Load Capacity of Bodies and Structures

Reuven Segev

Department of Mechanical Engineering Ben-Gurion University

Structures of the Mechanics of Complex Bodies

October 2007

Centro di Ricerca Matematica, Ennio De Giorgi Scuola Normale Superiore

Load Capacity Ratio

Notation

 Ω – a given homogeneous elastic-plastic body or a structure,

 σ_Y – the yield stress,

t – a loading traction field given on the boundary $\partial\Omega$,

 t_{max} – the maximum of the external loading,

$$t_{\max} = \operatorname{ess\,sup}_{y \in \partial\Omega} |t(y)| = ||t||_{\infty}$$

Result

There is a minimimal number C such that the body will not collapse as long as

$$t_{\max} \leqslant C\sigma_Y$$

independently of the distribution of the external traction t.

The Expression for the Load Capacity Ratio

The number C, a purely geometric property of the body Ω , is given by

$$\frac{1}{C} = \sup_{w} \frac{\int_{\Gamma_t} |w| \, \mathrm{d}A}{\int_{\Omega} |\varepsilon(w)| \, \mathrm{d}V} = \|\gamma_D\|,$$

where,

w – an isochoric (incompressible) vector field,

 $\varepsilon(w)$ – the linear strain associated with w, $\varepsilon(w)_{ij} = \frac{1}{2}(w_{i,j} + w_{j,i}), \, \varepsilon(w)_{ii} = 0;$

 γ_D – the trace mapping taking a vector field on Ω and giving its boundary value (restriction to the boundary of continuous vector fields).

Introduction

Statically Indeterminate Problems:

- An infinite number of solutions.
 - Find the optimal. (A generalized inverse)
 - Find the worst ratio between the optimal stress and the maximum of the external loading.

Related Work

- R. Segev, 2003, Generalized stress concentration factors, *Mathematics* and Mechanics of Solids, first published on June 10, 2005 as doi: 10.1177/1081286505044131.
- R. Segev, 2004, Generalized stress concentration factors for equilibrated forces and stresses, accepted for publication, *J. Elasticity*, arXiv:physics/0407136.
- R. Peretz and R. Segev, 2005, Bounds on the trace mapping of LD-fields, accepted for publication, Computers and Mathematics with Applications, arXiv:math.AP/0505006.
- R. Segev, 2005, Stress optimization for supported bodies, submitted for publication, arXive:math.AP/0511014.
 - R. Segev, 2007, "Load capacity of bodies", International Journal of Non-Linear Mechanics, 42, 250 - 257, doi:10.1016/j.ijnonlinmec.2006.10.012.

The Setting for the Continuum Problem

Definitions of the Main Variables

```
\Omega – a given body (bounded), \Gamma = \partial \Omega – its boundary,
```

 Γ_0 – the part of the boundary where the body is fixed,

t – a surface traction field given on $\Gamma_t \subset \Gamma$,

 ν – the unit normal to the boundary

 σ – a stress field that is in equilibrium with t,

 σ_{\max} – the maximal magnitude of the stress $\sigma_{\max} = \operatorname{ess\,sup}_{x \in O} |\sigma(x)| = \|\sigma\|_{\infty}.$

Remark: The treatment may be generalized to include body forces.

- There is a class of stress fields that are in equilibrium with *t*.
- We denote this class of stress fields by Σ_t .

The Problem

• Find the least value S_t of σ_{max} , i.e.,

$$S_t = \inf_{\sigma \in \Sigma_t} \{ \sigma_{\max} \} = \inf_{\sigma \in \Sigma_t} \{ \| \sigma \|_{\infty} \}.$$

• Question: Is there an optimal stress field σ_{opt} such that

$$S_t = \|\sigma_{\text{opt}}\|_{\infty}$$
?

• Find the *generalized stress concentration factor*

$$K = \sup_{t} \frac{S_t}{\operatorname{ess\,sup}_{y} |t(y)|}.$$

The Corresponding Scalar Problem: the Junction Problem

- Given the flux density ϕ on the boundary of Ω with $\int_{\partial\Omega} \phi dA = 0$.
- Set $V_{\phi} = \{v \colon \Omega \to \mathbb{R}^3, \ v_{i,i} = 0 \text{ in } \Omega, \ , v_i v_i = \phi \text{ on } \partial \Omega\}$ —compatible velocity fields.
- For each $v \in V_{\phi}$, set $v_{\max} = \operatorname{ess\,sup}_{x \in O} |v(x)|$.
- ullet Find the least value $v_\phi^{
 m opt}$ of $v_{
 m max}$, i.e.,

$$v_{\phi}^{\text{opt}} = \inf_{v \in V_{\phi}} \{v_{\text{max}}\}.$$

The optimal velocity field for the junction Ω *.*

The Results

Theorem (Segev 2004, [2])

