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Introduction
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Objects of Interest

Mathematical aspects of the theories of fluxes and stresses, particularly,
existence theory.

Geometric aspects: Formulations that do not use the traditional
geometric and kinematic assumptions. For example, Euclidean
structure of the physical space, mass conservation. Materials with
micro-structure (sub-structure), growing bodies.

Analytic aspects: Irregular bodies and flux fields. Fractal bodies.

Main Tool: Various aspects of duality
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Topics

Scalar-Valued Extensive Properties and Fluxes on Manifolds,

Fluxes and Geometric Integration Theory: Fractal Bodies,

The Material Structure Induced by an Extensive Property,

Forces and Cauchy Stresses—Geometric Aspects,

Variational Stresses,

Stresses for Generalized Bodies,

Stress Optimization, Stress Concentration, and Load Capacity.

And maybe also

The Global Point of View: C1-Functionals,

Locality and Continuity in Constitutive Theory.
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Example:

We would like to consider bodies like the Sierpinski Truss:

Etc.

f f f

f f

Note the difficulty arising even in trying to consider the truss as a set of body
points.
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Notation: Basic Variables of Continuum Mechanics

Kinematics
A mapping of the body into space;
material impenetrability—one-to-one;
continuous deformation gradient (derivative);

do not “crash” volumes—invertible derivative.
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Configurations of Bodies in Space

• A mapping of the body into space;

• material impenetrability—one-to-one;

• continuous deformation gradient (derivative);

• do not “crash” volumes—invertible derivative.

U

κ

κ(B)

Space

A body B

Reuven Segev: Geometric Methods, March 2001
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Fluxes: Traditional Approach
In terms of scalar extensive property p with density ρ in space, one assumes
for every “control region” B ⊂ U ∼= R3:

Consider β, interpreted as the time derivative of the density ρ of the
property, so for any control region B in space,

∫
B βdV is the rate of

change of the property inside B.

For each control region B there is a flux density τB such that∫
∂B τBdA is the total flux of the property out of B.

There is a positive m-form s on U such that for each region B∣∣∣∣∣∣
∫
B

β dV +
∫

∂B

τB dA

∣∣∣∣∣∣ ≤
∫
B

s dV.

Usually, equality is assume to hold (no absolute value) and s is
interpreted as the source density of the property p (e.g., s = 0 for mass).
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Fluxes: Traditional Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of τB on B.
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Review of the Classical Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of τB on B.

n

Tx∂B

∂B

x

• It uses the metric properties of space.

• τB(x) is assumed to depend on B only through the unit normal
to the boundary at x. Generalize this to dependence on Tx∂B.

• The resulting Cauchy theorem asserts the existence of the flux
vector h such that τB(x) = h · n.

Reuven Segev: Geometric Methods, March 2001

It uses the metric properties of space.

τB(x) is assumed to depend on B only through the unit normal to the
boundary at x. Generalize this to dependence on Tx∂B.

The resulting Cauchy theorem asserts the existence of the flux vector h
such that τB(x) = h · n.
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Cauchy’s Theorem for Fluxes on Manifolds
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Scalar-Valued Extensive Properties

We will consider the generalization of the classical analysis to the geometry of
differentiable manifolds where no particular metric is given. The concepts
introduced will be useful later in the analytic generalizations.

Consider for example the heat flux field in a body. This will enable us to treat
the Cauchy heat flux (defined relative to the current configuration of the
body) and the Piola-Kirchhoff heat flux (defined relative to the reference
configuration of the body) as two representations of a single mathematical
entity. Clearly, a vector field is not the right mathematical object.
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Integration: Volume Elements

An infinitesimal element defined by the
tangent vectors v1, v2, v3 ∈ TxU , U —
the space (3-dimensional) manifold.
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Volume Elements

An infinitesimal element defined by the
tangent vectors v1, v2, v3 ∈ TxU , U —the
space (3-dimensional) manifold.

x

v1

v2

v3

• For a given property p, ρx(v1, v2, v3)—the amount of the property
in the element. ρx : (TxU )3 → R.

