Some Extensions and Analysis of Flux and Stress Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies October 2007
Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

Cauchy's Flux Theorem in Light of Geometric Integration Theory

Objective: Presentation of the theory of Cauchy fluxes in the framework of geometric integration theory as formulated by H . Whitney and extended recently by J. Harrison.

Traditional Approach:

In terms of scalar extensive property in space, one assumes:

- Balance:

$$
T(\partial \mathscr{B})+S(\mathscr{B})=0
$$

- Regularity:

$$
S(\mathscr{B})=\int_{\mathscr{B}} \beta_{\mathscr{B}} \mathrm{d} V \quad \text { and } \quad T(\partial \mathscr{B})=\int_{\partial \mathscr{B}} \tau_{\mathscr{B}} \mathrm{d} A
$$

- Locality (pointwise): $\beta_{\mathscr{B}}(x)=\beta(x) \quad$ and $\quad \tau_{\mathscr{B}}(x)=\tau(x, n)$
- Continuity: $\tau(\cdot, \boldsymbol{n})$ is continuous.

Cauchy's Theorem

asserts that $\tau(p, \boldsymbol{n})$ depends linearly on \boldsymbol{n}. There is a vector field \boldsymbol{h} such that

$$
\tau=\boldsymbol{h} \cdot \boldsymbol{n} .
$$

Considering smooth regions such that Gauss-Green Theorem may be applied, the balance may be written in the form of a differential equation as

$$
\operatorname{div} \boldsymbol{h}+\beta=0
$$

Contributions in Continuum Mechanics - I

Noll (1957): $t(\boldsymbol{n})$ implied by local dependence on open sets of the boundary.
Gurtin \& Williams (1967): Interaction $I(A, B)$ on a universe of bodies

$$
\begin{gathered}
\text { bi-additive: } I(A \curlyvee B, C)=I(A, C)+I(B, C) \text {, } \\
\text { bounded: }|I(A, B)| \leq l \cdot \operatorname{area}(\partial A \cap \partial B)+k \cdot \operatorname{volume}(A), \\
\text { Pairwise balanced: } I(A, B)=-I(B, A), \\
\text { Continuity: } t(\cdot, \boldsymbol{n}) \text { is continuous (omitted in later works). }
\end{gathered}
$$

Continued later by Noll $(1973,1986)$, Gurtin, Williams \& Ziemer (1986), Noll \& Virga (1988), etc.

Contributions in Continuum Mechanics - II

Gurtin \mathcal{E} Martins (1975): Relaxing the continuity of $t(p, \boldsymbol{n})$ in p, proved linearity in n almost everywhere.
Šilhavý (1985,1991): Admissible bodies are sets of finite perimeter in E^{n}, and the assumptions and results are assumed to hold for "almost every subbody", in a way which allows singularities. The resulting flux vector t has an L^{p} weak divergence.
Degiovanni \& Marzocchi \& Musesti (1999) generalize Šilhavý by considering fluxes which are only locally integrable. The field $b=-\operatorname{div} \boldsymbol{\tau}$ is meaningful only in the weak sense.
Šilhavý (recent work): Admissible bodies are general open sets, fluxes are divergence measure fields, problem with the normal trace-the generalization of $\boldsymbol{\tau}$.

Geometric measure theory [de Giorgi, Federer, Fleming] is used for specifying the class of bodies, generalized definitions of n, generalized Gauss Theorem.

Previous work:

Segev 1986, 1991 Stress theory for manifolds without a metric using a weak formulation. Stresses may be as irregular as measures. Works for continuum mechanics of any order.
Segev 2000, Segev \& Rodnay 1999: Classical Cauchy approach on general manifolds using differential forms

Reference:
G. Rodnay E R. Segev, 2003, Cauchy's Flux Theorem in Light of Geometric Integration Theory, Journal of Elasticity, 71 (Truesdell Memorial Volume), 183-203.

