Invariant varieties for a dicritic diffeomorphism in $(\mathbb{C}^2, 0)$

F. E. Brochero Martínez UFMG-Brasil

January 23, 2007

F. E. Brochero Martínez UFMG-Brasil () Invariant varieties for a dicritic diffeomorphis

Given $F \in \text{Diff}(\mathbb{C}^n, 0)$,

Main problem: to find formal, topological, C^r or analytic invariants that determine F.

i.e if F and G have the same invariants then there exists φ formal, continuous, C^r or analytic local diffeomorphism at 0, such that the diagram

$$\begin{array}{c} (\mathbb{C}^n, 0) \xrightarrow{F} (\mathbb{C}^n, 0) \\ \varphi & \downarrow \\ \varphi & \downarrow \\ (\mathbb{C}^n, 0) \xrightarrow{G} (\mathbb{C}^n, 0) \end{array}$$

commutes.

• spec(DF(0)) is non-resonant \Rightarrow formal conjugation.

э

- spec(DF(0)) is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) DF(0) hyperbolic \Rightarrow topological conjugation.

- spec(DF(0)) is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) DF(0) hyperbolic \Rightarrow topological conjugation.
- (Sternberg) DF(0) hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.

- spec(DF(0)) is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) DF(0) hyperbolic \Rightarrow topological conjugation.
- (Sternberg) DF(0) hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.
- (Poincaré) DF(0) hyperbolic, non-resonant and in the Poincaré domain ⇒ analytic conjugation.

- spec(DF(0)) is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) DF(0) hyperbolic \Rightarrow topological conjugation.
- (Sternberg) DF(0) hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.
- (Poincaré) DF(0) hyperbolic, non-resonant and in the Poincaré domain ⇒ analytic conjugation.
- (Siegel, Brjuno) DF(0) satisfies a Brjuno-condition ⇒ analytic conjugation.

Let $f(x) = x + a_{k+1}x^{k+1} + \cdots$ with $a_{k+1} \neq 0$ then

• (Leau-Fatou) Flower dynamic of the orbits.

3

< □ ▶ < / □ ▶

Let
$$f(x) = x + a_{k+1}x^{k+1} + \cdots$$
 with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that f(x) is formally conjugated with $f_{k,\lambda} := x + x^{k+1} + \lambda x^{2k+1}$.

Let
$$f(x) = x + a_{k+1}x^{k+1} + \cdots$$
 with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that f(x) is formally conjugated with $f_{k,\lambda} := x + x^{k+1} + \lambda x^{2k+1}$.
- (Camacho) f(x) is topologically conjugated with $g(x) = x + x^{k+1}$.

Let
$$f(x) = x + a_{k+1}x^{k+1} + \cdots$$
 with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that f(x) is formally conjugated with $f_{k,\lambda} := x + x^{k+1} + \lambda x^{2k+1}$.
- (Camacho) f(x) is topologically conjugated with $g(x) = x + x^{k+1}$.
- (Ecalle, Voronin, Martinet-Ramis, Malgrange...) For each formal class, there exist a countable number of invariants.

Let
$$f(x) = x + a_{k+1}x^{k+1} + \cdots$$
 with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that f(x) is formally conjugated with $f_{k,\lambda} := x + x^{k+1} + \lambda x^{2k+1}$.
- (Camacho) f(x) is topologically conjugated with $g(x) = x + x^{k+1}$.
- (Ecalle, Voronin, Martinet-Ramis, Malgrange...) For each formal class, there exist a countable number of invariants.
- (J. Rey) C_*^{k+1} -conjugated with $g(x) = x + x^{k+1}$, i.e., conjugation by a continuous diffeomorphism that is C^{k+1} at every point except the origin.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Let $F(z) = z + P_k(z) + P_{k+1}(z) + \cdots$, $z = (z_1, \ldots, z_n)$ where $P_k \neq 0$. A *characteristic direction* for F is a point $[v] \in \mathbb{P}^{n-1}$ such that $P_k(v) = \lambda v$, for some $\lambda \in \mathbb{C}$; it is *nondegenerate* if $\lambda \neq 0$.

F is called *dicritic* if $P_k(z) = p(z)z$ where p(z) is a homogeneous polynomial of degree k - 1.

