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Cauchy’s Flux Theorem in Light of
Geometric Integration Theory
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Objective: Presentation of the theory of Cauchy fluxes in the framework of
geometric integration theory as formulated by H. Whitney and extended
recently by J. Harrison.
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Traditional Approach:
In terms of scalar extensive property in space, one assumes:

Balance: T(∂B) + S(B) = 0
Regularity: S(B) =

∫
B βB dV and T(∂B) =

∫
∂B τB dA

Locality (pointwise): βB(x) = β(x) and τB(x) = τ(x, n)
Continuity: τ(·, n) is continuous.

Cauchy’s Theorem
asserts that τ(p, n) depends linearly on n. There is a vector field h such that

τ = h · n.

Considering smooth regions such that Gauss-Green Theorem may be
applied, the balance may be written in the form of a differential equation as

div h + β = 0.
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Contributions in Continuum Mechanics - I

Noll (1957): t(n) implied by local dependence on open sets of the
boundary.

Gurtin & Williams (1967): Interaction I(A, B) on a universe of bodies

bi-additive: I(A g B, C) = I(A, C) + I(B, C),

bounded: |I(A, B)| ≤ l · area(∂A∩ ∂B) + k · volume(A),

Pairwise balanced: I(A, B) = −I(B, A),

Continuity: t(·, n) is continuous (omitted in later works).

Continued later by Noll (1973,1986), Gurtin, Williams & Ziemer (1986), Noll &
Virga (1988), etc.
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Contributions in Continuum Mechanics - II

Gurtin & Martins (1975): Relaxing the continuity of t(p, n) in p, proved
linearity in n almost everywhere.

Šilhavý (1985,1991): Admissible bodies are sets of finite perimeter in En,
and the assumptions and results are assumed to hold for
“almost every subbody”, in a way which allows singularities.
The resulting flux vector t has an Lp weak divergence.

Degiovanni & Marzocchi & Musesti (1999) generalize Šilhavý by
considering fluxes which are only locally integrable. The field
b = −div τ is meaningful only in the weak sense.

Šilhavý (recent work): Admissible bodies are general open sets, fluxes are
divergence measure fields, problem with the normal
trace—the generalization of τ.

Geometric measure theory [de Giorgi, Federer, Fleming] is used for
specifying the class of bodies, generalized definitions of n, generalized Gauss
Theorem.
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Previous work:

Segev 1986, 1991 Stress theory for manifolds without a metric using a weak
formulation. Stresses may be as irregular as measures. Works
for continuum mechanics of any order.

Segev 2000, Segev & Rodnay 1999: Classical Cauchy approach on general
manifolds using differential forms

Reference:
G. Rodnay & R. Segev, 2003, Cauchy’s Flux Theorem in Light of Geometric
Integration Theory, Journal of Elasticity, 71 (Truesdell Memorial Volume),
183–203.
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The Proposed Formulation
Uses Geometric Integration Theory by Whitney (1947, 1957), Wolf (1948),
and later Harrison (1993,1998), rather than Geometric Measure Theory (e.g.,
[de Giorgi, Federer, Fleming]).

Building blocks: r-dimensional oriented cells in En.

Formal vector space of r-cells: polyhedral r-chains.

Complete w.r.t a norm: Banach space of r-chains.

Elements of the dual space: r-cochains.

Relevance to Continuum Mechanics
The total flux operator on regions is modelled mathematically by a
cochain.

Cauchy’s flux theorem is implied by a representation theorem for
cochains by forms.

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 8 / 47



Features of the Proposed Formulation

It offers a common point of view for the analysis of the following
aspects: class of domains, integration, Stokes’ Theorem, and fluxes.
Irregular domains and flux fields. Smoother fluxes allow less regular
domains and vise versa in an optimal way. Examples:

I Domains as irregular as Dirac measure and its derivatives—differentiable
flux fields.

I L1 regions—bounded and measurable flux fields

Codimension not limited to 1. Allows membranes, strings, etc.
Not only the boundary is irregular, but so is the domain itself.

Compatible with the formulation on general manifolds.
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The Structure of the Presentation

Cells and polyhedral chains

Algebraic cochains

Norms and the complete spaces of chains (flat, sharp, natural)
The representation of cochains by forms:

I Multivectors and forms
I Integration
I Representation
I Coboundaries and balance equations
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Cells and Polyhedral Chains
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Oriented Cells

A cell, σ, is a non empty bounded
subset of En expressed as an
intersection of a finite collection of
half spaces.

The plane of σ is the smallest affine
subspace containing σ.