• The optimal value S_t is given by

$$S_t = \sup_{w \in C^{\infty}(\overline{\Omega}, \mathbb{R}^3)} \frac{\left| \int_{\partial \Omega} t \cdot w \, dA \right|}{\int_{\Omega} |\varepsilon(w)| \, dV} = \sup_{w \in C^{\infty}(\overline{\Omega}, \mathbb{R}^3)} \frac{|t(w)|}{\|\varepsilon(w)\|_1},$$

 $|\varepsilon(w)|$ is the norm of the value of the stretching $\varepsilon(w) = \frac{1}{2}(\nabla w + \nabla w^T)$.

- The optimum is attained for some $\sigma_{\text{opt}} \in \Sigma_t$.
- Mathematically:

$$S_t = \|Force\ Functional\|.$$

Stress Concentration for Engineers

Generalized Stress Concentration Factors:

- Assume a body Ω is given (open, regular with smooth boundary).
- Assume a surface traction t is given and let σ be a stress field that is in equilibrium with t.
- The *stress concentration factor* associated with the pair t, σ is

$$K_{t,\sigma} = \frac{\operatorname{ess\,sup}_{x}\{|\sigma(x)|\}}{\operatorname{ess\,sup}_{y}\{|t(y)|\}}, \quad x \in \Omega, \quad y \in \partial\Omega.$$

• Denote by Σ_t the collection of all possible stress fields that are in equilibrium with t. (There are many such stress fields because material properties are not specified.)

• The *optimal stress concentration factor* for the force *t* is defined by

$$K_t = \inf_{\sigma \in \Sigma_t} \left\{ K_{t,\sigma} \right\}.$$

• The *generalized stress concentration factor K*—a purely geometric property of Ω —is defined by

$$K = \sup_{t} \{K_{t}\} = \sup_{t} \inf_{\sigma \in \Sigma_{t}} \left\{ \frac{\operatorname{ess} \sup_{x} \{|\sigma(x)|\}}{\operatorname{ess} \sup_{y} \{|t(y)|\}} \right\}.$$

Concerning the Generalized Stress Concentration Factor

Theorem (Segev 2004, [2])

• Define the generalized stress concentration factor K by

$$K = \sup_{t} \frac{S_t}{\operatorname{ess} \sup_{y \in \partial \Omega} |t(y)|}.$$

• Then,

$$K = \|\gamma\| = \sup_{w \in C^{\infty}(\overline{\Omega}, \mathbb{R}^3)_0} \frac{\int_{\Gamma_t} |w| \, \mathrm{d}A}{\int_{\Omega} |\varepsilon(w)| \, \mathrm{d}V}.$$

Relation to Limit Analysis in Plasticity

Notation for plasticity:

Deviatoric projection $-\pi_D(m) = m - \frac{1}{3}m_{ii}I$ for every matrix m. $\pi_D \colon \mathbb{R}^6 \longrightarrow D \subset \mathbb{R}^6$, the space of traceless matrices.

Yield function Y – a semi-norm on the space of matrices

$$Y(m) = |m - \frac{1}{3}m_{ii}I|$$
, $|\cdot|$ is a norm on the space of matrices.

Yield condition $-Y(m) = \sigma_Y$.

Semi-norms
$$-\|\chi\|^Y = \|Y \circ \chi\|, \|\sigma\|_{\infty}^Y = \|Y \circ \sigma\|_{\infty}$$
 are norms on the subspaces of trace-less fields.

Collapse
$$-\|\sigma\|_{\infty}^{Y} \geqslant \sigma_{Y}$$
.

Thus, in the previous definitions of the optimal stress we have to use the semi-norms or restrict ourselves to the appropriate subspaces containing trace-less fields.

