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Cauchy’s Flux Theorem in Light of
Geometric Integration The ory
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Obijective: Presentation of the theory of Cauchy fluxes in the framework of
geometric integration theory as formulated by H. Whitney and extended
recently by J. Harrison.
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Traditional Approach:
In terms of scalar extensive property in space, one assumes:
® Balance: T(0%)+S(#B) =0
o Regularity: S(#) = [,B»dV and T(0%) = [,,T5dA
e Locality (pointwise): ﬁgg(x) = B(x) and Tx(x)=T1(x,n)

o Continuity: T(+,n) is continuous.

Cauchy’s Theorem
asserts that T(p,n) depends linearly on n. There is a vector field h such that

T=h-n.

Considering smooth regions such that Gauss-Green Theorem may be
applied, the balance may be written in the form of a differential equation as

divh +p = 0.
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Contributions in Continuum Mechanics - |

Noll (1957): t(n) implied by local dependence on open sets of the
boundary.

Gurtin & Williams (1967): Interaction I(A, B) on a universe of bodies

bi-additive: I(A Y B,C) = I(A,C) +1(B,C),

bounded: |I(A,B)| <1-area(dANaB) + k- volume(A),
Pairwise balanced: 1(A,B) = —I(B,A),

Continuity: t(-,n) is continuous (omitted in later works).

Continued later by Noll (1973,1986), Gurtin, Williams & Ziemer (1986), Noll &
Virga (1988), etc.

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 5/47



Contributions in Continuum Mechanics - Il

Gurtin & Martins (1975): Relaxing the continuity of ¢(p,n) in p, proved
linearity in n almost everywhere.

Silhavy (1985,1991): Admissible bodies are sets of finite perimeter in E",
and the assumptions and results are assumed to hold for
“almost every subbody”, in a way which allows singularities.
The resulting flux vector t has an L? weak divergence.

Degiovanni & Marzocchi & Musesti (1999) generalize Silhavy by
considering fluxes which are only locally integrable. The field
b = — div T is meaningful only in the weak sense.

Silhavy (recent work): Admissible bodies are general open sets, fluxes are
divergence measure fields, problem with the normal
trace—the generalization of 7.

Geometric measure theory [de Giorgi, Federer, Fleming] is used for
specifying the class of bodies, generalized definitions of n, generalized Gauss
Theorem.
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Previous work:

Segev 1986, 1991 Stress theory for manifolds without a metric using a weak
formulation. Stresses may be as irregular as measures. Works
for continuum mechanics of any order.

Segev 2000, Segev & Rodnay 1999: Classical Cauchy approach on general
manifolds using differential forms

Reference:
G. Rodnay & R. Segev, 2003, Cauchy’s Flux Theorem in Light of Geometric

Integration Theory, Journal of Elasticity, 71 (Truesdell Memorial Volume),
183-203.
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The Proposed Formulation

Uses Geometric Integration Theory by Whitney (1947, 1957), Wolf (1948),
and later Harrison (1993,1998), rather than Geometric Measure Theory (e.g.,
[de Giorgi, Federer, Fleming]).

@ Building blocks: r-dimensional oriented cells in E".
@ Formal vector space of r-cells: polyhedral r-chains.
@ Complete w.r.t a norm: Banach space of r-chains.

@ Elements of the dual space: r-cochains.

Relevance to Continuum Mechanics
@ The total flux operator on regions is modelled mathematically by a
cochain.
@ Cauchy’s flux theorem is implied by a representation theorem for
cochains by forms.
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Features of the Proposed Formulation

@ It offers a common point of view for the analysis of the following
aspects: class of domains, integration, Stokes” Theorem, and fluxes.

o [rreqular domains and flux fields. Smoother fluxes allow less regular
domains and vise versa in an optimal way. Examples:

» Domains as irregular as Dirac measure and its derivatives—differentiable
flux fields.
» L! regions—bounded and measurable flux fields

@ Codimension not limited to 1. Allows membranes, strings, etc.
Not only the boundary is irregular, but so is the domain itself.