The dimension of σ is the dimension
of its plane, an r-cell.

An oriented r-cell is an r-cell with a
choice of one of the two
orientations of the vector space
associated with its plane.

An oriented 2-cell
The plane of the cell

e2

e1
v1

v2

+-oriented
σ
−σ
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Oriented Cells (continued)

The orientation of σ′ ∈ ∂σ is
determined by the orientation of σ:

I Choose independent (v2, . . . , vr)
in σ′.

I Order them such that given v1 in
σ which points out at σ′,
(v1, . . . , vr) are positively oriented
relative to σ.

An oriented 2-cell
The plane of the cell

e2

e1
v1

v2

+-oriented
σ
−σ
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Polyhedral Chains

A polyhedral r-chain in En is an element of the vector space spanned by
formal linear combinations of r-cells, together with:

I The polyhedral chain 1σ is identified with the cell σ.
I We associate multiplication of a cell by −1 with the operation of

inversion of orientation, i.e., −1σ = −σ.
I If σ is cut into σ1, . . . , σm, then σ and σ1 + . . . + σm are identified.

The space of polyhedral r-chains in En is now an infinite-dimensional
vector space denoted by Ar(En).

The boundary of a polyhedral r-chain A = ∑ aiσi is ∂A = ∑ ai∂σi. Note
that ∂ is a linear operator Ar(En) −→ Ar−1(En).
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Polyhedral Chains: Illustration

A = A1 + A2

A1

A2

∂A = ∂A1 + ∂A2 ∂A

=

∂ : Ar → Ar−1
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A Polyhedral Chain as a Function

σ1 σ2

a

· · · · · ·

A = ∑ aiσi ∂A = ∑ ai∂σi
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Total Fluxes as Cochains
A cochain: Linear T : Ar → R.
Algebraic implications:

additivity,

interaction antisymmetry.

σ1
σ2

σ1 + σ2
σ T · σT · (−σ)

T · (−σ) = −T · σ, T · (σ1 + σ2) = T · σ1 + T · σ2
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Norms and the Complete Spaces of Chains
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The Norm Induced by Boundedness
Boundedness: |T∂B| 6 N2 |∂B|, |T∂B| 6 N1 |B|. Setting A = ∂B, . . .
As a cochain: |T ·A| 6 N2 |A|, |T · ∂D| 6 N1 |D|, A ∈ Ar, D ∈ Ar+1.

Thus, for any D ∈ Ar+1,
and A ∈ Ar:

|T ·A| = |T ·A− T · ∂D + T · ∂D|
6 |T ·A− T · ∂D|+ |T · ∂D|
6 N2 |A− ∂D|+ N1 |D|
6 CT (|A− ∂D|+ |D|) ,

Basic Idea
Regard the flux as a continuous linear functional on the space of chains w.r.t.
a norm

|T ·A| 6 CT‖A‖,

where the flat norm (smallest) is given as

‖A‖ = |A|[ = inf
D
{|A− ∂D|+ |D|}.
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Flat Chains

The mass of a polyhedral r-chain A = ∑ aiσi is |A| = ∑ |ai||σi|.
The flat norm, |A|[, of a polyhedral r-chain:

|A|[ = inf{|A− ∂D|+ |D|},

using all polyhedral (r + 1)-chains D.

I Taking D = 0, |A|[ 6 |A|.
I If A = ∂B, taking D = B gives |A|[ 6 |B|. Hence, |∂B|[ 6 |B|.

Completing Ar(En) w.r.t the flat norm gives a Banach space denoted by
A [

r (En), whose elements are flat r-chains in En.

Flat chains may be used to represent continuous and smooth
submanifolds of En and even irregular surfaces.

The boundary of a flat (r + 1)-chain A = lim[ Ai, is the a flat r-chain
∂A = lim ∂Ai.
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Flat Chains, an Example (Illustration - I):
Ai

di

L1i

L2i

L

D

|Ai| = 2L,
|Ai|[ 6 (L + 2)di → 0.

Ai

di

L1i

L2i

di

D

|Ai| = 2di,
|Ai|[ 6 2di → 0.
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Example: The Staircase

B0 A1 A2

A3 B3

The dashed lines are for reference only.

|Ai|[ 6 2i−12−2i = 2−i/2 =⇒ (Bi) a convergent series.
Note,

∣∣∣Bi − Bj

∣∣∣ =
∣∣∣∑i

k=j+1 Ak

∣∣∣ ≤ ∑i
k=j+1 |Ak| ≤ ∑∞

1 |Ak| 6 ∑∞
1 2−i/2, ∀ i, j.
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Example: the Van Koch Snowflake
Ai contains 4i triangles of side length 3−i. Each time the length increases by

2 · 3−i · 4i = 2
( 4

3

)i
. Hence, |Bi| → ∞.

