Invariant varieties for a dicritic diffeomorphism in
 $\left(\mathbb{C}^{2}, 0\right)$

F. E. Brochero Martínez UFMG-Brasil

January 23, 2007

Given $F \in \operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$,
Main problem: to find formal, topological, C^{r} or analytic invariants that determine F.
i.e if F and G have the same invariants then there exists φ formal, continuous, C^{r} or analytic local diffeomorphism at 0 , such that the diagram

commutes.

Particular question: when F is conjugated with $D F(0)$.

- $\operatorname{spec}(D F(0))$ is non-resonant \Rightarrow formal conjugation.

Particular question: when F is conjugated with $D F(0)$.

- $\operatorname{spec}(D F(0))$ is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) $D F(0)$ hyperbolic \Rightarrow topological conjugation.

Particular question: when F is conjugated with $D F(0)$.

- $\operatorname{spec}(D F(0))$ is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) $D F(0)$ hyperbolic \Rightarrow topological conjugation.
- (Sternberg) $D F(0)$ hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.

Particular question: when F is conjugated with $D F(0)$.

- $\operatorname{spec}(D F(0))$ is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) $D F(0)$ hyperbolic \Rightarrow topological conjugation.
- (Sternberg) $D F(0)$ hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.
- (Poincaré) $D F(0)$ hyperbolic, non-resonant and in the Poincaré domain \Rightarrow analytic conjugation.

Particular question: when F is conjugated with $D F(0)$.

- $\operatorname{spec}(D F(0))$ is non-resonant \Rightarrow formal conjugation.
- (Hartman-Grobman) $D F(0)$ hyperbolic \Rightarrow topological conjugation.
- (Sternberg) $D F(0)$ hyperbolic and non-resonant $\Rightarrow C^{\infty}$ conjugation.
- (Poincaré) $D F(0)$ hyperbolic, non-resonant and in the Poincaré domain \Rightarrow analytic conjugation.
- (Siegel, Brjuno) $D F(0)$ satisfies a Brjuno-condition \Rightarrow analytic conjugation.

Let $f(x)=x+a_{k+1} x^{k+1}+\cdots$ with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.

Let $f(x)=x+a_{k+1} x^{k+1}+\cdots$ with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that $f(x)$ is formally conjugated with $f_{k, \lambda}:=x+x^{k+1}+\lambda x^{2 k+1}$.

Let $f(x)=x+a_{k+1} x^{k+1}+\cdots$ with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that $f(x)$ is formally conjugated with $f_{k, \lambda}:=x+x^{k+1}+\lambda x^{2 k+1}$.
- (Camacho) $f(x)$ is topologically conjugated with $g(x)=x+x^{k+1}$.

Let $f(x)=x+a_{k+1} x^{k+1}+\cdots$ with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that $f(x)$ is formally conjugated with $f_{k, \lambda}:=x+x^{k+1}+\lambda x^{2 k+1}$.
- (Camacho) $f(x)$ is topologically conjugated with $g(x)=x+x^{k+1}$.
- (Ecalle, Voronin, Martinet-Ramis, Malgrange...) For each formal class, there exist a countable number of invariants.

Let $f(x)=x+a_{k+1} x^{k+1}+\cdots$ with $a_{k+1} \neq 0$ then

- (Leau-Fatou) Flower dynamic of the orbits.
- (Szekeres) There exists λ such that $f(x)$ is formally conjugated with $f_{k, \lambda}:=x+x^{k+1}+\lambda x^{2 k+1}$.
- (Camacho) $f(x)$ is topologically conjugated with $g(x)=x+x^{k+1}$.
- (Ecalle, Voronin, Martinet-Ramis, Malgrange...) For each formal class, there exist a countable number of invariants.
- (J. Rey) C_{*}^{k+1}-conjugated with $g(x)=x+x^{k+1}$, i.e., conjugation by a continuous diffeomorphism that is C^{k+1} at every point except the origin.

Let $F(z)=z+P_{k}(z)+P_{k+1}(z)+\cdots, z=\left(z_{1}, \ldots, z_{n}\right)$ where $P_{k} \not \equiv 0$. A characteristic direction for F is a point $[v] \in \mathbb{P}^{n-1}$ such that $P_{k}(v)=\lambda v$, for some $\lambda \in \mathbb{C}$; it is nondegenerate if $\lambda \neq 0$.
F is called dicritic if $P_{k}(z)=p(z) z$ where $p(z)$ is a homogeneous polynomial of degree $k-1$.
A parabolic curve for F is an injective holomorphic map $\varphi: \Omega \rightarrow \mathbb{C}^{n}$, where Ω is a simply connected domain in \mathbb{C} with $0 \in \partial \Omega$ such that

- φ is continuous at the origin, and $\varphi(0)=0$.
- $F(\varphi(\Omega)) \subset \varphi(\Omega)$ and $F^{\circ k}(p)$ converges to 0 when $k \rightarrow+\infty$, for $p \in \varphi(\Omega)$.