The Proposed Formulation

Uses Geometric Integration Theory by Whitney $(1947,1957)$, Wolf (1948), and later Harrison $(1993,1998)$, rather than Geometric Measure Theory (e.g., [de Giorgi, Federer, Fleming]).

- Building blocks: r-dimensional oriented cells in E^{n}.
- Formal vector space of r-cells: polyhedral r-chains.
- Complete w.r.t a norm: Banach space of r-chains.
- Elements of the dual space: r-cochains.

Relevance to Continuum Mechanics

- The total flux operator on regions is modelled mathematically by a cochain.
- Cauchy's flux theorem is implied by a representation theorem for cochains by forms.

Features of the Proposed Formulation

- It offers a common point of view for the analysis of the following aspects: class of domains, integration, Stokes' Theorem, and fluxes.
- Irregular domains and flux fields. Smoother fluxes allow less regular domains and vise versa in an optimal way. Examples:
- Domains as irregular as Dirac measure and its derivatives-differentiable flux fields.
- L^{1} regions-bounded and measurable flux fields
- Codimension not limited to 1 . Allows membranes, strings, etc. Not only the boundary is irregular, but so is the domain itself.
- Compatible with the formulation on general manifolds.

The Structure of the Presentation

- Cells and polyhedral chains
- Algebraic cochains
- Norms and the complete spaces of chains (flat, sharp, natural)
- The representation of cochains by forms:
- Multivectors and forms
- Integration
- Representation
- Coboundaries and balance equations

Cells and Polyhedral Chains

Oriented Cells

- A cell, σ, is a non empty bounded subset of E^{n} expressed as an intersection of a finite collection of half spaces.
- The plane of σ is the smallest affine subspace containing σ.
- The dimension of σ is the dimension` of its plane, an r-cell.
- An oriented r-cell is an r-cell with a choice of one of the two orientations of the vector space associated with its plane.

Oriented Cells (continued)

- The orientation of $\sigma^{\prime} \in \partial \sigma$ is determined by the orientation of σ :
- Choose independent $\left(v_{2}, \ldots, v_{r}\right)$ in σ^{\prime}.
- Order them such that given v_{1} in ` σ which points out at σ^{\prime}, $\left(v_{1}, \ldots, v_{r}\right)$ are positively oriented relative to σ.

Polyhedral Chains

- A polyhedral r-chain in E^{n} is an element of the vector space spanned by formal linear combinations of r-cells, together with:
- The polyhedral chain 1σ is identified with the cell σ.
- We associate multiplication of a cell by -1 with the operation of inversion of orientation, i.e., $-1 \sigma=-\sigma$.
- If σ is cut into $\sigma_{1}, \ldots, \sigma_{m}$, then σ and $\sigma_{1}+\ldots+\sigma_{m}$ are identified.
- The space of polyhedral r-chains in E^{n} is now an infinite-dimensional vector space denoted by $\mathscr{A}_{r}\left(E^{n}\right)$.
- The boundary of a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$ is $\partial A=\sum a_{i} \partial \sigma_{i}$. Note that ∂ is a linear operator $\mathscr{A}_{r}\left(E^{n}\right) \longrightarrow \mathscr{A}_{r-1}\left(E^{n}\right)$.

Polyhedral Chains: Illustration

$\partial A=\partial A_{1}+\partial A_{2} \quad \partial A$

$$
\partial: \mathscr{A}_{r} \rightarrow \mathscr{A}_{r-1}
$$

A Polyhedral Chain as a Function

Total Fluxes as Cochains

A cochain: Linear $T: \mathscr{A}_{r} \rightarrow \mathbb{R}$.
Algebraic implications:

- additivity,
- interaction antisymmetry.

Norms and the Complete Spaces of Chains

The Norm Induced by Boundedness

Boundedness: $\left|T_{\partial B}\right| \leqslant N_{2}|\partial B|,\left|T_{\partial B}\right| \leqslant N_{1}|B|$. Setting $A=\partial B, \ldots$ As a cochain: $|T \cdot A| \leqslant N_{2}|A|,|T \cdot \partial D| \leqslant N_{1}|D|, A \in \mathscr{A}_{r}, D \in \mathscr{A}_{r+1}$.

