^{q_{n}} \rightarrow i d$ "closest returns"
first return map $\doteqdot T_{\alpha}^{q_{n}} \doteqdot\left(T_{\alpha}^{q_{n-1}}\right)^{a_{n}}$
x_{0}
$T_{\alpha}^{q_{n-1}}\left(x_{0}\right)$

Renormalization for rotation-like dynamics

The same construction for non-linear maps

 $f_{0}=f$ $f_{n+1}=$ (first return map of f_{n} to a fundamental domain) up to rescaling $\alpha_{n}=$ rotation number of $f_{n} \quad f_{n+1} \doteqdot f_{n}^{a_{n}}$Yoccoz renormalization for Siegel-Bruno Theorem

$$
\begin{aligned}
f(z)=e^{2 \pi i \alpha} z+\ldots, \sum \log \frac{q_{n+1}}{q_{n}}<\infty \Longrightarrow f & \text { is conjugate to } z \mapsto e^{2 \pi i \alpha} z \\
f_{n}(z)=e^{2 \pi i \alpha_{n}} z+\ldots \rightsquigarrow f_{n+1}(z)= & e^{2 \pi i \alpha_{n+1}} z+\ldots \\
& =\text { first return map of } f_{n} \\
& \text { to a fundamental domain } \\
& \text { up to uniformization } \\
\alpha_{n+1} \equiv & -\frac{1}{\alpha_{n}}(\text { mod } \mathbb{Z})
\end{aligned}
$$

Yoccoz renormalization for Siegel-Bruno Theorem

$$
f_{n}(z)=e^{2 \pi i \alpha_{n}} z+\ldots \rightsquigarrow f_{n+1}(z)=e^{2 \pi i \alpha_{n+1}} z+\ldots
$$

Optimality of Bruno condition (Yoccoz) inverse construction for germs(unrenormalization) can add extra fixed/periodic points another argument for quadratic polynomials

Near-parabolic renormalization (cylinder renormalization) take cresent-shaped fundamental region quotient $=$ cylinder $\mathbb{C} / \mathbb{Z} \simeq \mathbb{C}^{*}$

Advantages:
quotient cylinder is canonical
can include critical point
when α is small the fundamental region does not shrink
limit can be described by horn map
Disadvantage:
only applies to α with large continued fraction coefficients $\quad a_{n} \geq N$

Horn map and Parabolic Renormalization

Perturbation

E_{f} depends continuously on f (after a suitable normalization)

Near-parabolic Renormalization (cylinder renorm.)

$$
\tilde{\mathcal{R}} f=\chi_{f} \circ E_{f}
$$

$$
\begin{aligned}
\mathcal{R} f & =\operatorname{Exp}^{\sharp} \circ \tilde{\mathcal{R}} f \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \\
& =\operatorname{Exp}^{\sharp} \circ \chi_{f} \circ E_{f} \circ\left(\operatorname{Exp}^{\sharp}\right)^{-1} \\
& =e^{2 \pi i \beta} z+O\left(z^{2}\right)
\end{aligned}
$$

$$
\text { where } \beta=-\frac{1}{\alpha}(\bmod \mathbb{Z})
$$

$$
\text { or } \alpha=\frac{1}{m-\beta}(m \in \mathbb{N})
$$

first return map

$$
\mathcal{R} f \doteqdot e^{2 \pi i \beta} \mathcal{R}_{0} f_{0}
$$

$$
\text { write } f=e^{2 \pi i \alpha} f_{0}
$$

$$
\alpha \mapsto-\frac{1}{\alpha}(\bmod \mathbb{Z})
$$

$$
f_{0} \mapsto \mathcal{R}_{0} f_{0}
$$

Suppose the near-parabolic renormalization can be iterated:

$$
f_{0} \xrightarrow{\mathcal{R}} f_{1} \xrightarrow{\mathcal{R}} f_{2} \xrightarrow{\mathcal{R}} f_{3} \xrightarrow{\mathcal{R}} \ldots
$$

high iterates of f_{0} corresponds to low iterates of f_{1}
highly recurrent behavior of f_{0} can be analyzed through f_{i} 's
fine structure of orbits or invariant sets are magnified
$\mathcal{R}=$ a dynamical system in the space of certain type of dynamical systems

But, ... Can you really iterate infinitely many times?