• ρx should be linear in each of the three vectors—ρx multi-linear.

• ρx(v1, v2, v3) should vanish if the three are not linearly
independent (flat element). Hence, for example, since
ρx(v + u, v2, v + u) = 0

0 = ρx(v, v2, v) + ρx(u, v2, u) + ρx(v, v2, u) + ρx(u, v2, v)

= ρx(v, v2, u) + ρx(u, v2, v).

ρx is anti-symmetric (alternating), i.e., ρx(v, v2, u) = −ρx(u, v2, v)!
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Integration: Volume Elements and m-Forms
For a manifold U of dimension m integration for the total quantity of the
property p is defined using alternating forms.∧m T∗xU is the collection of m-alternating multi-linear mappings on

TxU .
∧m(T∗U ) =

⋃
x∈U

∧m T∗xU is the bundle of m-multi-linear
alternating forms on U .

An m-differential form ρ : U → ∧m(T∗U ), or a volume element (not
the infinitesimal elements generated by the vectors), ρ(x) ∈ ∧m T∗xU
is integrated to give the sum of the contents of the extensive property in
the various infinitesimal elements in any region B ⊂ U ,∫

B

ρ.
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∫

B

ρ.

Reuven Segev: Geometric Methods, March 2001
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Integrating an (m− 1)-Form over the Boundary:
Flux Density

An infinitesimal area element
is defined by the tangent vec-
tors v1, v2 ∈ Tx∂B, ∂B—the
boundary (say 2-dimensional) of
a control region B.
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An (m− 1)-Form on the Boundary—Flux Density

An infinitesimal element defined
by the tangent vectors v1, v2 ∈
Tx∂B, ∂B—the boundary (say 2-
dimensional) of a control region
B.

x

∂B

v1
v2

• For a given property p, we would like to integrate the flux density
out of the boundary. Now τx(v1, v2)—the flux through the the
element. τx : (Tx∂B)2 → R.

• Since ∂B is an (m− 1)-dimensional manifold, the flux density is a
mapping τ : ∂B → ∧m−1 T∗∂B, an (m− 1)-form on ∂B.
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For a given property p, we would like to integrate the flux density out of
the boundary. Now τx(v1, v2)—the flux through the the element.
τx : (Tx∂B)2 → R.
Since ∂B is an (m− 1)-dimensional manifold, the flux density is a
mapping τ : ∂B → ∧m−1 T∗∂B, an (m− 1)-form on ∂B.
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Orientation

The fact that the volume element
is anti-symmetric causes a com-
plication. The sign of the evalu-
ation τ(v1, v2) (or ρ(v1, v2, v3))
will change according to the way
we order the vectors.
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Orientation

The fact that the volume element
is anti-symmetric causes a compli-
cation. The sign of the evalua-
tion τ(v1, v2) (or ρ(v1, v2, v3)) will
change according to the way we
order the vectors.

v2
v1

v1
v2

v1
v2

v2v1

u2

u1

• Orientability—the ability to construct the various coordinate
systems such that the Jacobian transformation matrix has a positive
determinant.

• This is equivalent to the ability to construct a volume element that
does not vanish at any point on the manifold.

• A choice of such a form, say θ, determines an orientation on the
manifold. If θ(v1, . . . ,vm) > 0, the vectors are positively oriented .

Reuven Segev: Geometric Methods, March 2001

Orientability—the ability to construct the various coordinate systems
such that the Jacobian transformation matrix has a positive determinant.

This is equivalent to the ability to construct a volume element that does
not vanish at any point on the manifold.