Optimal Stresses and Limit Analysis

• The limit analysis problem: Given t and σ_Y , find

$$\lambda_t^* = \sup \lambda$$
, such that $\exists \sigma$, $\|\sigma\|_{\infty}^Y \leqslant \sigma_Y$, $\sigma \in \Sigma_{\lambda t}$

• Christiansen and Temam & Strang:

$$\lambda_t^* = \sup_{\|\sigma\|_{\infty}^{\gamma} \leqslant \sigma_Y} \inf_{t(w)=1} \int_{\Omega} \sigma_{ij} \varepsilon(w)_{ij} dV = \inf_{t(w)=1} \sup_{\|\sigma\|_{\infty}^{\gamma} \leqslant \sigma_Y} \int_{\Omega} \sigma_{ij} \varepsilon(w)_{ij} dV$$

• Limit design \Leftrightarrow $S_t = \sigma_Y$. Easy to see that

$$\frac{\sigma_{\Upsilon}}{S_t} = \lambda_t^*.$$

• Our expression for S_t is equivalent to the theorem.

The Load Capacity Ratio

• Given σ_Y , consider the *collapse manifold*

$$\Psi = \{t \mid S_t = \sigma_Y\}.$$

• Find the *load capacity ratio*

$$C = \frac{1}{\sigma_Y} \inf_{t \in \Psi} ||t||_{\infty}, \quad \Rightarrow \text{ no collapse for } t \text{ with } ||t||_{\infty} \leqslant C\sigma_Y$$

• Easy to see that

$$C=\frac{1}{K}.$$

• The expression for *K* using the yield norms

$$K = \sup_{t \in L^{\infty}(\Gamma_t, \mathbb{R}^3)} S_t = \sup_{w \, \text{incomp}} \frac{\int_{\Gamma_t} |w| \, \mathrm{d}A}{\int_{\Omega} |\varepsilon(w)| \, \mathrm{d}V} = \|\gamma_D\|.$$

General Mathematical Structure

$$L^{1}(\Gamma_{t}, \mathbb{R}^{3}) \xleftarrow{\gamma_{0}} LD(\Omega)_{0} \xrightarrow{\varepsilon_{0}} L^{1}(\Omega, \mathbb{R}^{6})$$

$$\parallel \qquad \qquad \uparrow_{\iota} \qquad \qquad \iota \uparrow \downarrow \pi_{D}^{\circ}$$

$$L^{1}(\Gamma_{t}, \mathbb{R}^{3}) \xleftarrow{\gamma_{D}} LD(\Omega)_{D} \xrightarrow{\varepsilon_{D}} L^{1}(\Omega, D)$$

General General Mathematical Structure - Continued

$$L^{\infty}(\Gamma_{t}, \mathbb{R}^{3}) \xrightarrow{\gamma_{0}^{*}} LD(\Omega)_{0}^{*} \xleftarrow{\varepsilon_{0}^{*}} L^{\infty}(\Omega, \mathbb{R}^{6})$$

$$\downarrow \iota^{*} \qquad \qquad \iota^{*} \downarrow \uparrow \pi_{D}^{\circ *}$$

$$L^{\infty}(\Gamma_{t}, \mathbb{R}^{3}) \xrightarrow{\gamma_{D}^{*}} LD(\Omega)_{D}^{*} \xleftarrow{\varepsilon_{D}^{*}} L^{\infty}(\Omega, D).$$

boundary tractions
$$\xrightarrow{\gamma_0^*}$$
 forces \leftarrow $\xrightarrow{\epsilon_0^*}$ stress fields
$$\downarrow \text{ inclusion} \qquad \text{restriction} \downarrow \uparrow \pi_D^{\circ *}$$
 boundary tractions $\xrightarrow{\gamma_D^*}$ forces with devi- \leftarrow deviatoric stress atoric stresses

Properties of the Mappings

- ε_0 the strain mapping for velocity fields that satisfy the boundary conditions (zero on an open subset of the boundary). *Injective*.
- γ the trace mapping. *Sujective*.

Introducing $LD(\Omega)$ (Temam 85)

Recall: ess $\sup_{x} |\sigma(x)| = ||\sigma||_{\infty}$ suggests:

Stress Fields
$$= L^{\infty}(\Omega, \mathbb{R}^6)$$
 so Stretching Fields $= L^1(\Omega, \mathbb{R}^6)$.

Conclusion:

Body Velocities
$$=\left\{w\colon\Omega\to\mathbb{R}^3; \varepsilon(w)\in L^1(\Omega,\mathbb{R}^6)\right\}.$$

Set

$$LD(\Omega) = \left\{ w \colon \Omega \to \mathbb{R}^3; w \in L^1(\Omega, \mathbb{R}^3), \varepsilon(w) \in L^1(\Omega, \mathbb{R}^6) \right\},$$

$$\|w\|_{LD} = \|w\|_1 + \|\varepsilon(w)\|_1.$$

Equivalent Norm for $LD(\Omega)$

Let

$$\pi_{\mathscr{R}} \colon LD(\Omega) \longrightarrow \mathbb{R}^3 \times o(3)$$

be any projection on the space of rigid velocity fields on the body.