Renormalization: The Picture

$f(z)=e^{2 \pi i \alpha} z+O\left(z^{2}\right)=e^{2 \pi i \alpha} f_{0}(z)$ where $f_{0}(z)=z+O\left(z^{2}\right)$ 1-parabolic $f \leftrightarrow\left(\alpha, f_{0}\right)$
Write $\mathcal{R} f(z)=e^{-2 \pi i \frac{1}{\alpha}} \mathcal{R}_{\alpha} f_{0}(z)$ then $\mathcal{R}:\left(\alpha, f_{0}\right) \mapsto\left(-\frac{1}{\alpha}, \mathcal{R}_{\alpha} f_{0}\right)$

Main Theorems

Theorem 1 Let $P(z)=z(1+z)^{2}$. There exist bounded simply connected open sets V and V^{\prime} with $0 \in V \subset \bar{V} \subset V^{\prime} \subset \mathbb{C}$ such that the class

$$
\mathcal{F}_{1}=\left\{\begin{array}{l|l}
f=P \circ \varphi^{-1}: \varphi(V) \rightarrow \mathbb{C} & \begin{array}{c}
\varphi: V \rightarrow \mathbb{C} \text { is univalent } \\
\varphi(0)=0, \varphi^{\prime}(0)=1
\end{array}
\end{array}\right\}
$$

satisfies the following:
univalent $=$ holomorphic and injective
(0) every $f \in \mathcal{F}_{1}$ is non-degenerate;
(i) $\mathcal{F}_{0} \backslash\left\{\right.$ quadratic polynomial\} can be naturally embedded into \mathcal{F}_{1} (in particular, $\left.\mathcal{R}_{0}^{n}\left(z+z^{2}\right) \in \mathcal{F}_{1} \quad n=1,2, \ldots\right)$;
(ii) The renormalization \mathcal{R}_{0} is well defined on \mathcal{F}_{1} so that $\mathcal{R}_{0}\left(\mathcal{F}_{1}\right) \subset \mathcal{F}_{1}$;
(iii) If we write $\mathcal{R}_{0} f=P \circ \psi^{-1}$, then ψ can be extended univalently to V^{\prime};
(iv) $f \mapsto \mathcal{R}_{0} f$ is "holomorphic."

Theorem 2 The above statements hold for \mathcal{R}_{α} for α small. Hence there exists an N such that the above holds for

$$
\alpha=\frac{1}{m+\beta} \text { with } m \in \mathbb{N}, \beta \in \mathbb{C} \text { and }|\beta| \leq 1 \text {. }
$$

$$
\begin{aligned}
& P(z)=z(1+z)^{2} \text { and } V, V^{\prime} \\
& P(0)=0, \quad P^{\prime}(0)=1
\end{aligned}
$$

$$
\text { critical points: }-\frac{1}{3} \text { and }-1 \quad \text { critical values: } P\left(-\frac{1}{3}\right)=-\frac{4}{27} \text { and } P(-1)=0
$$

$$
\eta=2
$$

V slightly smaller domain than V^{\prime}

Applications

Theorem 2'. There exists a large N such that the following holds: If $f(z)=e^{2 \pi i \alpha} h(z)$ with $h \in \mathcal{F}_{1}\left(\right.$ or $\left.h(z)=z+z^{2}\right)$ and

$$
\alpha= \pm \frac{1}{a_{1} \pm \frac{1}{a_{2} \pm \frac{1}{\ddots}}} \quad \text { where } a_{i} \in \mathbb{N} \text { and } a_{i} \geq N,
$$

then the sequence of near-parabolic renormalizations

$$
f=f_{0} \xrightarrow{\mathcal{R}} f_{1} \xrightarrow{\mathcal{R}} f_{2} \xrightarrow{\mathcal{R}} f_{3} \xrightarrow{\mathcal{R}} \ldots
$$

is defined so that $f_{n}=e^{2 \pi i \alpha_{n}} h_{n}(z), h_{n} \in \mathcal{F}_{1}$ (possibly with complex conjugation).

Corollary. Under the assumption of Theorem 2', the critical orbit stays in the domain of f and can be iterated infinitely many times. Moreover if f is (a part of) a rational map, then the critical orbit is not dense.

Julia set with positive area

Theorem (Buff-Chéritat). There exists an irrational number α such that the Julia set of the quadratic polynomial $P_{\alpha}(z)=e^{2 \pi i \alpha} z+z^{2}$ has positive Lebesgue measure.