B0 A1 A2 A3 B3

|Ai|[ 6 4i
√

3
2 3−i3−i =

√
3

2

( 2
3

)i
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Flat Chains: Federer’s Point of View

Flat chains are distributions defined on the space of smooth differential
forms.

The flat semi-norm of a smooth differential form φ, supported in some
compact set, is given by

‖φ‖ = sup
x
{|φ(x)| , |dφ(x)|} .

The flat semi-norm of a linear functional T is the dual norm

‖T‖ = sup
φ

T(φ)
‖φ‖ .
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Sharp Chains

Add regularity to the cochains by requiring that

|T · (σ− transv σ)| 6 CT |σ| |v| ,

where transv is a translation operator, which moves p ∈ σ to p + v.

This will be implied by continuity if we use the sharp norm |A|] of a
polyhedral r-chain A = ∑ aiσi:

|A|] = inf
{

∑ |ai||σi||vi|
r + 1

+
∣∣∑ ai transvi σi

∣∣[} ,

using all vectors vi ∈ En.

Completing Ar(En) w.r.t the sharp norm, gives A ]
r (En) whose

elements are sharp chains.

Setting all vi = 0, we conclude that |A|] 6 |A|[. Hence, A [
r (En) is a

Banach subspace of A ]
r (En).
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Sharp Chains, an Example (Illustration - I):

Ai

di

L1i

L2i

L

D

|Ai| = 2L,
|Ai|[ 6 (L + 2)di → 0.
|Ai|] 6 Ldi → 0.

Ai

di

L1i

L2i

di

D

|Ai| = 2di,
|Ai|[ 6 2di → 0.
|Ai|] 6 d2

i /2.
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The Staircase Strainer

=+

+ +

B0 A1 A2

A3 B3

The dashed lines are for reference only.

|Ai|] 6 2i−1(1/2i)2/2 = 2−i/4
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The Staircase Mixer:

B0 A1 A2

A3 B3

The dashed lines are for reference only.

|Ai|] 6 2−i/2
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Harrison’s Theory: Dipoles

A simple r-dimensional 0-dipole: r-simplex σ0 with diam(σ0) 6 1.

A simple r-dimensional 1-dipole: σ1 = σ0 − transv1 σ0, such that
|v1| 6 1 and transv1 σ0 disjoint from σ0.

A simple r-dimensional j-dipole: an r-chain

σj = σj−1 − transvj σj−1,

such that
∣∣vj

∣∣ 6 1 and transvj σj−1 disjoint from σj−1.

A simple j-dipole is determined by σ0 and v1, . . . , vj.

A j-dipole is a simplicial chain

Dj = ∑
i

aiσ
j
i

of simple j-dipoles.
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The Natural Norm I
The j-dipole mass of a simple j-dipole is defined by∣∣∣σj

∣∣∣
j
=

∣∣∣σ0
∣∣∣ |v1| · · ·

∣∣vj
∣∣ .

The j-dipole mass of the j-dipole Dj = ∑i aiσ
j
i is defined as∣∣∣Dj

∣∣∣
j
= ∑

i
|ai|

∣∣∣σj
i

∣∣∣
j
.

The k-natural norm on the space of polyhedral chains:

|A|\k = inf

{
k

∑
s=0

|Ds|s + |C|k−1

}
,

over decompositions A = ∑k
s=0 Ds + ∂C, for dipoles Ds.

Completing Ar(En) w.r.t the k-natural norm, gives A k
r whose elements

are k-natural r-chains.
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The Natural Norm II

The 0-natural norm equivalent to the flat norm.

As k-increases, the the spaces of natural chains increase.

The Riemann integral over a natural r-chain A = lim Ai, is defined by∫
A

τ = lim
∫

Ai

τ.

For the r-form τ with k− 1 bounded derivatives and k-th derivative
Lipschitz, the limit exists.

The boundary operator is a continuous linear operator ∂ : A k
r → A k−1

r−1 .
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The Representation of Cochains by Forms

Basic Problem:

A representation theorem for cochains in terms of fields.
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Why not a vector?

Say the flux is represented by
I τ0 with respect to the reference coordinate system (Piola),
I τ relative to the space coordinate system (Cauchy).

The relation between the two is given by

τ0 = |F| F−1(τ),

F is the deformation gradient.

