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Load Capacity Ratio

Notation

(2 - a given homogeneous elastic-plastic body or a structure,
oy —the yield stress,
t — a loading traction field given on the boundary 902,

tmax — the maximum of the external loading,
b = €855UP, oy [£)] = [[fllo

Result
There is a minimimal number C such that the body will not collapse as long as

tmax < CUY

independently of the distribution of the external traction t.

v
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The Expression for the Load Capacity Ratio

The number C, a purely geometric property of the body (2, is given by

C o [yle(w)|dV ’

where,

w —an isochoric (incompressible) vector field,
e(w) — the linear strain associated with w,
e(w)ij = 3 (w;j + wy;), e(w) = 0;
Yp — the trace mapping taking a vector field on (2 and giving its

boundary value (restriction to the boundary of continuous
vector fields).
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Introduction

Statically Indeterminate Problems:

o An infinite number of solutions.
Find the optimal. (A generalized inverse)
o Find the worst ratio between the optimal stress
and the maximum of the external loading.
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The Setting for the Continuum Problem

Definitions of the Main Variables

(2 —agiven body (bounded), I = d(2 — its boundary,
I'y —the part of the boundary where the body is fixed,
t — a surface traction field givenon I’y C T,
v — the unit normal to the boundary
o —astress field that is in equilibrium with ¢,
OUmax — the maximal magnitude of the stress
Omax = €SSSUP, . |0(x)]| = [|0||co-

Remark: The treatment may be generalized to include body forces.

@ There is a class of stress fields that are in equilibrium with t.

@ We denote this class of stress fields by 2.
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The Problem

@ Find the least value St of oy, i.€.,

St = inf {0max} = inf {]lolles}-

> Question: Is there an optimal stress field oopt such that
St = ||(70pt||oo?
@ Find the generalized stress concentration factor

S
ess sup, [1(y)]’

K =sup
t
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The Corresponding Scalar Problem:
the Junction Problem

@ Given the flux density ¢ on the boundary of Q with [, , ¢dA = 0.
@ Set V4) = {U: 0 — R, Vi = 0inQ2, ,ov; = ¢ on 8_0}
—compatible velocity fields.

@ Foreach v € Vy, set Umax = esssup,.q, [v(x)].

. t .
@ Find the least value v;p of Umax, i.€.,

o = i (o

The optimal velocity field for the junction (2.
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The Results
Theorem (Segev 2004, [2])

@ The optimal value Sy is given by

t-wdA
= sup LeotwdAl @)l
wec(oge) Jo @AY~ ecerge @)l

|e(w)| is the norm of the value of the stretching e(w) = 1(Vw + VawT).
© The optimum is attained for some oopr € Xy

® Mathematically:
St = ||Force Functionall|.
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Stress Concentration for Engineers
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Generalized Stress Concentration Factors:

@ Assume a body (2 is given (open, regular with smooth boundary).

@ Assume a surface traction ¢ is given and let o be a stress field that is in
equilibrium with t.

@ The stress concentration factor associated with the pair t, o is

_esssup,{|o(x)]}
* = esssup, (]}

x€ 0, yeon.

@ Denote by X; the collection of all possible stress fields that are in
equilibrium with t. (There are many such stress fields because material
properties are not specified.)
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@ The optimal stress concentration factor for the force t is defined by

Kt = aingt {Kt,g} .

@ The generalized stress concentration factor K—a purely geometric
property of (2—is defined by

= sup {K¢} = sup inf

TEY;

{ ess sup, {]o(x)]) }
esssup, {[{)[} |
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Concerning the Generalized Stress Concentration Factor

Theorem (Segev 2004, [2])

@ Define the generalized stress concentration factor K by

K =su St
~ " Pess SUP,can [HY)|
@ Then, f
|w| dA
K=|y|= sup FF—c
weC=((2,R3)g fn le(w)|dV’
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Relation to Limit Analysis in Plasticity
Notation for plasticity:
Deviatoric projection — 7tp(m) = m — Lml for every matrix m.
p: RO — D C RY, the space of traceless matrices.

Yield function Y —a semi-norm on the space of matrices
Y(m) = |m —imy|, |-| is a norm on the space of matrices.

Yield condition - Y (m) = oy.
Semi-norms — || x|" = [IY < x], [lo]l% = [[Y e olleo
are norms on the subspaces of trace-less fields.

Collapse — ||o||& > ov.

Thus, in the previous definitions of the optimal stress we have to use the
semi-norms or restrict ourselves to the appropriate subspaces containing
trace-less fields.
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Optimal Stresses and Limit Analysis

@ The limit analysis problem: Given t and oy, find

Af =supA, suchthat 3o, ||o]|L < oy, o € Ty

@ Christiansen and Temam & Strang:

A = sup inf [ ge(w);dV = inf sup oye(w);dV

ol <oy =1 ) H0)=1 o <oy

o Limitdesign & S; = oy.

Easy to see that
Oy

S_t—/\t.