@ Compatible with the formulation on general manifolds.
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The Structure of the Presentation

@ Cells and polyhedral chains
@ Algebraic cochains

@ Norms and the complete spaces of chains (flat, sharp, natural)
@ The representation of cochains by forms:

» Multivectors and forms

> Integration

» Representation

» Coboundaries and balance equations
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Cells and Polyhedral Chains
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Oriented Cells

@ Acell, o, is a non empty bounded
subset of E" expressed as an
intersection of a finite collection of
half spaces.

@ The plane of o is the smallest affine
subspace containing ¢. el
@ The dimension of ¢ is the dimension™ -
of its plane, an r-cell.
@ An oriented r-cell is an r-cell with a

choice of one of the two
orientations of the vector space

associated with its plane.
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Oriented Cells (continued)

/' The plane of the cell '
An oriented 2-cell |

@ The orientation of ¢’ € 9c is

determined by the orientation of ¢
» Choose independent (vy, ..., vy)

inco’. R 7 '
» Order them such that given vy in * v,
o which points out at ¢”, ]
(vy,...,vy) are positively oriented +-oriented
relative to 0. "
7/ l'
7/ 1
/ RS '
e o
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Polyhedral Chains

@ A polyhedral r-chain in E" is an element of the vector space spanned by
formal linear combinations of r-cells, together with:
» The polyhedral chain 1c is identified with the cell ¢.
» We associate multiplication of a cell by —1 with the operation of
inversion of orientation, i.e., —10 = —0.
» If ois cutinto oq,...,0,, then o and 01 + ... + 0y, are identified.

@ The space of polyhedral r-chains in E" is now an infinite-dimensional
vector space denoted by <7 (E").

@ The boundary of a polyhedral r-chain A =Y a;0; is A = )_a,;00;. Note
that 0 is a linear operator <7, (E") — 7,1 (E").
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Polyhedral Chains: Illustration

A=A1+A> 0A = 0A | + 0A, JA
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A Polyhedral Chain as a Function

. I\
| |
“ A =Y a0 I 0A = Y a;00;
— ' to
—_ . | ;
|
|
|
_ I 0'1 0'2 .. e e - _ -
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Total Fluxes as Cochains

A cochain: Linear T: </, — R.
Algebraic implications:

o additivity,

@ interaction antisymmetry.

<\’ T -0
T-(-0) o1+ 02

T-(—O'):—T-O', T-(O'1+0'2)=T-0’1—|—T-0’2
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Norms and the Complete Spaces of Chains
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The Norm Induced by Boundedness

Boundedness: |Tyg| < Np|0B|, |Tag| < N1 |B|. Setting A = 9B, .
Asa cochain: |T-A| < Ny |A|, |T-9D| < N1|D|, AEM,DEMH
Thus, forany D € 41, IT-A|=|T-A—T-3D+T-aD|
and A € 2 <|T-A—T-aD| +|T-3D|
<Nz |A—09D|+ N D]
< Cr(JA—aD|+|DJ),

Basic Idea

Regard the flux as a continuous linear functional on the space of chains w.r.t.
a norm

where the flat norm (smallest) is given as

b .
4]l = |A] = inf{]4 — 3D| +|D|}.

v
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Flat Chains

@ The mass of a polyhedral r-chain A = Y a;0; is |A| = ¥ |a;||o7].
@ The flat norm, |A|b, of a polyhedral r-chain:

|A|” = inf{|A —aD| + |D|},

using all polyhedral (7 + 1)-chains D.

> TakingD = 0, |A]” < |A].
> If A = 3B, taking D = B gives |A|’ < |B|. Hence, [0B|" < |B|.
e Completing <7 (E") w.r.t the flat norm gives a Banach space denoted by
o7 (E"), whose elements are flat r-chains in E".