Adrien Douady's plan

$$
P_{\alpha(0)} \xrightarrow{\text { perturb }} P_{\alpha(1)} \xrightarrow{\text { perturb }} P_{\alpha(2)} \xrightarrow{\text { perturb }} P_{\alpha(3)} \xrightarrow{\text { perturb }} \cdots \longrightarrow P_{\alpha}
$$

Each $\alpha(n)$ is of bounded type, hence $P_{\alpha(n)}$ has a Siegel disk.
$\alpha(0)=[0, N, N, N, N, \ldots]$
$\alpha(n) \rightsquigarrow \alpha(n+1)$: modify only a_{k} (larger), for some large k.

Want:

Do not lose too much area in each step $K\left(P_{\alpha(n)}\right) \rightsquigarrow K\left(P_{\alpha(n+1)}\right)$.

$$
\alpha=\lim _{n \rightarrow \infty} \alpha(n) \text { non Bruno, }\left|J\left(P_{\alpha}\right)\right|=\left|K\left(P_{\alpha}\right)\right| \geq \limsup _{n \rightarrow \infty}\left|K\left(P_{\alpha(n)}\right)\right|>0
$$

Need to control the boundary of Siegel disks, which is the closure of the critical orbit. "Semi-continuity" by our Theorem 2' which yields a uniform control on the sequence of renormalizations, even when a_{k} are taken to be very big.
Also uses McMullen's renormalization result on Siegel disks of bounded type rotation number.

Contraction and Hyperbolicity

Theorem 3 Modifying the definition slightly (requiring that φ has a quasiconfomal extension to \mathbb{C}), \mathcal{F}_{1} is in one to one correspondence with the Teichmüller space Teich (W) of $W=\mathbb{C} \backslash \bar{V}\left(\simeq \mathbb{D}^{*}\right)$. The induced map $\mathcal{R}_{0}^{\text {Teich }}$ is a uniform contraction with respect to the Teichmüller distance. (The Lipshitz constant $\leq \exp \left(-2 \pi \bmod \left(V^{\prime} \backslash \bar{V}\right)\right)$.)

Theorem 4 The above statements hold for the fiber map \mathcal{R}_{α} for α small. Hence the total renormalization \mathcal{R} is hyperbolic in this region.

Proof of Theorems 3 and 4

$\mathcal{F}_{1} \ni f=P \circ \varphi^{-1} \rightsquigarrow\left[\left.\tilde{\varphi}\right|_{W}\right] \in \operatorname{Teich}(W)=\{\psi: W \rightarrow \mathbb{C}$ qc $\} / \sim$ where $\tilde{\varphi}$ is a quasiconformal extension of φ to \mathbb{C}.

Teichmüller space is like the unit disk with Poincaré metric. holomorphic self map does not expand the distance, and is often a contraction.

Royden-Gardiner Theorem (Teichmüller distance = Kobayashi distance) cotangent space $=$ \{integrable holomorphic quadratic differentials $\}$ modulus-area inequality for holom. quad. differentials isoperimetric inequality for holom. quad. differentials modified Carleman's inequality

Application of contraction

Theorem. Suppose f and f^{\prime} satisfy the assumption of Theorem 2', with the same rotation number α. Then they have small periodic cycles ζ_{n} and ζ_{n}^{\prime} around 0 with period q_{n}. Let $\lambda\left(\zeta_{n}\right), \lambda\left(\zeta_{n}^{\prime}\right)$ be their multipliers. The differences

$$
\left|\lambda\left(\zeta_{n}\right)-\lambda\left(\zeta_{n}^{\prime}\right)\right| \quad \text { and } \quad\left|\frac{1}{1-\lambda\left(\zeta_{n}\right)}-\frac{1}{1-\lambda\left(\zeta_{n}^{\prime}\right)}\right|
$$

tends to 0 exponentially fast as $n \rightarrow \infty$ with a uniform rate.

Corollary. Not arbitrary germ with irrationally indifferent fixed point can be realized in such a map (for example, quadratic polynomials, or a perturbation of rational map with parabolic fixed point with only one critical point in its basin).
cf. Yoccoz unrenormalization construction for the inverse of SiegelBruno Theorem.

Grazie!

A draft is available at http://www.math.kyoto-u.ac.jp/~mitsu/pararenorm/