The natural generalization of Leau-Fatou theorem is given by Hakim in the generic case

Theorem (Hakim)
Let F be a tangent to the identity germ of diffeomorphism of $\left(\mathbb{C}^{n}, 0\right)$. For any nondegenerate characteristic direction [v] there exist $\operatorname{ord}(F)-1$ disjoint parabolic curves tangent to [v] at the origin.

When $n=2$, Abate proved that the nondegeneracy condition can be dismissed.

Theorem (Abate)

Let F be a tangent to the identity germ of diffeomorphism of \mathbb{C}^{2} such that 0 is an isolated fixed point. Then there exist $\operatorname{ord}(F)-1$ disjoint parabolic curves for F at the origin.

Let $\pi:(M, D) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ be the blow up of \mathbb{C}^{2} at the origin, where $D=\pi^{-1}(0)=\mathbb{P}^{n-1}$.
In the dicritic case we can say that almost all orbits have a flower dynamic.
Theorem (B.M.)
Let $F(z)=z+p(z) z+\cdots$ be a dicritic diffeomorphism, and
$\tilde{F}:(M, D) \rightarrow(M, D)$ such that $\pi \circ \tilde{F}=F \circ \pi$ and $\left.\tilde{F}\right|_{D}=\left.i d\right|_{D}$, then there exist open sets U^{+}, U^{-}, such that

- $U^{+} \cup U^{-}$is a neighborhood of $\{[z] \in D \mid p(z) \neq 0\}$.
- if $P \in U^{+}$, then $\tilde{F}^{\circ n}(P)$ converges to a point in D when $n \rightarrow \infty$.
- if $P \in U^{-}$, then $\tilde{F}^{\circ n}(P)$ converges to a point in D when $n \rightarrow-\infty$.

Generalization of Szekeres normal form in dimension 2.
A formal change $\varphi(x, v)$ of coordinates is called semiformal in U if its components are in $\mathcal{O}(U)[[x]]$.

Theorem (B.M.)
Let $F(x, y)=\binom{x+p(x, y) x+\cdots}{y+p(x, y) y+\cdots}$ be a dicritic diffeomorphism, then there exists a unique rational function $q(v)$ such that \tilde{F} is semiformally conjugated with

$$
\tilde{F}_{p, q}=\binom{x+x^{k+1} p(1, v)+x^{2 k+1} q(v)}{v}
$$

in $\left\{p\left(\left[v_{1}, v_{2}\right]\right) \neq 0\right\}$. In addition, $q(v)=\frac{s(v)}{p(1, v)^{2 k+1}}$ where $s(v)$ is a polynomial of degree $2 k+2+2 k \operatorname{deg}_{v}(p(1, v))$.

Observe that if $F, G \in \operatorname{Diff}\left(\mathbb{C}^{2}, 0\right)$ are formally conjugated then \tilde{F} and \tilde{G} are semiformally conjugated, but the reciprocal is not true.
In fact, let

$$
G_{m}(x, y)=\binom{x+x^{k+1}+y^{m}}{y+x^{k} y+x^{m}}
$$

If $m_{1}, m_{2}>2 k+1$ then $\tilde{G}_{m_{1}}$ and $\tilde{G}_{m_{2}}$ are semiformally conjugated, but $G_{m_{1}}$ and $G_{m_{2}}$ are not formally conjugated. In addition, they are not topologically conjugated because their Milnor numbers are different.

Fixing the coordinates $(x, v) \in M$, then for any point $a \in D \backslash\{(x: y) \mid p(x, y)=0\}$ and any simply connected neighborhood $U \subset D \backslash\{(x: y) \mid p(x, y)=0\}$ of a there exists an analytic change of coordinates $\varphi \in \operatorname{Diff}(M, U)$ such that $\varphi \circ \tilde{F} \circ \varphi^{-1}=G$ where

$$
\begin{aligned}
& g_{1}(x, v)=x+x^{k+1} p(v)+r(v) x^{2 k+1}+O\left(x^{2 k+2}\right) \\
& g_{2}(x, v)=v+O\left(x^{2 k+1}\right)
\end{aligned}
$$

By a linear change of coordinates we suppose $a=0$.

Making a ramificated change of coordinates $z=\frac{1}{x^{k}}$, between \mathbb{C}^{*} and $\mathbb{C}_{k}^{*}=\cup U_{j}$, and fixing a chart $U_{j} \sim \mathbb{C}$, then the diffeomorphism G takes the form

$$
G(z, v)=\binom{g_{1}(z, v)}{g_{2}(z, v)}=\binom{z-p(v)-\frac{s(v)}{z}+O\left(z^{-1-\frac{1}{k}}\right)}{v+O\left(z^{-2}\right)}
$$

thus, G is semiformally conjugated with

$$
G_{p, s}=\binom{z-p(v)-\frac{s(v)}{z}}{v}
$$

For every $R>0$ and $r>0$ let

$$
U_{\theta, R, r}^{j,+}=\left\{(z, v)| | \arg \left(\frac{z}{p(v)}-R\right)|<\theta,|v|<r\}\right.
$$