@ Flat chains may be used to represent continuous and smooth
submanifolds of E" and even irregular surfaces.

o The boundary of a flat (r + 1)-chain A = lim’ A;, is the a flat r-chain
9A = lim 9A,.
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Flat Chains, an Example (Illustration - I):

A A
Ly Ly
. >, E—
1 ID ! : D
di : : dl: 1
v Ly : v Ly
- L d;
|A;| = 2L, |Ai| = 2d;,
A" < (L+2)d; — 0. A" < 2d; — 0.
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Example: The Staircase

’Ai\b 271272 =271/2 = (B;) a convergent series.
Bi— B = [Thya A <y 14 < TR IAd <EP27/2, ¥ i

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 22/47

Note,




Example: the Van Koch Snowflake ‘
Aj contains 4 triangles of side length 37". Each time the length increases by

23714/ =2(%)". Hence, |B;| — oo.

A A ) A A
} By } Aq } Ay } Az < : B3
g
| | | < S
\ \ \ \ a v |
| | Q D {
| + | + | + . =
\ \ I e,
| | | | s
| | | | >
| | | S b %
-l e e ¥ L _
A <4°P3737 = 2 (3)f
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Flat Chains: Federer’s Point of View

@ Flat chains are distributions defined on the space of smooth differential
forms.

@ The flat semi-norm of a smooth differential form ¢, supported in some
compact set, is given by

9l = sup {[¢(x)], [dp(x)[} -

o The flat semi-norm of a linear functional T is the dual norm

T(¢)
T|| = sup —22.
Tl sip Tl
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Sharp Chains

@ Add regularity to the cochains by requiring that
|T - (0 —trans, 0)| < Cr o] ||,

where trans, is a translation operator, which moves p € o top + v.

@ This will be implied by continuity if we use the sharp norm |A|ﬁ ofa
polyhedral -chain A = Y _a,0;:

IA* = inf {Z|€:!_U;||Ui| + |} _a;trans,, O'i‘b} ,

using all vectors v; € E".

o Completing % (E") w.r.t the sharp norm, gives &7 (E") whose
elements are sharp chains.

e Setting all v; = 0, we conclude that |A|* < |A|b. Hence, <7 (E") is a
Banach subspace of 7 (E").
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Sharp Chains, an Example (lllustration - I):

Aj A,

; Ly > Lq;

' D ' ' D
;. : d;! |

:L L21 : ! L21 :

— =
‘All = 2L/ |AZ’ = 2di/
A" < (L+2)d; — 0. A" < 2d; — 0.
A, < Ld; — 0. Alf < d2/2.
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The Staircase Strainer

t —
I | |
I | | -
| * * —
I | |
| Bo | A | A —
I | |
________ —_ ——— - —— — — —— e — —— — —
The dashed lines are for reference only.
b — -
I — I —
I -— I -
I - I -
+ - = | g e o o o
—_— e
: Az : By _.
I — I —
________ —_— —— e e — —

A <2071(1/2)2/2 =271/4
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The Staircase Mixer:

Al <27i/2
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Harrison’s Theory: Dipoles
o A simple r-dimensional O-dipole: r-simplex ¢° with diam(c?) < 1.

@ A simple r-dimensional 1-dipole: ¢! = ¢” — trans,, ¢?, such that

|v1| < 1 and trans,, ¢ disjoint from ¢°.

@ A simple r-dimensional j-dipole: an r-chain
I transvj U'j_l,

such that |v]] 1 and trans,, o1 disjoint from o1

@ A simple j-dipole is determined by ¢” and v, . . -, Uj.

@ Aj-dipole is a simplicial chain
D = Zﬂifflj
i
of simple j-dipoles.
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The Natural Norm |
@ The j-dipole mass of a simple j-dipole is defined by

‘af‘. — ‘00‘ 1] - ||
j
e The j-dipole mass of the j-dipole D/ = ¥, aicrlj is defined as
‘Dj’j =2 ail
i

@ The k-natural norm on the space of polyhedral chains:

k
|A|IE = inf{Z D[+ |C|k1} /

s=0

j
;

j

over decompositions A = Y*_, D* + C, for dipoles D.

e Completing .7, (E") w.r.t the k-natural norm, gives .7 whose elements
are k-natural r-chains.
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The Natural Norm Il

@ The O-natural norm equivalent to the flat norm.
@ As k-increases, the the spaces of natural chains increase.