Thus, for any $D \in \mathscr{A}_{r+1}$, and $A \in \mathscr{A}_{r}$:

$$
\begin{aligned}
|T \cdot A| & =|T \cdot A-T \cdot \partial D+T \cdot \partial D| \\
& \leqslant|T \cdot A-T \cdot \partial D|+|T \cdot \partial D| \\
& \leqslant N_{2}|A-\partial D|+N_{1}|D| \\
& \leqslant C_{T}(|A-\partial D|+|D|),
\end{aligned}
$$

Basic Idea
Regard the flux as a continuous linear functional on the space of chains w.r.t. a norm

$$
|T \cdot A| \leqslant C_{T}\|A\|,
$$

where the flat norm (smallest) is given as

$$
\|A\|=|A|^{b}=\inf _{D}\{|A-\partial D|+|D|\}
$$

Flat Chains

- The mass of a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$ is $|A|=\sum\left|a_{i}\right|\left|\sigma_{i}\right|$.
- The flat norm, $|A|^{b}$, of a polyhedral r-chain:

$$
|A|^{b}=\inf \{|A-\partial D|+|D|\}
$$

using all polyhedral $(r+1)$-chains D.

- Taking $D=0,|A|^{b} \leqslant|A|$.
- If $A=\partial B$, taking $D=B$ gives $|A|^{b} \leqslant|B|$. Hence, $|\partial B|^{b} \leqslant|B|$.
- Completing $\mathscr{A}_{r}\left(E^{n}\right)$ w.r.t the flat norm gives a Banach space denoted by $\mathscr{A}_{r}^{b}\left(E^{n}\right)$, whose elements are flat r-chains in E^{n}.
- Flat chains may be used to represent continuous and smooth submanifolds of E^{n} and even irregular surfaces.
- The boundary of a flat $(r+1)$-chain $A=\lim ^{b} A_{i}$, is the a flat r-chain $\partial A=\lim \partial A_{i}$.

Flat Chains, an Example (Illustration - I):

Example: The Staircase

The dashed lines are for reference only.

$\left|A_{i}\right|^{b} \leqslant 2^{i-1} 2^{-2 i}=2^{-i} / 2 \quad \Longrightarrow \quad\left(B_{i}\right)$ a convergent series.
Note, $\left|B_{i}-B_{j}\right|=\left|\sum_{k=j+1}^{i} A_{k}\right| \leq \sum_{k=j+1}^{i}\left|A_{k}\right| \leq \sum_{1}^{\infty}\left|A_{k}\right| \leqslant \sum_{1}^{\infty} 2^{-i} / 2, \quad \forall i, j$.

Example: the Van Koch Snowflake

A_{i} contains 4^{i} triangles of side length 3^{-i}. Each time the length increases by $2 \cdot 3^{-i} \cdot 4^{i}=2\left(\frac{4}{3}\right)^{i}$. Hence, $\left|B_{i}\right| \rightarrow \infty$.

$$
\left|A_{i}\right|^{b} \leqslant 4^{i} \frac{\sqrt{3}}{2} 3^{-i} 3^{-i}=\frac{\sqrt{3}}{2}\left(\frac{2}{3}\right)^{i}
$$

Flat Chains: Federer's Point of View

- Flat chains are distributions defined on the space of smooth differential forms.
- The flat semi-norm of a smooth differential form ϕ, supported in some compact set, is given by

$$
\|\phi\|=\sup _{x}\{|\phi(x)|,|d \phi(x)|\}
$$

- The flat semi-norm of a linear functional T is the dual norm

$$
\|T\|=\sup _{\phi} \frac{T(\phi)}{\|\phi\|}
$$

Sharp Chains

- Add regularity to the cochains by requiring that

$$
\left|T \cdot\left(\sigma-\operatorname{trans}_{v} \sigma\right)\right| \leqslant C_{T}|\sigma||v|
$$

where trans_{v} is a translation operator, which moves $p \in \sigma$ to $p+v$.

