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The Global Point of View

C"-Functionals
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Review of Basic Kinematics and Statics on Manifolds

o)

@ The mechanical system is
characterized by its
configuration space—a
manifold 2.

@ Velocities are tangent vectors [
to the manifold—elements
of T2.

@ A Force at the configuration
K is a linear mapping
F: T,2 - R.

Can we apply this framework to Continuum Mechanics? ]
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Problems Associated with the Configuration Space

in Continuum Mechanics

@ What is a configuration?
@ Does the configuration space have a structure of a manifold?

@ The configuration space for continuum mechanics is infinite
dimensional.
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Configurations of Bodies in Space

@ A mapping of the body into space;
@ material impenetrability—one-to-one;
@ continuous deformation gradient (derivative);

@ do not “crash” volumes—invertible derivative. -

Abody 28
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Manifold Structure for Euclidean Geometry

@ If the body is a subset of R* and space is modeled by R?, the collection
of differentiable mappings C(%, R®) is a vector space

@ However, the subset of “good” configurations is not a vector space,
e.g., K — k = 0—not one-to-one.

@ We want to make sure that the subset of configurations 2 is an open
subset of C'(%,R®), so it is a trivial manifold.

configurations: I 5 configurations

all differentiable mappings all differentiable mappings

R. Segev (Ben-Gurion Univ.) Flux and Stress Theories Pisa, Oct. 2007 6/20



The C%Distance Between Functions

@ The C%distance between functions measures the maximum difference
between functions.

@ A configuration is arbitrarily close to a “bad” mapping.
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The C-Distance Between Functions

@ The Cldistance between functions measures the maximum difference
between functions and their derivative

|u —v|c1 = sup{[u(x) — v(x)], |Du(x) — Do(x)|}.
@ A configuration is always a finite distance away from a “bad” mapping.
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Conclusions for R®

o If we use the Cl-norm, the
configuration space of a continuous
body in space is an open subset of
CY(%, R®)-the vector space of all
differentiable mapping.

@ Zis atrivial infinite dimensional
manifold and its tangent space at
any point may be identified with
Ci(%,R).

@ A tangent vector is a velocity field.
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For Manifolds

@ Both the body % and space % are differentiable manifolds.

@ The configuration space is the collection 2 = Emb(%, % ) of the embeddings
of the body in space. This is an open submanifold of the infinite dimensional
manifold CY(%, % ).

@ The tangent space T2 may be characterized as

T, 2 = {w: B — T2|tow=x«}, oralternatively, T2 = CYx*T%).

.| grojection
T
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space manifold
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Representation of C%-Functionals by Integrals

@ Assume you measure the size of a function using the Cdistance,

[w]l = sup{|w(x)]}.

@ A linear functional F: w — F(w) is continuous with respect to this norm if
F(w) — 0 when max |w(x)| — 0.

@ Riesz representation theorem: A continuous linear functional F with respect to
the C"norm may be represented by a unique measure  in the form

F(w) = / wdy.
B
A F(w) = [ wepdx A F(w) = [ wedx
B i 17
s ] s |F isn’t sensitive to the derivative
force density force density
. ¢ - ¢
Velocity Velocity
w w
t — b= S E—
Body 28 Body 2
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Representation of C-Functionals by Integrals

@ Now, you measure the size of a function using the Cl-distance,
[w]l = sup{|w(x)], |Dew(x) }.

@ A linear functional F: w — F(w) is continuous with respect to this norm if
F(w) — 0 when both max |w(x)| — 0 and max |Dw(x)| — 0.

@ Representation theorem: A continuous linear functional F with respect to the
Clnorm may be represented by measures 0y, o7 in the form

F(w) = /wd(70+/Dwd(71.
B B

F is sensitive to the derivative
A F(w) = [ ¢owdx + [ ¢1Dwdx
| B B

“self” force density

%o i
R stress density

Velocity 41
w

- I
Body 2 ‘ Velocity gradient
Dw
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Non-Uniqueness of C-Representation by Integrals

@ We had an expression in the form
F(w) = /wd(70+/w’d(71.
4 4

@ If we were allowed to vary w and w’ independently, we could determine oy
and oy uniquely.

@ This cannot be done because of the condition w’ = Dw.

A F(w) = [ gowdx + [ ¢w'dx
{ B Iz
5 |
“self” force density
= } 90 i
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Unique Representation of a Force System

@ Assume we have a force system, i.e., a force F 4 for every subbody & of 4.

@ We can approximate pairs of non-compatible functions w and w’, i.e.,
w’ # Dw, by piecewise compatible functions.

approximation of

\_/w—\_/ [ gp wdoy

Calculate f@ wdoy

| | I
‘ Body 2 ‘ !

P12

approximation of [z w/dzf]

== | [

Body % 22

@ This way the two measures are determined uniquely.

@ One needs consistency conditions for the force system.
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Generalized Cauchy Consistency Conditions

o Additivity:

e Continuity: If #; — A, then F 5 (w| 2,
converges and the limit depends on A only.

o Uniform Boundedness: There is a K > 0 such that for every
subbody & and every w,

|Fo(w|2) < Kl|lwzl|.

Main Tool in Proof: Approximation of measurable sets by
bodies with smooth boundaries.
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Generalizations

@ All the above may be formulated and proved for differentiable
manifolds.

@ This formulation applies to continuum mechanics of order k > 1 (stress
tensors of order k). One should simply use the Cknorm instead of the
Clnorm.

@ The generalized Cauchy conditions also apply to continuum mechanics
of order k > 1. This is the only formulation of Cauchy conditions for
higher order continuum mechanics.
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Locality and Continuity in Constitutive Theory
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Global Constitutive Relations

(Elasticity for Simplicity)

@ 2, the configuration space of a body .
o C%%,L(R°,R*)), the collection of all stress fields over the body.
o ¥: 2 — CY%,L(R,R)), aglobal constitutive relation.

space stress
configuratio k4 » stress field
o o ="Y¥(x)
Global constitutive
relation.
Body # Body #
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Localit?/ and Materials of Grade-n

Germ Locality: If two configurations k1 and x, are equal on a
subbody containing X, then the resulting stress fields are

equal at X.
space stress
-
ot ¥(x2)
2 X £
| 4 | >
Body &8 Body 28

Material of Grade-n or n-Jet Locality: If the first n derivatives
of k1 and «x; are equal at X, then, ¥ (x1)(X) = ¥(x2)(X).
(Elastic = grade 1.)

space stress
R
K1 ¥(r2)
2 X X
| & | Z
Body 28 Body 28
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n-Jet Locality and Continuity

Basic Theorem: If a constitutive relation ¥: 2 — C%%, L(R® R®)) is local and
continuous with respect to the C"-norm, then, it is n-jet local. In
particular, if ¥ is continuous with respect to the Cl-topology, the
material is elastic.

space space space
‘Whitney’s
restriction extension
1l o / K{
et K2| o K)
2 X ‘ X X
» @
Body 28 Body 28 Body 28
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R. Segev (Ben-Gurion Univ.) Flux and Stress Theories

Pisa, Oct. 2007 20/ 20