A choice of such a form, say θ, determines an orientation on the
manifold. If θ(v1, . . . ,vm) > 0, the vectors are positively oriented.
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An orientable manifold and a non-orientable manifold

2. INTEGRATION OF FORMS 36

mean value theorem by applying the form ρ representing the den-
sity of the property to a multivector approximating a simplex on the
manifold. However, since the form is alternating, the sign of the re-
sult depends on the orientation of simplex as reflected by the sign
of the multivector. As we want to add up the amount of the prop-
erty contained in distinct simplexes finite distant apart in a consis-
tent manner we have to have a method for prescribing a “uniform”
global orientation. Only this way the addition of the amount of prop-
erty in two distinct simplexes is meaningful (see Figure 9).

From the discussion on orientation of vector spaces, it is natural
to define an orientation on a manifold, if the manifold has one, as a
smooth nowhere vanishing field of m-multivector. Alternatively, an
orientation on a manifold is a smooth nowhere vanishing m-differential
form. It is quite clear intuitively that in the case where the manifold
M is not connected, the question whether the manifold is orientable
or not may be applied to each connected component only. If we can
define a nowhere vanishing multivector field on any connected com-
ponent we can use these multivector fields to construct a nowhere
vanishing field over the whole manifold.

Non-orientable manifoldOrientable manifold

FIGURE 9. Orientation on a manifold

We show now how the notion of orientation is related to the
transformation of variables formula. Let v be a nowhere vanishing
m-multivector field on M and let (x1, . . . , xm), (y1, . . . ,ym) be two
intersecting coordinate systems. Then, as in Section 1.2, for the two
local representations

v = v1...m dx1 ∧ ∙ ∧ dxm = v1′ ...m′ dy1′ ∧ ∙ ∧ dym′ ,

we have,

v1...m = det

(
∂yj′

∂xi

)

v1′ ...m′ .
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The Balance of an Extensive Property
For an oriented manifold U of dimension m we consider control regions,
m-dimensional compact submanifolds with boundary.

ρ is time dependent with time-derivative β. For a fixed control region
B in space

∫
B β is the rate of change of the property inside B.

For each control region B there is a flux density τB such that
∫

∂B τB is
the total flux of the property out of B.

There is a positive m-form s on U such that for each region B∣∣∣∣∣∣
∫
B

β +
∫

∂B

τB

∣∣∣∣∣∣ ≤
∫
B

s.

Usually, equality is assume to hold (no absolute value) and s is
interpreted as the source density of the property p.
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Review of the Classical Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of τB on B.
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Review of the Classical Cauchy Postulate and Theorem

Cauchy’s postulate and theorem
are concerned with the depen-
dence of τB on B.

n

Tx∂B

∂B

x

• It uses the metric properties of space.

• τB(x) is assumed to depend on B only through the unit normal
to the boundary at x. Generalize this to dependence on Tx∂B.

• The resulting Cauchy theorem asserts the existence of the flux
vector h such that τB(x) = h · n.
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It uses the metric properties of space.

τB(x) is assumed to depend on B only through the unit normal to the
boundary at x. Generalize this to dependence on Tx∂B.

The resulting Cauchy theorem asserts the existence of the flux vector h
such that τB(x) = h · n.
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The Generalization of Cauchy’s Theorem
(m− 1)-Forms on an m-Dimensional Manifold

For the 3-dimensional example, we
want to measure the flux through
any infinitesimal surface element
(on the various planes through x),
say the one generated by the vec-
tors v, u.
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The Generalization of Cauchy’s Theorem
(m− 1)-Forms on an m-Dimensional Manifold

For the 3-dimensional example, we
want to measure the flux through any
infinitesimal surface element (on the
various planes through x), say the one
generated by the vectors v, u.

v

u

u

v + v′
v′

v

u

Denote by J(v, u) the flux through that infinitesimal element.

• J(v, u) should be linear in both arguments—J is multilinear.

• J(v, u) should vanish it they are not linearly independent—J is
alternating.