- This will be implied by continuity if we use the sharp norm $|A|^{\sharp}$ of a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$:

$$
|A|^{\sharp}=\inf \left\{\frac{\sum\left|a_{i}\right|\left|\sigma_{i}\right|\left|v_{i}\right|}{r+1}+\left|\sum a_{i} \operatorname{trans}_{v_{i}} \sigma_{i}\right|^{b}\right\}
$$

using all vectors $v_{i} \in E^{n}$.

- Completing $\mathscr{A}_{r}\left(E^{n}\right)$ w.r.t the sharp norm, gives $\mathscr{A}_{r}^{\sharp}\left(E^{n}\right)$ whose elements are sharp chains.
- Setting all $v_{i}=0$, we conclude that $|A|^{\sharp} \leqslant|A|^{b}$. Hence, $\mathscr{A}_{r}^{b}\left(E^{n}\right)$ is a Banach subspace of $\mathscr{A}_{r}^{\sharp}\left(E^{n}\right)$.

Sharp Chains, an Example (Illustration - I):

$$
\begin{aligned}
& \left|A_{i}\right|^{b}=2 L, \\
& \left|A_{i}\right|^{b} \leqslant(L+2) d_{i} \rightarrow 0 . \\
& \left|A_{i}\right|^{\sharp} \leqslant L d_{i} \rightarrow 0 .
\end{aligned}
$$

$$
\left|A_{i}\right|=2 d_{i,}
$$

$$
\left|A_{i}\right|^{b} \leqslant 2 d_{i} \rightarrow 0 .
$$

$$
\left|A_{i}\right|^{\sharp} \leqslant d_{i}^{2} / 2 .
$$

The Staircase Mixer:

The dashed lines are for reference only.

Harrison's Theory: Dipoles

- A simple r-dimensional 0 -dipole: r-simplex σ^{0} with $\operatorname{diam}\left(\sigma^{0}\right) \leqslant 1$.
- A simple r-dimensional 1-dipole: $\sigma^{1}=\sigma^{0}$ - $\operatorname{trans}_{v_{1}} \sigma^{0}$, such that $\left|v_{1}\right| \leqslant 1$ and $\operatorname{trans}_{v_{1}} \sigma^{0}$ disjoint from σ^{0}.
- A simple r-dimensional j-dipole: an r-chain

$$
\sigma^{j}=\sigma^{j-1}-\operatorname{trans}_{v_{j}} \sigma^{j-1}
$$

such that $\left|v_{j}\right| \leqslant 1$ and $\operatorname{trans}_{v_{j}} \sigma^{j-1}$ disjoint from σ^{j-1}.

- A simple j-dipole is determined by σ^{0} and v_{1}, \ldots, v_{j}.
- A j-dipole is a simplicial chain

$$
D^{j}=\sum_{i} a_{i} \sigma_{i}^{j}
$$

of simple j-dipoles.

The Natural Norm I

- The j-dipole mass of a simple j-dipole is defined by

$$
\left|\sigma^{j}\right|_{j}=\left|\sigma^{0}\right|\left|v_{1}\right| \cdots\left|v_{j}\right|
$$

- The j-dipole mass of the j-dipole $D^{j}=\sum_{i} a_{i} \sigma_{i}^{j}$ is defined as

$$
\left|D^{j}\right|_{j}=\sum_{i}\left|a_{i}\right|\left|\sigma_{i}^{j}\right|_{j} .
$$

- The k-natural norm on the space of polyhedral chains:

$$
|A|_{k}^{\natural}=\inf \left\{\sum_{s=0}^{k}\left|D^{s}\right|_{s}+|C|_{k-1}\right\},
$$

over decompositions $A=\sum_{s=0}^{k} D^{s}+\partial C$, for dipoles D^{s}.