A parabolic curve for F is an injective holomorphic map $\varphi : \Omega \to \mathbb{C}^n$, where Ω is a simply connected domain in \mathbb{C} with $0 \in \partial \Omega$ such that

- φ is continuous at the origin, and $\varphi(0) = 0$.
- $F(\varphi(\Omega)) \subset \varphi(\Omega)$ and $F^{\circ k}(p)$ converges to 0 when $k \to +\infty$, for $p \in \varphi(\Omega)$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

The natural generalization of Leau-Fatou theorem is given by Hakim in the generic case

Theorem (Hakim)

Let F be a tangent to the identity germ of diffeomorphism of $(\mathbb{C}^n, 0)$. For any nondegenerate characteristic direction [v] there exist $\operatorname{ord}(F) - 1$ disjoint parabolic curves tangent to [v] at the origin.

When n = 2, Abate proved that the nondegeneracy condition can be dismissed.

Theorem (Abate)

Let F be a tangent to the identity germ of diffeomorphism of \mathbb{C}^2 such that 0 is an isolated fixed point. Then there exist $\operatorname{ord}(F) - 1$ disjoint parabolic curves for F at the origin.

Let $\pi : (M, D) \to (\mathbb{C}^2, 0)$ be the blow up of \mathbb{C}^2 at the origin, where $D = \pi^{-1}(0) = \mathbb{P}^{n-1}$.

In the dicritic case we can say that almost all orbits have a flower dynamic.

Theorem (B.M.)

Let $F(z) = z + p(z)z + \cdots$ be a dicritic diffeomorphism, and $\tilde{F} : (M, D) \to (M, D)$ such that $\pi \circ \tilde{F} = F \circ \pi$ and $\tilde{F}|_D = id|_D$, then there exist open sets U^+ , U^- , such that

- $U^+ \cup U^-$ is a neighborhood of $\{[z] \in D | p(z) \neq 0\}$.
- if $P \in U^+$, then $\tilde{F}^{\circ n}(P)$ converges to a point in D when $n \to \infty$.
- if $P \in U^-$, then $\tilde{F}^{\circ n}(P)$ converges to a point in D when $n \to -\infty$.

Generalization of Szekeres normal form in dimension 2. A formal change $\varphi(x, v)$ of coordinates is called *semiformal* in U if its components are in $\mathcal{O}(U)[[x]]$.

Theorem (B.M.)

Let $F(x, y) = \begin{pmatrix} x+p(x,y)x+\cdots \\ y+p(x,y)y+\cdots \end{pmatrix}$ be a dicritic diffeomorphism, then there exists a unique rational function q(v) such that \tilde{F} is semiformally conjugated with

$$ilde{F}_{
ho,q} = \left(egin{array}{c} x + x^{k+1}
ho(1,v) + x^{2k+1} q(v) \ v \end{array}
ight)$$

in $\{p([v_1, v_2]) \neq 0\}$. In addition, $q(v) = \frac{s(v)}{p(1,v)^{2k+1}}$ where s(v) is a polynomial of degree $2k + 2 + 2k \deg_v(p(1, v))$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Observe that if $F, G \in \text{Diff}(\mathbb{C}^2, 0)$ are formally conjugated then \tilde{F} and \tilde{G} are semiformally conjugated, but the reciprocal is not true. In fact, let

$$G_m(x,y) = \begin{pmatrix} x + x^{k+1} + y^m \\ y + x^k y + x^m \end{pmatrix},$$

If $m_1, m_2 > 2k + 1$ then \tilde{G}_{m_1} and \tilde{G}_{m_2} are semiformally conjugated, but G_{m_1} and G_{m_2} are not formally conjugated.

In addition, they are not topologically conjugated because their Milnor numbers are different.

Fixing the coordinates $(x, v) \in M$, then for any point $a \in D \setminus \{(x : y) | p(x, y) = 0\}$ and any simply connected neighborhood $U \subset D \setminus \{(x : y) | p(x, y) = 0\}$ of a there exists an analytic change of coordinates $\varphi \in \text{Diff}(M, U)$ such that $\varphi \circ \tilde{F} \circ \varphi^{-1} = G$ where

$$g_1(x,v) = x + x^{k+1}p(v) + r(v)x^{2k+1} + O(x^{2k+2})$$

$$g_2(x,v) = v + O(x^{2k+1}).$$

By a linear change of coordinates we suppose a = 0.