@ The Riemann integral over a natural r-chain A = lim A;, is defined by

/Tzlim/ T.
A A

For the r-form T with k — 1 bounded derivatives and k-th derivative
Lipschitz, the limit exists.

o The boundary operator is a continuous linear operator 3: of — o/* 1.
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The Representation of Cochains by Forms

Basic Problem:

A representation theorem for cochains in terms of fields.
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Why not a vector?

@ Say the flux is represented by

» T( with respect to the reference coordinate system (Piola),
» T relative to the space coordinate system (Cauchy).

@ The relation between the two is given by
To = [F|F7}(7),

F is the deformation gradient.

@ We would expect a transformation of form
Ty = F‘l'r,

if the flux were a vector field.
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Multivectors
@ Asimple r-vector in V is an expression of the form v; A - - - A v,, where
v € V.

@ An r-vector in V is an element of the vector space V, of formal linear
combinations of simple r-vectors, together with:

(1) oy A= A(Ui+0) A Aoy
=0 A AOGA ANV 0 A AUA - Ay
(2) vy A A(av) AN ANop=a(op A~ AN+ ANDy);
(3) 1A ANV A- ANV A ATy
e S WARRRNAY  VARRRNAN AR AN

@ The dimension of V, is dim V, = (n_”ir'),r,

o Given a basis {¢;} of V, the r-vectors {ey, 1, =ex, A--- Aey,}, such
thatl < Ay < -+ <A, <, form a basis of V,.
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Multivectors and Polyhedral Chains

@ Given an oriented r-simplex o in E", with vertices {py .. .p:}, the
r-vector of o, {c},is {c} =v1 A--- Av./r!, where the v; are defined
by v; = p; — po and are ordered such that they belong to ¢’s
orientation.

{c} represents the plane, orientation and area of c—the relevant
aspects.

@ The r-vector of a polyhedral r-chain y_ a;o;, is
{Laioi} = Lai{oi}.

U3
(%1

%(Ul N Uy + 0y /\1)3)
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Why an r-covector?

For the 3-dimensional example, we
want to measure the flux through

o \U /
any cello, {c} =vAu. vt

u

@ Denote by T(¢) the flux through that infinitesimal element.

@ As T depends only the plane, orientation and area, we expect

T(0) = 7({o}).

@ Balance: T is linear

(o) =1-{c}.
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Rough Proof

Consider the infinitesimal tetra-
hedron X, A, B, C generated by D,
the three vectors u, v, w.

— Use right-handed orientation.

— Balance implies: L

J(0,u) +](0,) + ] (1,0-+ W) — J(u+0,w) = 0.
— Same for X,B,C,E and X,C,D, E

J(w,u) +J(u+ov,w) +J(v,u) —J(v,w+u) =0
J(w,u) — J(v+w,u) — J(v,w) + J(v,w+u) = 0.

— Add up to obtain: J(u,v+w) = J(u,v) + J(u, w).
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Or Using Multi-Vectors

@ Consider the infinitesimal
tetrahedron D generated by the
three vectors u, v, w and let
A =dD.

° |A!b <|A—=09D|+|D| — 0, as
the volume of the tetrahedron
decreases.

@ Thus, limJ({A}) = 0.

— Use right-handed orientation.

Thus: J(uAv)+J(oAw)+J(wAu)+]((w—ov)A(v—u)) =0.

Using: (w—v)A(v—u) =wAv—wAu+vAu=—-uANv—vAw—wAu,

we conclude: |JuhNv+ovAw+wAu)=]J(uAv)+]J(0Aw)+]J(wAu).
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Multi-Covectors

@ An r-covector is an element of V'—the dual space of V.

@ r-covectors can be expressed using covectors:
V' = (V*), =LL(V,R).