We would expect a transformation of form

τ0 = F−1τ,

if the flux were a vector field.
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Multivectors

A simple r-vector in V is an expression of the form v1 ∧ · · · ∧ vr, where
vi ∈ V.
An r-vector in V is an element of the vector space Vr of formal linear
combinations of simple r-vectors, together with:

(1) v1 ∧ · · · ∧ (vi + v′i) ∧ · · · ∧ vr

= v1 ∧ · · · ∧ vi ∧ · · · ∧ vr + v1 ∧ · · · ∧ v′i ∧ · · · ∧ vr;
(2) v1 ∧ · · · ∧ (avi) ∧ · · · ∧ vr = a(v1 ∧ · · · ∧ vi ∧ · · · ∧ vr);
(3) v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vr

= −v1 ∧ · · · ∧ vj ∧ · · · ∧ vi ∧ · · · ∧ vr.

The dimension of Vr is dim Vr = n!
(n−r)!r! .

Given a basis {ei} of V, the r-vectors {eλ1...λr = eλ1 ∧ · · · ∧ eλr}, such
that 1 ≤ λ1 < · · · < λr ≤ n, form a basis of Vr.
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Multivectors and Polyhedral Chains

Given an oriented r-simplex σ in En, with vertices {p0 . . . pr}, the
r-vector of σ, {σ}, is {σ} = v1 ∧ · · · ∧ vr/r!, where the vi are defined
by vi = pi − p0 and are ordered such that they belong to σ’s
orientation.
{σ} represents the plane, orientation and area of σ—the relevant
aspects.

The r-vector of a polyhedral r-chain ∑ aiσi, is

{∑ aiσi} = ∑ ai{σi}.

v1
v2

v3

1
2 (v1 ∧ v2 + v2 ∧ v3)
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Why an r-covector?

For the 3-dimensional example, we
want to measure the flux through
any cell σ, {σ} = v∧ u.

11
'

&

$

%

The Generalization of Cauchy’s Theorem
(m− 1)-Forms on an m-Dimensional Manifold

For the 3-dimensional example, we
want to measure the flux through any
infinitesimal surface element (on the
various planes through x), say the one
generated by the vectors v, u.

v

u

u

v + v′
v′

v

u

Denote by J(v, u) the flux through that infinitesimal element.

• J(v, u) should be linear in both arguments—J is multilinear.

• J(v, u) should vanish it they are not linearly independent—J is
alternating.

• A 2-form in a 3-dimensional space, or generally, an (m− 1)-form
on an m-dimensional manifold.

Reuven Segev: Geometric Methods, March 2001

σ

Denote by τ̄(σ) the flux through that infinitesimal element.

As τ depends only the plane, orientation and area, we expect

τ̄(σ) = τ̃({σ}).

Balance: τ̃ is linear
τ̄(σ) = τ · {σ}.
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Rough Proof

Consider the infinitesimal tetra-
hedron X, A, B, C generated by
the three vectors u, v, w.

— Use right-handed orientation.

— Balance implies:

J(v, u)+ J(v, w)+ J(u, v + w)− J(u + v, w) = 0.

38
'

&

$

%

X

A

B
v

D

u

E

w
v + w

v + w C

— Same for X, B, C, E and X, C, D, E

J(u, w) + J(u + v, w) + J(v, u)− J(v, w + u) = 0

J(w, u)− J(v + w, u)− J(v, w) + J(v, w + u) = 0.

Rodnay & Segev Truesdell Memorial Symposium, June 2002

— Same for X, B, C, E and X, C, D, E

J(w, u) + J(u + v, w) + J(v, u)− J(v, w + u) = 0
J(w, u)− J(v + w, u)− J(v, w) + J(v, w + u) = 0.

— Add up to obtain: J(u, v + w) = J(u, v) + J(u, w).
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Or Using Multi-Vectors

Consider the infinitesimal
tetrahedron D generated by the
three vectors u, v, w and let
A = ∂D.

|A|[ 6 |A− ∂D|+ |D| → 0, as
the volume of the tetrahedron
decreases.

Thus, lim J({A}) = 0.

— Use right-handed orientation.

Thus: J(u∧ v)+ J(v∧w)+ J(w∧u)+ J((w− v)∧ (v−u)) = 0.

Using: (w− v)∧ (v−u) = w∧ v−w∧u + v∧u = −u∧ v− v∧w−w∧u,

we conclude: J(u∧ v + v∧w + w∧ u) = J(u∧ v) + J(v∧w) + J(w∧ u).

u

v

w

v− u

w− v

u− w
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Multi-Covectors

An r-covector is an element of Vr—the dual space of Vr.

r-covectors can be expressed using covectors:

Vr = (V∗)r = Lr
A(V,R).