For every $r \geq 0$ such that $p(v) \neq 0$ for all $|v| \leq 2 r$ and for every $0<\theta<\pi$, there exists $R \gg 0$ such that $G^{\circ j}(z, v) \in U_{\theta, R, 2 r}^{j,+}$ for all $j \in \mathbb{N}$ and $(z, v) \in U_{\theta, R, r}^{j,+}$
The same way we define

$$
U_{\theta, R, r}^{j,-}=\left\{(z, v)| | \arg \left(\frac{z}{p(v)}+R\right)|<\pi-\theta,|v|<r\}\right.
$$

Using the stability in sectorial domains, it follows that there exists

$$
h_{j,+}: U_{\theta, R, 2 r}^{j,+} \rightarrow h_{j,+}\left(U_{\theta, R, 2 r}^{j,+}\right)
$$

a unique holomorphic diffeomorphism such that

$$
\left.h_{j,+} \circ G\right|_{U_{\theta, R, r}} ^{j,+}=\left.G_{p, s} \circ h_{j,+}\right|_{U_{\theta, R, r}} ^{j,+}
$$

In addition, the asymptotic development $\hat{h}_{j,+}$ of h at $\left(\infty, v_{0}\right)$ conjugates the asymptotic developments \hat{f} and \hat{g} at $\left(\infty, v_{0}\right)$, for $\left|v_{0}\right|<r$.

The same way there exists

$$
h_{j,-}: U_{\theta, R, 2 r}^{j,-} \rightarrow h_{j,-}\left(U_{\theta, R, 2 r}^{j,-}\right)
$$

a unique holomorphic diffeomorphism such that

$$
\left.h_{j,-} \circ G^{-1}\right|_{U_{\theta, R, r}^{j,-}} ^{j}=\left.G_{p, s}^{-1} \circ h_{j,-}\right|_{U_{\theta, R, r}^{j,-}}
$$

therefore

$$
h_{j,+} \circ h_{j,-}^{-1} \circ G_{p, s}=G_{p, s} \circ h_{j,+} \circ h_{j,-}^{-1}
$$

in $h_{j,-}\left(U_{\theta, R, r}^{j,-} \cap U_{\theta, R, r}^{j,+}\right)$

By the classical theory of analytic classification of tangent to the identity diffeomorphism in dimension 1, it is know that the $2 k$ sectorial maps

$$
h_{j,+} \circ h_{j,-}^{-1}, \quad h_{j,+} \circ h_{j+1,-}^{-1}, \quad j=1, \ldots k
$$

determine the analytic class of the diffeomorphism, locally at a neighborhood of $0 \in D$.

In addition there exist $2 k C^{\infty}$-diffeomorphisms $\psi_{j,+}, \psi_{j,-}$, flat at infinity, that commute with $G_{p, s}$ and

$$
h_{j,+} \circ h_{j,-}^{-1}=\psi_{j,+} \circ \psi_{j,-}^{-1}
$$

so

$$
\Psi=\psi_{j,+}^{-1} \circ h_{j,+}=\psi_{j,-}^{-1} \circ h_{j,-}
$$

is a C^{∞}-diffeomorphism that conjugates G and $G_{p, s}$ at a neighborhood of $(0,0) \in D$.

Theorem

There exist $R \gg 0$ and $r>0$ such that G and $G_{p, s}$ are C^{∞} conjugated in $U=\{|z|>R\} \times\{|y|<r\}$, i.e. there exists a C^{∞}-diffeomorphism $\Psi: U \rightarrow \varphi(U)$ such that $G \circ \Psi=\Psi \circ G_{p, s}$.

Now, since $S:=(v=0)$ is an invariant curve for $G_{p, s}$ then $\Psi^{-1}(S)$ is an invariant curve for G.

Final Remark

- For each point $v=\left(v_{1}: v_{2}\right)$ in the divisor D such that $p\left(v_{1}, v_{2}\right) \neq 0$, we can define a countable set of analytic invariants.

Final Remark

- For each point $v=\left(v_{1}: v_{2}\right)$ in the divisor D such that $p\left(v_{1}, v_{2}\right) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.

Final Remark

- For each point $v=\left(v_{1}: v_{2}\right)$ in the divisor D such that $p\left(v_{1}, v_{2}\right) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.
- Thus, using analytic extension, we can construct a set of analytic function defined in the universal cover of $D \backslash\{p=0\}$.

Final Remark

- For each point $v=\left(v_{1}: v_{2}\right)$ in the divisor D such that $p\left(v_{1}, v_{2}\right) \neq 0$, we can define a countable set of analytic invariants.
- These invariants depend analytically of v.
- Thus, using analytic extension, we can construct a set of analytic function defined in the universal cover of $D \backslash\{p=0\}$.

This set determines the analytic class of the diffeomorphism?