- Completing $\mathscr{A}_{r}\left(E^{n}\right)$ w.r.t the k-natural norm, gives \mathscr{A}_{r}^{k} whose elements are k-natural r-chains.

The Natural Norm II

- The 0-natural norm equivalent to the flat norm.
- As k-increases, the the spaces of natural chains increase.
- The Riemann integral over a natural r-chain $A=\lim A_{i}$, is defined by

$$
\int_{A} \tau=\lim \int_{A_{i}} \tau
$$

For the r-form τ with $k-1$ bounded derivatives and k-th derivative Lipschitz, the limit exists.

- The boundary operator is a continuous linear operator $\partial: \mathscr{A}_{r}^{k} \rightarrow \mathscr{A}_{r-1}^{k-1}$.

The Representation of Cochains by Forms

Basic Problem:

A representation theorem for cochains in terms of fields.

Why not a vector?

- Say the flux is represented by
- $\boldsymbol{\tau}_{0}$ with respect to the reference coordinate system (Piola),
- τ relative to the space coordinate system (Cauchy).
- The relation between the two is given by

$$
\boldsymbol{\tau}_{0}=|F| F^{-1}(\boldsymbol{\tau})
$$

F is the deformation gradient.

- We would expect a transformation of form

$$
\boldsymbol{\tau}_{0}=F^{-1} \boldsymbol{\tau}
$$

if the flux were a vector field.

Multivectors

- A simple r-vector in V is an expression of the form $v_{1} \wedge \cdots \wedge v_{r}$, where $v_{i} \in V$.
- An r-vector in V is an element of the vector space V_{r} of formal linear combinations of simple r-vectors, together with:

$$
\begin{aligned}
& \text { (1) } v_{1} \wedge \cdots \wedge\left(v_{i}+v_{i}^{\prime}\right) \wedge \cdots \wedge v_{r} \\
&=v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}+v_{1} \wedge \cdots \wedge v_{i}^{\prime} \wedge \cdots \wedge v_{r} \\
& \text { (2) } v_{1} \wedge \cdots \wedge\left(a v_{i}\right) \wedge \cdots \wedge v_{r}=a\left(v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}\right) \\
& \text { (3) } v_{1} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{r} \\
&=-v_{1} \wedge \cdots \wedge v_{j} \wedge \cdots \wedge v_{i} \wedge \cdots \wedge v_{r}
\end{aligned}
$$

- The dimension of V_{r} is $\operatorname{dim} V_{r}=\frac{n!}{(n-r)!r!}$.
- Given a basis $\left\{e_{i}\right\}$ of V, the r-vectors $\left\{e_{\lambda_{1} \ldots \lambda_{r}}=e_{\lambda_{1}} \wedge \cdots \wedge e_{\lambda_{r}}\right\}$, such that $1 \leq \lambda_{1}<\cdots<\lambda_{r} \leq n$, form a basis of V_{r}.

Multivectors and Polyhedral Chains

- Given an oriented r-simplex σ in E^{n}, with vertices $\left\{p_{0} \ldots p_{r}\right\}$, the r-vector of $\sigma,\{\sigma\}$, is $\{\sigma\}=v_{1} \wedge \cdots \wedge v_{r} / r$!, where the v_{i} are defined by $v_{i}=p_{i}-p_{0}$ and are ordered such that they belong to σ^{\prime} s orientation.
$\{\sigma\}$ represents the plane, orientation and area of σ-the relevant aspects.
- The r-vector of a polyhedral r-chain $\sum a_{i} \sigma_{i}$, is

$$
\left\{\sum a_{i} \sigma_{i}\right\}=\sum a_{i}\left\{\sigma_{i}\right\}
$$

Why an r-covector?

For the 3-dimensional example, we want to measure the flux through any cell $\sigma,\{\sigma\}=v \wedge u$.