(V*), is the space of multi-covectors, i.e., constructed as V,
using elements of the dual space V*:

T :f/\l...)\re)‘l VANCEIEIVAN 8/\’, A < )\i—i-l-
@ r-covectors may be identified with alternating multilinear mappings:

Vi=L4(V,R), by t(vy AvaA---Av) =T(v1,...,0r).
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Riemann Integration of Forms Over Polyhedral Chains
@ Anr-formin Q C E" is an r-covector valued mapping in Q.

@ An r-form is continuous if its components are continuous functions.

@ The Riemann integral of a continuous r-form T over an r-simplex ¢ is

defined as
/T: lim Y 7(pi)- {0},
(o

k—o0

;€S

where S;o is a sequence of simplicial subdivisions of o with mesh — 0,
and each p; is a point in 0.

@ The Riemann integral of a continuous r-form over a polyhedral r-chain
A = Y a0y, is defined by [, T=Ya; [ T.
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Lebesgue Integral of Forms over Polyhedral Chains

@ An r-form in E" is bounded and measurable if all its components are
bounded and measurable.

@ The Lebesgue integral of an r-form T over an r-cell ¢ is defined by

/UT:/UT@.{ﬁdp,

where the integral on the right is a Lebesgue integral of a real function.

@ This is extended by linearity to domains that are polyhedral chains by

/AT:Zai/a,-T'

if A= Ei a;0;.
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The Cauchy Mapping

@ The Cauchy mapping, Dr, for the cochain T, gives Dr(p, «), at the
point p in the direction « defined by the cell o, defined as:

where all 0; contain p, have r-direction a and lim;_,, diam(c;) = 0.

@ The Cauchy mapping for a given cochain T, of r-directions is analogous
to the dependence of the flux density on the unit normal.
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The Representation Theorem
Whitney:

@ The analog to Cauchy’s flux theorem. For each r-cochain T the Cauchy
mapping D1 may be extended to an r-form that represents T by

T-A:/DT,
A

for every chain A, i.e., Dy is linear in a. (We use the same notation for
the form and the Cauchy mapping.)

@ There is an isomorphism between sharp r-cochains T and bounded
Lipschitz r-forms D7, called sharp r-forms.

@ For flat r-forms Dr is not unique. There is an isomorphism between flat

r-cochains and equivalence classes of bounded and measurable r-forms
under equality almost everywhere, that are called flat r-forms.

@ There is an isomorphism between k-natural cochains T and r-forms
with the first k derivatives bounded and Lipschitz k-th derivative.
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Coboundaries and Balance Equations
@ The coboundary dT of an r-cochain T is the (r 4 1)-cochain defined by
dT-A=T-0A,

i.e., itis the dual of the boundary operator for chains.
@ The coboundaries of flat and sharp cochains are flat.

@ Hence, there is a flat cochain S satisfying the global balance equation:

S-A+T-0A=0, VA, = dT+S=0.
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Stokes’ theorem for Polyhedral Chains

@ The exterior derivative of a differentiable r-form T is an (r 4 1)-form dt
defined by

r+1 )
dt(p)- (A Ao1) = Y (=1 Vo t(p) - (1 A AT A+ Apg
i=1

where 7; denotes a vector that has been omitted, and V, is a
directional derivative operator.

@ Stokes’ theorem for polyhedral chains, based on the fundamental
theorem of differential calculus, states that

/dTZ/T
A 9A

for every differentiable r-form T and an (r + 1)-polyhedral chain A.
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The Local Balance Equation

@ For natural cochains Dr is differentiable and Dy is the exterior

derivative of Dr, i.e.,
Dyt = dDr.

Thus, using T for D7 and b for the form —D,1 we get the differential

balance equation:
dt+b=0.

@ If T = Dr is an arbitrary flat form, we may consider any dyT in the
equivalence class of D;7. Hence, we obtain the local dgT + b = 0.
Thus, one may write the differential balance in the general situation of
flat cochains.

@ If T is a sharp cochain, the coordinates of T = Dr are Lipschitz, hence,
dt is defined almost everywhere. Furthermore, it turns out that
doT = dt almost everywhere.
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