• A 2-form in a 3-dimensional space, or generally, an (m− 1)-form
on an m-dimensional manifold.
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Denote by J(v, u) the flux through that infinitesimal element.
J(v, u) should be linear in both arguments—J is multilinear.
J(v, u) should vanish it they are not linearly independent—J is
alternating.

Conclusion:
J should be a 2-form in a 3-dimensional space, or generally, an (m− 1)-form
on an m-dimensional manifold.
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The Dimension of the Space of m-Forms

Say {e1, e2, e3} is a base of the
tangent space at a fixed point
x. The matrix of ρ is ρijk =
ρ(ei, ej, ek).
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The Dimension of the Space of m-Forms

Say {e1, e2, e3} is a base of the tan-
gent space at a fixed point x. The
matrix of ρ is ρijk = ρ(ei, ej, ek).

x

e1

e2

e3

• However, because it is alternating, ρ has only one independent
component, e.g., ρijk = 0 if any two indices are equal.

• It is enough to know ρ123 = ρ(e1, e2, e3), the volume of the basic
element, to know the amount of property in all other infinitesimal
elements.

• In general, the dimension of
∧m(T∗x U ) is 1.
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However, because it is alternating, ρ has only one independent
component, e.g., ρijk = 0 if any two indices are equal.

It is enough to know ρ123 = ρ(e1, e2, e3), the volume of the basic
element, to know the amount of property in all other infinitesimal
elements.

In general, the dimension of
∧m(T∗xU ) is 1.
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The Dimension of the Space of (m− 1)-Forms

Again, {e1, e2, e3} is a base of the tangent space at x. The matrix of the
2-form J is Jij = J(ei, ej).

Now, as J is alternating there are 3 different independent components,
namely, J(e2, e3), J(e1, e3), J(e1, e2).

In general, the dimension of
∧m−1 T∗xU is m.

In other words, if we know the flux density through the three basic surface
elements we know the flux through any other infinitesimal surface element.

J(u, v) = Jijuivj.

The three components of the flux
2-form are the generalizations of
the three components of the flux
vector field.
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• Again, {e1, e2, e3} is a base of the tangent space at x. The matrix of
the 2-form J is Jij = J(ei, ej).

• Now, as J is alternating there are 3 dicerent independent
components, namely, J(e2, e3), J(e1, e3), J(e1, e2).

• In general, the dimension of
∧m−1 T∗x U is m.

• In other words, if we know the flux density through the three
basic surface elements we know the flux through any other
infinitesimal surface element. J(u, v) = Jijuivj.

The three components of the flux 2-form
are the generalizations of the three com-
ponents of the flux vector field.

x

e1

e2

e3

J23 = J(e2, e3)

J13 = J(e1, e3)

J12 =
J(e1, e2)

Reuven Segev: Geometric Methods, March 2001
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Cauchy’s Formula and the Restriction of Forms

The (m− 1)-form J on U (m com-
ponents) induces by restriction an
(m− 1)-form τ on ∂B.

• τ is given by

τ(v, u) = J(v, u).
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Cauchy’s Formula and the Restriction of Forms

The (m− 1)-form J on U (m
components) induces by restric-
tion an (m− 1)-form τ on ∂B.

—τ is given by

τ(v, u) = J(v, u). Tx∂B

∂B

x
u v

The induced form τ has a single component as it is an (m− 1)-form
on the (m− 1)-dimensional manifold ∂B. The mapping that assigns τ

to J is the restriction and it is denoted as

τ = ι∗(J).

This equation is the required generalization of Cauchy’s formula.
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The induced form τ has a single component as it is an (m− 1)-form on the
(m− 1)-dimensional manifold ∂B. The mapping that assigns τ to J is the
restriction and it is denoted as

τ = ι∗(J).