Making a ramificated change of coordinates $z = \frac{1}{x^k}$, between \mathbb{C}^* and $\mathbb{C}_k^* = \cup U_j$, and fixing a chart $U_j \sim \mathbb{C}$, then the diffeomorphism G takes the form

$$G(z,v) = \begin{pmatrix} g_1(z,v) \\ g_2(z,v) \end{pmatrix} = \begin{pmatrix} z - p(v) - \frac{s(v)}{z} + O(z^{-1-\frac{1}{k}}) \\ v + O(z^{-2}) \end{pmatrix}$$

thus, G is semiformally conjugated with

$$G_{p,s} = \left(egin{array}{c} z - p(v) - rac{s(v)}{z} \\ v \end{array}
ight)$$

For every R > 0 and r > 0 let

$$U^{j,+}_{\theta,R,r} = \left\{ (z,v) \left| \left| \arg\left(\frac{z}{p(v)} - R\right) \right| < \theta, |v| < r \right. \right\}$$

For every $r \ge 0$ such that $p(v) \ne 0$ for all $|v| \le 2r$ and for every $0 < \theta < \pi$, there exists $R \gg 0$ such that $G^{\circ j}(z, v) \in U^{j,+}_{\theta,R,2r}$ for all $j \in \mathbb{N}$ and $(z, v) \in U^{j,+}_{\theta,R,r}$. The same way we define

$$U_{\theta,R,r}^{j,-} = \left\{ (z,v) \left| \left| \arg\left(\frac{z}{p(v)} + R\right) \right| < \pi - \theta, |v| < r \right\} \right\}$$

Using the stability in sectorial domains, it follows that there exists

$$h_{j,+}: U^{j,+}_{\theta,R,2r} \rightarrow h_{j,+}(U^{j,+}_{\theta,R,2r})$$

a unique holomorphic diffeomorphism such that

$$h_{j,+}\circ G|_{U^{j,+}_{ heta,R,r}}=G_{p,s}\circ h_{j,+}|_{U^{j,+}_{ heta,R,r}}$$

In addition, the asymptotic development $\hat{h}_{j,+}$ of h at (∞, v_0) conjugates the asymptotic developments \hat{f} and \hat{g} at (∞, v_0) , for $|v_0| < r$.

The same way there exists

$$h_{j,-}: U^{j,-}_{ heta,R,2r} o h_{j,-}(U^{j,-}_{ heta,R,2r})$$

a unique holomorphic diffeomorphism such that

$$h_{j,-} \circ G^{-1}|_{U^{j,-}_{\theta,R,r}} = G^{-1}_{\rho,s} \circ h_{j,-}|_{U^{j,-}_{\theta,R,r}}$$

therefore

$$h_{j,+}\circ h_{j,-}^{-1}\circ G_{p,s}=G_{p,s}\circ h_{j,+}\circ h_{j,-}^{-1}$$

in $h_{j,-}(U^{j,-}_{ heta,R,r}\cap U^{j,+}_{ heta,R,r})$

By the classical theory of analytic classification of tangent to the identity diffeomorphism in dimension 1, it is know that the 2k sectorial maps

$$h_{j,+} \circ h_{j,-}^{-1}, \quad h_{j,+} \circ h_{j+1,-}^{-1}, \qquad j = 1, \dots k$$

determine the analytic class of the diffeomorphism, locally at a neighborhood of $0 \in D$.

In addition there exist $2k \ C^{\infty}$ -diffeomorphisms $\psi_{j,+}$, $\psi_{j,-}$, flat at infinity, that commute with $G_{p,s}$ and

$$h_{j,+} \circ h_{j,-}^{-1} = \psi_{j,+} \circ \psi_{j,-}^{-1}$$

SO

$$\Psi = \psi_{j,+}^{-1} \circ h_{j,+} = \psi_{j,-}^{-1} \circ h_{j,-}$$

is a C^{∞} -diffeomorphism that conjugates G and $G_{p,s}$ at a neighborhood of $(0,0) \in D$.

Theorem

There exist $R \gg 0$ and r > 0 such that G and $G_{p,s}$ are C^{∞} conjugated in $U = \{|z| > R\} \times \{|y| < r\}$, *i.e.* there exists a C^{∞} -diffeomorphism $\Psi : U \rightarrow \varphi(U)$ such that $G \circ \Psi = \Psi \circ G_{p,s}$.

Now, since S := (v = 0) is an invariant curve for $G_{p,s}$ then $\Psi^{-1}(S)$ is an invariant curve for G.

17 / 18

• For each point $v = (v_1 : v_2)$ in the divisor D such that $p(v_1, v_2) \neq 0$, we can define a countable set of analytic invariants.

- For each point $v = (v_1 : v_2)$ in the divisor D such that $p(v_1, v_2) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.

- For each point $v = (v_1 : v_2)$ in the divisor D such that $p(v_1, v_2) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.
- Thus, using analytic extension, we can construct a set of analytic function defined in the universal cover of D \ {p = 0}.

- For each point $v = (v_1 : v_2)$ in the divisor D such that $p(v_1, v_2) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.
- Thus, using analytic extension, we can construct a set of analytic function defined in the universal cover of D \ {p = 0}.

This set determines the analytic class of the diffeomorphism?