- Denote by $\bar{\tau}(\sigma)$ the flux through that infinitesimal element.
- As τ depends only the plane, orientation and area, we expect

$$
\bar{\tau}(\sigma)=\tilde{\tau}(\{\sigma\})
$$

- Balance: $\tilde{\tau}$ is linear

$$
\bar{\tau}(\sigma)=\tau \cdot\{\sigma\} .
$$

Rough Proof

Consider the infinitesimal tetrahedron X, A, B, C generated by

$J(v, u)+J(v, w)+J(u, v+w)-J(u+v, w)=0$.

- Same for X, B, C, E and X, C, D, E

$$
\begin{aligned}
& J(w, u)+J(u+v, w)+J(v, u)-J(v, w+u)=0 \\
& J(w, u)-J(v+w, u)-J(v, w)+J(v, w+u)=0 .
\end{aligned}
$$

- Add up to obtain: $J(u, v+w)=J(u, v)+J(u, w)$.

Or Using Multi-Vectors

- Consider the infinitesimal tetrahedron D generated by the three vectors u, v, w and let $A=\partial D$.
- $|A|^{b} \leqslant|A-\partial D|+|D| \rightarrow 0$, as the volume of the tetrahedron decreases.
- Thus, $\lim J(\{A\})=0$.
- Use right-handed orientation.

Thus: $\quad J(u \wedge v)+J(v \wedge w)+J(w \wedge u)+J((w-v) \wedge(v-u))=0$.
Using: $\quad(w-v) \wedge(v-u)=w \wedge v-w \wedge u+v \wedge u=-u \wedge v-v \wedge w-w \wedge u$,
we conclude:

$$
J(u \wedge v+v \wedge w+w \wedge u)=J(u \wedge v)+J(v \wedge w)+J(w \wedge u)
$$

Multi-Covectors

- An r-covector is an element of V^{r}-the dual space of V_{r}.
- r-covectors can be expressed using covectors:

$$
V^{r}=\left(V^{*}\right)_{r}=L_{A}^{r}(V, \mathbb{R})
$$

$\left(V^{*}\right)_{r}$ is the space of multi-covectors, i.e., constructed as V_{r} using elements of the dual space V^{*} :

$$
\tau=f_{\lambda_{1} \cdots \lambda_{r}} e^{\lambda_{1}} \wedge \cdots \wedge e^{\lambda_{r}}, \quad \lambda_{i} \leqslant \lambda_{i+1} .
$$

- r-covectors may be identified with alternating multilinear mappings:

$$
V^{r}=L_{A}^{r}(V, \mathbb{R}), \quad \text { by } \quad \tau\left(v_{1} \wedge v_{2} \wedge \cdots \wedge v_{r}\right)=\bar{\tau}\left(v_{1}, \ldots, v_{r}\right)
$$

Riemann Integration of Forms Over Polyhedral Chains

- An r-form in $Q \subset E^{n}$ is an r-covector valued mapping in Q.
- An r-form is continuous if its components are continuous functions.
- The Riemann integral of a continuous r-form τ over an r-simplex σ is defined as

$$
\int_{\sigma} \tau=\lim _{k \rightarrow \infty} \sum_{\sigma_{i} \in \mathcal{S}_{k} \sigma} \tau\left(p_{i}\right) \cdot\left\{\sigma_{i}\right\}
$$

where $\mathcal{S}_{i} \sigma$ is a sequence of simplicial subdivisions of σ with mesh $\rightarrow 0$, and each p_{i} is a point in σ_{i}.

- The Riemann integral of a continuous r-form over a polyhedral r-chain $A=\sum a_{i} \sigma_{i}$, is defined by $\int_{A} \tau=\sum a_{i} \int_{\sigma_{i}} \tau$.

Lebesgue Integral of Forms over Polyhedral Chains

- An r-form in E^{n} is bounded and measurable if all its components are bounded and measurable.
- The Lebesgue integral of an r-form τ over an r-cell σ is defined by

$$
\int_{\sigma} \tau=\int_{\sigma} \tau(p) \cdot \frac{\{\sigma\}}{|\sigma|} d p
$$

where the integral on the right is a Lebesgue integral of a real function.

