Some Extensions and Analysis of Flux and Stress Theory

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies October 2007 Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

The Global Point of View *C*ⁿ-Functionals

Review of Basic Kinematics and Statics on Manifolds

- The mechanical system is characterized by its configuration space—a manifold \(\mathcal{Q} \).
- Velocities are tangent vectors to the manifold—elements of T2.
- A *Force* at the configuration κ is a linear mapping $F: T_{\kappa} \mathscr{Q} \to \mathbb{R}$.

Can we apply this framework to Continuum Mechanics?

Problems Associated with the Configuration Space

in Continuum Mechanics

- What is a configuration?
- Does the configuration space have a structure of a manifold?
- The configuration space for continuum mechanics is infinite dimensional.

Configurations of Bodies in Space

- A mapping of the body into space;
- material impenetrability—one-to-one;
- continuous deformation gradient (derivative);

• do not "crash" volumes—invertible derivative. $\kappa(\mathscr{B})$ A body B Spac

5/20

Manifold Structure for Euclidean Geometry

- If the body is a subset of \mathbb{R}^3 and space is modeled by \mathbb{R}^3 , the collection of differentiable mappings $C^1(\mathcal{B}, \mathbb{R}^3)$ is a vector space
- However, the subset of "good" configurations is not a vector space, e.g., $\kappa \kappa = 0$ —not one-to-one.
- We want to make sure that the subset of configurations \mathcal{Q} is an open subset of $C^1(\mathcal{B}, \mathbb{R}^3)$, so it is a trivial manifold.

The C^0 -Distance Between Functions

- The *C*⁰-distance between functions measures the maximum difference between functions.
- A configuration is arbitrarily close to a "bad" mapping.

The C^1 -Distance Between Functions

• The C^1 distance between functions measures the maximum difference between functions and their derivative

$$|u-v|_{C^1} = \sup\{|u(x)-v(x)|, |Du(x)-Dv(x)|\}.$$

• A configuration is always a finite distance away from a "bad" mapping.

Conclusions for \mathbb{R}^3

- If we use the C^1 -norm, the configuration space of a continuous body in space is an open subset of $C^1(\mathcal{B}, \mathbb{R}^3)$ -the vector space of all differentiable mapping.
- \mathcal{Q} is a trivial infinite dimensional manifold and its tangent space at any point may be identified with $C^1(\mathcal{B}, \mathbb{R}^3)$.
- A tangent vector is a velocity field.

For Manifolds

- ullet Both the body ${\mathscr B}$ and space ${\mathscr U}$ are differentiable manifolds.
- The configuration space is the collection $\mathcal{Q} = \operatorname{Emb}(\mathcal{B}, \mathcal{U})$ of the embeddings of the body in space. This is an open submanifold of the infinite dimensional manifold $C^1(\mathcal{B}, \mathcal{U})$.
- The tangent space $T_{\kappa}\mathcal{Q}$ may be characterized as

 $T_{\kappa}\mathcal{Q} = \{w \colon \mathscr{B} \to T\mathcal{Q} | \tau \circ w = \kappa\}, \text{ or alternatively, } T_{\kappa}\mathcal{Q} = C^{1}(\kappa^{*}T\mathscr{U}).$

Representation of C^0 -Functionals by Integrals

- Assume you measure the size of a function using the C^0 -distance, $||w|| = \sup\{|w(x)|\}.$
- A linear functional $F \colon w \mapsto F(w)$ is continuous with respect to this norm if $F(w) \to 0$ when $\max |w(x)| \to 0$.
- Riesz representation theorem: A continuous linear functional F with respect to the C^0 -norm may be represented by a unique measure μ in the form

Representation of C^1 -Functionals by Integrals

- Now, you measure the size of a function using the C^1 -distance, $||w|| = \sup\{|w(x)|, |Dw(x)|\}.$
- A linear functional $F \colon w \mapsto F(w)$ is continuous with respect to this norm if $F(w) \to 0$ when both $\max |w(x)| \to 0$ and $\max |Dw(x)| \to 0$.
- Representation theorem: A continuous linear functional F with respect to the C^1 -norm may be represented by measures σ_0 , σ_1 in the form

$$F(w) = \int_{\mathscr{B}} w \, d\sigma_0 + \int_{\mathscr{B}} Dw \, d\sigma_1.$$

Non-Uniqueness of C^1 -Representation by Integrals

• We had an expression in the form

$$F(w) = \int_{\mathscr{B}} w \, d\sigma_0 + \int_{\mathscr{B}} w' \, d\sigma_1.$$

- If we were allowed to vary w and w' independently, we could determine σ_0 and σ_1 uniquely.
- This cannot be done because of the condition w' = Dw.

Unique Representation of a Force System

- Assume we have a force system, i.e., a force $F_{\mathscr{P}}$ for every subbody \mathscr{P} of \mathscr{B} .
- We can approximate pairs of non-compatible functions w and w', i.e., $w' \neq Dw$, by piecewise compatible functions.

- This way the two measures are determined uniquely.
- One needs consistency conditions for the force system.

Generalized Cauchy Consistency Conditions

• Additivity:

$$F_{\mathscr{P}_1 \cup \mathscr{P}_2}(w|_{\mathscr{P}_1 \cup \mathscr{P}_2}) = F_{\mathscr{P}_1}(w|_{\mathscr{P}_1}) + F_{\mathscr{P}_2}(w|_{\mathscr{P}_2}).$$

• *Uniform Boundedness:* There is a K > 0 such that for every subbody \mathscr{P} and every w,

$$|F_{\mathscr{P}}(w|_{\mathscr{P}}) \leq K||w_{\mathscr{P}}||.$$

Main Tool in Proof: Approximation of measurable sets by bodies with smooth boundaries.

Generalizations

- All the above may be formulated and proved for differentiable manifolds.
- This formulation applies to continuum mechanics of order k > 1 (stress tensors of order k). One should simply use the C^k -norm instead of the C^1 -norm.
- The generalized Cauchy conditions also apply to continuum mechanics of order k>1. This is the only formulation of Cauchy conditions for higher order continuum mechanics.

Locality and Continuity in Constitutive Theory

Global Constitutive Relations

(Elasticity for Simplicity)

- \mathcal{Q} , the configuration space of a body \mathcal{B} .
- $C^0(\mathcal{B}, L(\mathbb{R}^3, \mathbb{R}^3))$, the collection of all stress fields over the body.
- $\Psi \colon \mathscr{Q} \to C^0(\mathscr{B}, L(\mathbb{R}^3, \mathbb{R}^3))$, a global constitutive relation.

Locality and Materials of Grade-*n*

Germ Locality: If two configurations κ_1 and κ_2 are equal on a subbody containing X, then the resulting stress fields are equal at X.

Material of Grade-n or n-Jet Locality: If the first n derivatives of κ_1 and κ_2 are equal at X, then, $\Psi(\kappa_1)(X) = \Psi(\kappa_2)(X)$. (Elastic = grade 1.)

n-Jet Locality and Continuity

Basic Theorem: If a constitutive relation $\Psi: \mathcal{Q} \to C^0(\mathcal{B}, L(\mathbb{R}^3, \mathbb{R}^3))$ is local and continuous with respect to the C^n -norm, then, it is n-jet local. In particular, if Ψ is continuous with respect to the C^1 -topology, the material is elastic.