@ Our expression for S; is equivalent to the theorem.
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The Load Capacity Ratio

@ Given oy, consider the collapse manifold

¥ = {t] S =0y}

@ Find the load capacity ratio

1
C = — inf||t||s, = no collapse for t with ||f||ec < Coy
Oy te¥

@ Easy to see that

1
C=—.
K
@ The expression for K using the yield norms
Jr lwldA

|e(w

K= sup S;= sup = ||vp|l-

|dV

teLe (T, R3) wincomp fQ
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General Mathematical Structure

LY(T, R®) «— LD(Q)y —>— L}(0, R)

H [ [l

LY, R « 2~ LD(Q), —2— L[(,D)

. boundary value . . € s
boundary velocities AL velocity fields ———  strain fields

H Tinclusion inclusion Tl s

D . . € . .
LY(T;, R?) «——  incompressible ——— incompressible

velocity fields strain fields
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General General Mathematical Structure - Continued

L®(T, RY) —2 LD(Q); 2 L®(02,R9)

H 5 []

*

LT, R —2 LD(Q)}, «—2— L°(Q,D).

. "0 £ .
boundary tractions —— forces «———  stress fields

H linclusion restriction lT sy

. 3 , . L
boundary tractions —>— forces with devi- «+——— deviatoric stress
atoric stresses fields
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Properties of the Mappings

boundary value 0

boundary velocities velocity fields ———  strain fields

H Tinclusion inclusion Tl sy

LTy, R?) <2 incompressible —2— incompressible
velocity fields strain fields

gp — the strain mapping for velocity fields that satisfy the boundary
conditions (zero on an open subset of the boundary). Injective.

v — the trace mapping. Sujective.
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Introducing LD ((2) (Temam 85)
Recall: esssup,, |0(x)| = ||o]|c Suggests:
Stress Fields = L®(2,R®) so Stretching Fields = L!(02, R®).
Conclusion:
Body Velocities = {w: Q — R%e(w) € LYQ, Ré)} :
Set

LD(Q) = {w: Q — R;w e LY(Q,R),e(w) € LY(Q, R6)},

[wllzo = llwlly + [le(@) |-
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Equivalent Norm for LD(2)

@ Let
g LD(Q) — R® x 0(3)

be any projection on the space of rigid velocity fields on the body.
@ An equivalent norm for LD(Q2):

[wllp = ll7(w) || + |[e(w) 1.

@ Displacement boundary conditions imply no rigid motion component:

[wll = lle(w)]]1-

e g: LD(Q), — LY(Q,R®) is norm preserving.
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Properties of LD ((2)

o Approximations: C*(Q,R®) is dense in LD(Q2).
@ Traces: There is a unique, continuous, linear trace mapping

v: LD(Q) — L1002, R%)

such that y(u| ) = ul|, , u € C(OQ,R%).

Tools Used in the Proof:

@ The Hahn-Banach Theorem,

o [lvll =l
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Proof of The Expression for the GSCF

We had
t-wdA
S— s Lhotwddl o))
weLD((2 fn’s )| dV welD(0), le(w)
BOW _
— sup WOy,
welD(Q), LD
S0,
@I _
K= sup {18k — g1 = ol
teL> (T R%) ” ” teL> (T, R3) £l

where the last equality is the standard equality between the norm of a
mapping and the norm of its dual.
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The Optimization Problem for Structures

@ We have 2 equations with 3
unknowns.

@ Having this one degree of I
freedom we may look for the ¢1
solution such that the
maximal stress in the bars is
the least.

(f1.f2)
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@ RP = W — compatible virtual
displacements of the structure.

@ RN = S — not necessarily
compatible local virtual
displacements of all parts of the
structure.

@ The global forces f = (f1,f2) are
dual —perform work—for

vectors in W. f € W*.

@ The stresses (local forces)
(01,02, 03) are dual, perform
work o;¢;, for vectors in S.
reS*

@ A: W — S — interpolation
mapping.

@ Equilibrium: o(A(u)) = f(u)
that we write as f = A* ().

R. Segev (Ben-Gurion Univ.)

Notation

-"-l-:- -: ".---'"l-:- - : . '-l:--"-l-:-_'-: ".-.-'.-"-:. .-: ".l-
\O, O, O,
€1 €
g1 02
03
€3
Uq

@ Remark: For simplicity, strains are
replaced by changes in length and
stresses are tensions in the bars.
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Stress Optimization for Structures

The optimal maximal stress is given by

; o in equilibrium with f } = sup Vl—”l|

Sy = inf - .
A {m]ax\a] w L |Ajktit]

@ Methods of linear programming are applicable.
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Generalized Stress Concentration Factor for Structures

Theorem
Define the generalized stress concentration factor K by

Sf } 1 [fius]
K =su ———— 5 =su su .
fp {maxk Ifx| fp maxy [fi| { up )W ‘8]'(”)‘

Then, W
1 Yo |u;
— = K=su l—l,
C X T [A(w);
or,
1
—=K=Aa7}.
z=K=lla7"|
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Truss Examples




Truss Examples (continued)
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