(V∗)r is the space of multi-covectors, i.e., constructed as Vr
using elements of the dual space V∗:

τ = fλ1···λre
λ1 ∧ · · · ∧ eλr , λi 6 λi+1.

r-covectors may be identified with alternating multilinear mappings:

Vr = Lr
A(V,R), by τ(v1 ∧ v2 ∧ · · · ∧ vr) = τ̄(v1, . . . , vr).
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Riemann Integration of Forms Over Polyhedral Chains

An r-form in Q ⊂ En is an r-covector valued mapping in Q.

An r-form is continuous if its components are continuous functions.

The Riemann integral of a continuous r-form τ over an r-simplex σ is
defined as ∫

σ
τ = lim

k→∞
∑

σi∈Skσ

τ(pi) · {σi},

where Siσ is a sequence of simplicial subdivisions of σ with mesh → 0,
and each pi is a point in σi.

The Riemann integral of a continuous r-form over a polyhedral r-chain
A = ∑ aiσi, is defined by

∫
A τ = ∑ ai

∫
σi

τ.
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Lebesgue Integral of Forms over Polyhedral Chains

An r-form in En is bounded and measurable if all its components are
bounded and measurable.

The Lebesgue integral of an r-form τ over an r-cell σ is defined by∫
σ

τ =
∫

σ
τ(p) · {σ}

|σ| dp,

where the integral on the right is a Lebesgue integral of a real function.

This is extended by linearity to domains that are polyhedral chains by∫
A

τ = ∑ ai

∫
σi

τ,

if A = ∑i aiσi.
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The Cauchy Mapping

The Cauchy mapping, DT, for the cochain T, gives DT(p, α), at the
point p in the direction α defined by the cell σ, defined as:

DT(p, α) = lim
i→∞

T · σi

|σi|
, α =

σi

|σi|

where all σi contain p, have r-direction α and limi→∞ diam(σi) = 0.
The Cauchy mapping for a given cochain T, of r-directions is analogous
to the dependence of the flux density on the unit normal.
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The Representation Theorem

Whitney:
The analog to Cauchy’s flux theorem. For each r-cochain T the Cauchy
mapping DT may be extended to an r-form that represents T by

T ·A =
∫

A
DT,

for every chain A, i.e., DT is linear in α. (We use the same notation for
the form and the Cauchy mapping.)

There is an isomorphism between sharp r-cochains T and bounded
Lipschitz r-forms DT, called sharp r-forms.

For flat r-forms DT is not unique. There is an isomorphism between flat
r-cochains and equivalence classes of bounded and measurable r-forms
under equality almost everywhere, that are called flat r-forms.

There is an isomorphism between k-natural cochains T and r-forms
with the first k derivatives bounded and Lipschitz k-th derivative.
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Coboundaries and Balance Equations

The coboundary dT of an r-cochain T is the (r + 1)-cochain defined by

dT ·A = T · ∂A,

i.e., it is the dual of the boundary operator for chains.

The coboundaries of flat and sharp cochains are flat.

Hence, there is a flat cochain S satisfying the global balance equation:

S ·A + T · ∂A = 0, ∀A, =⇒ dT + S = 0.
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Stokes’ theorem for Polyhedral Chains

The exterior derivative of a differentiable r-form τ is an (r + 1)-form dτ
defined by

dτ(p) · (v1∧ · · · ∧vr+1) =
r+1

∑
i=1

(−1)i−1∇vi τ(p) · (v1∧ · · · ∧ v̂i∧ · · · ∧vr+1).

where v̂i denotes a vector that has been omitted, and ∇vi is a
directional derivative operator.

Stokes’ theorem for polyhedral chains, based on the fundamental
theorem of differential calculus, states that∫

A

dτ =
∫

∂A

τ

for every differentiable r-form τ and an (r + 1)-polyhedral chain A.
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The Local Balance Equation

For natural cochains DT is differentiable and DdT is the exterior
derivative of DT, i.e.,

DdT = dDT.

Thus, using τ for DT and b for the form −DdT we get the differential
balance equation:

dτ + b = 0.

If τ = DT is an arbitrary flat form, we may consider any d0τ in the
equivalence class of DdT. Hence, we obtain the local d0τ + b = 0.
Thus, one may write the differential balance in the general situation of
flat cochains.

If T is a sharp cochain, the coordinates of τ = DT are Lipschitz, hence,
dτ is defined almost everywhere. Furthermore, it turns out that
d0τ = dτ almost everywhere.
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