- This is extended by linearity to domains that are polyhedral chains by

$$
\int_{A} \tau=\sum a_{i} \int_{\sigma_{i}} \tau
$$

if $A=\sum_{i} a_{i} \sigma_{i}$.

The Cauchy Mapping

- The Cauchy mapping, D_{T}, for the cochain T, gives $D_{T}(p, \alpha)$, at the point p in the direction α defined by the cell σ, defined as:

$$
D_{T}(p, \alpha)=\lim _{i \rightarrow \infty} T \cdot \frac{\sigma_{i}}{\left|\sigma_{i}\right|}, \quad \alpha=\frac{\sigma_{i}}{\left|\sigma_{i}\right|}
$$

where all σ_{i} contain p, have r-direction α and $\lim _{i \rightarrow \infty} \operatorname{diam}\left(\sigma_{i}\right)=0$.

- The Cauchy mapping for a given cochain T, of r-directions is analogous to the dependence of the flux density on the unit normal.

The Representation Theorem

Whitney:

- The analog to Cauchy's flux theorem. For each r-cochain T the Cauchy mapping D_{T} may be extended to an r-form that represents T by

$$
T \cdot A=\int_{A} D_{T}
$$

for every chain A, i.e., D_{T} is linear in α. (We use the same notation for the form and the Cauchy mapping.)

- There is an isomorphism between sharp r-cochains T and bounded Lipschitz r-forms D_{T}, called sharp r-forms.
- For flat r-forms D_{T} is not unique. There is an isomorphism between flat r-cochains and equivalence classes of bounded and measurable r-forms under equality almost everywhere, that are called flat r-forms.
- There is an isomorphism between k-natural cochains T and r-forms with the first k derivatives bounded and Lipschitz k-th derivative.

Coboundaries and Balance Equations

- The coboundary $d T$ of an r-cochain T is the $(r+1)$-cochain defined by

$$
d T \cdot A=T \cdot \partial A
$$

i.e., it is the dual of the boundary operator for chains.

- The coboundaries of flat and sharp cochains are flat.
- Hence, there is a flat cochain S satisfying the global balance equation:

$$
S \cdot A+T \cdot \partial A=0, \quad \forall A, \quad \Longrightarrow \quad d T+S=0
$$

Stokes' theorem for Polyhedral Chains

- The exterior derivative of a differentiable r-form τ is an $(r+1)$-form $d \tau$ defined by

$$
d \tau(p) \cdot\left(v_{1} \wedge \cdots \wedge v_{r+1}\right)=\sum_{i=1}^{r+1}(-1)^{i-1} \nabla_{v_{i}} \tau(p) \cdot\left(v_{1} \wedge \cdots \wedge \widehat{v}_{i} \wedge \cdots \wedge v_{r+1}\right.
$$

where \widehat{v}_{i} denotes a vector that has been omitted, and $\nabla_{v_{i}}$ is a directional derivative operator.

- Stokes' theorem for polyhedral chains, based on the fundamental theorem of differential calculus, states that

$$
\int_{A} d \tau=\int_{\partial A} \tau
$$

for every differentiable r-form τ and an $(r+1)$-polyhedral chain A.

The Local Balance Equation

- For natural cochains D_{T} is differentiable and $D_{d T}$ is the exterior derivative of D_{T}, i.e.,

$$
D_{d T}=d D_{T}
$$

Thus, using τ for D_{T} and b for the form $-D_{d T}$ we get the differential balance equation:

$$
d \tau+b=0
$$

- If $\tau=D_{T}$ is an arbitrary flat form, we may consider any $d_{0} \tau$ in the equivalence class of $D_{d T}$. Hence, we obtain the local $d_{0} \tau+b=0$. Thus, one may write the differential balance in the general situation of flat cochains.
- If T is a sharp cochain, the coordinates of $\tau=D_{T}$ are Lipschitz, hence, $d \tau$ is defined almost everywhere. Furthermore, it turns out that $d_{0} \tau=d \tau$ almost everywhere.