This equation is the required generalization of Cauchy’s formula.
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Inclusion and Restriction

The inclusion

ι : Tx∂B × Tx∂B → TxB × TxB

induces the dual restriction mapping

ι∗ : (TxB×TxB)∗ → (Tx∂B×Tx∂B)∗,

which restricts to the mapping

ι∗ :
2∧

T∗xB →
2∧

Tx∂B.
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In the general m-dimensional case,

ι∗ :
m−1∧

T∗xB →
m−1∧

Tx∂B

used in Cauchy’s formula τ = ι∗(J).
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The Induced Orientation and Newton’s Third Law

Now, B′ has the same tangent space at x
as B. w is a vector pointing out of B (into
B′). The form ι∗(J) is one for both B and
B′.
How do we distinguish the surface flux den-
sities τB and τB′?
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The Induced Orientation and Newton’s Third Law

Now, B′ has the same tangent
space at x as B. w is a vector point-
ing out of B (into B′). The form
ι∗(J) is one for both B and B′.
How do we distinguish the surface flux
densities τB and τB′?

Tx∂B =
Tx∂B′

∂B
u v

∂B′

w
x

U

• It was assumed that U was oriented so there is a way to tell whether any
ordered triplet {u, v, w} is positively or negatively oriented.

• This induces an orientation on the boundary of each region. At x ∈ ∂B,
take any outwards (relative to B) pointing vector w and set {u, v} to be
positively oriented on ∂B if {w, u, v} is positively oriented in U .

• Hence, the orientation on ∂B′ is opposite to that of ∂B. Thus, if J(u, v)
is the flux out of the infinitesimal B-positively oriented element {u, v},
the flux out of B′ for the same geometric element is J(v, u) = −J(u, v).
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Notes on the Proof:
The proof is analogous to the proof of the classical version, using the image
under a chart of a simplex.

4. CAUCHY’S THEOREM 58

and ∑i vi = 0. Using the same scheme of notation as in the pre-
vious section, we use for example t̃ for the local representative of
t in a coordinate system (x1, . . . ,xm) in a chart (ψ, U) containing x,
and we assume that the coordinates of x are (0, . . . , 0). Again, with-
out loss of generality, we may assume that ṽi, the local represen-
tative of vi is parallel to ei. Choose a positive a0 6 1 such that
the linear simplex s̃0 induced by a0ṽ1, . . . ,a0ṽm in Rm is contained
in the image of the coordinate neighborhood. For p = 1, 2, . . . we
set ap = 2−pa0 and consider the boundedness postulate for regions
Rp such that R̃p = ψ(Rp) is the linear m-simplex s̃p generated by
the vectors apṽ1, . . . ,apṽm. In other words, the various simplexes
s̃p form a sequence of decreasing linear simplexes s̃p = aps̃0 such
that s̃0(ei) = a0ṽi. The multivector ṽp associated with s̃p satisfies
ṽp = sp∗(em). The local representatives ṽi of the multivectors vi as-
sociated with the faces of s̃0 satisfy ṽi = (s̃0 ◦ km−1

i )∗(em−1) (see Fig-
ure 17 where only the images of the various sp are shown on the left).

ypi

R̃p Rp

v1

v2

v3ψ

FIGURE 17

Evaluating the various integrals in ψ(U) we have for Rp

∣
∣
∣
∣

∫

∂R̃p

τ̃Rp

∣
∣
∣
∣ 6

∫

R̃p

ς̃.
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Stokes’ Theorem and the Differential Balance Law
The boundary integral in the balance law∫

B
β +

∫
∂B

τB =
∫
B

s

of the property p assumes now the form∫
∂B

τB =
∫

∂B
ι∗(J).

Stokes’ theorem (a generalization of the divergence theorem etc.): There is an m-form
dJ (having a single component and calculated like the divergence of a vector field),
such that ∫

∂B
ι∗(J) =

∫
B

dJ.

Then, for each B, the balance takes the form∫
B

β +
∫
B

dJ =
∫
B

s, hence, β + dJ = s.
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