• An equivalent norm for $LD(\Omega)$:

$$||w||_{LD} = ||\pi_{\mathscr{R}}(w)|| + ||\varepsilon(w)||_1.$$

• Displacement boundary conditions imply no rigid motion component:

$$||w|| = ||\varepsilon(w)||_1.$$

• $\varepsilon_0: LD(\Omega)_0 \longrightarrow L^1(\Omega, \mathbb{R}^6)$ is norm preserving.

Properties of $LD(\Omega)$

- *Approximations:* $C^{\infty}(\overline{\Omega}, \mathbb{R}^3)$ is dense in $LD(\Omega)$.
- Traces: There is a unique, continuous, linear trace mapping

$$\gamma : LD(\Omega) \longrightarrow L^1(\partial\Omega, \mathbb{R}^3)$$

such that
$$\gamma(u|_{\Omega})=u|_{\partial\Omega'}\,u\in C(\overline{\Omega},\mathbb{R}^{3}).$$

Tools Used in the Proof:

- The Hahn-Banach Theorem,
- $\|\gamma\| = \|\gamma^*\|$.

Proof of The Expression for the GSCF

We had

$$S_t = \sup_{w \in LD(\Omega)_0} \frac{\left| \int_{\partial \Omega} t \cdot w \, dA \right|}{\int_{\Omega} \left| \varepsilon(w) \right| \, dV} = \sup_{w \in LD(\Omega)_0} \frac{\left| t(\gamma_0(w)) \right|}{\|\varepsilon(w)\|_1},$$

$$= \sup_{w \in LD(\Omega)_0} \frac{\left| \gamma_0^*(t)(w) \right|}{\|w\|_{LD}} = \|\gamma_0^*(t)\|,$$

so,

$$K = \sup_{t \in L^{\infty}(\Gamma_{t}, \mathbb{R}^{3})} \frac{S_{t}}{\|t\|} = \sup_{t \in L^{\infty}(\Gamma_{t}, \mathbb{R}^{3})} \left\{ \frac{\|\gamma_{0}^{*}(t)\|}{\|t\|} \right\} = \|\gamma_{0}^{*}\| = \|\gamma_{0}\|$$

where the last equality is the standard equality between the norm of a mapping and the norm of its dual.

The Optimization Problem for Structures

- We have 2 equations with 3 unknowns.
- Having this one degree of freedom we may look for the solution such that the maximal stress in the bars is the least.

Notation

- $\mathbb{R}^D = \mathcal{W}$ compatible virtual displacements of the structure.
- $\mathbb{R}^N = \mathcal{S}$ not necessarily compatible local virtual displacements of all parts of the structure.
- The global forces $f = (f_1, f_2)$ are dual —perform work—for vectors in W. $f \in W^*$.
- The stresses (local forces) $(\sigma_1, \sigma_2, \sigma_3)$ are *dual*, perform work $\sigma_i \varepsilon_i$, for vectors in \mathcal{S} . $\sigma \in \mathcal{S}^*$.
- $A: \mathcal{W} \longrightarrow \mathcal{S}$ interpolation mapping.
- Equilibrium: $\sigma(A(u)) = f(u)$ that we write as $f = A^*(\sigma)$.

• *Remark:* For simplicity, strains are replaced by changes in length and stresses are tensions in the bars.

Stress Optimization for Structures

The optimal maximal stress is given by

$$S_f = \inf_{\sigma} \left\{ \max_{j} |\sigma_j| ; \ \sigma \text{ in equilibrium with } f \right\} = \sup_{u} \frac{|f_i u_i|}{\sum_{j} |A_{jk} u_k|}.$$

• Methods of linear programming are applicable.

Generalized Stress Concentration Factor for Structures

Theorem

Define the generalized stress concentration factor K by

$$K = \sup_{f} \left\{ \frac{S_f}{\max_{k} |f_k|} \right\} = \sup_{f} \frac{1}{\max_{k} |f_k|} \left\{ \sup_{u} \frac{|f_i u_i|}{\sum_{j} |\varepsilon_j(u)|} \right\}.$$

Then,

$$\frac{1}{C} = K = \sup_{u} \frac{\sum_{i} |u_{i}|}{\sum_{j} |A(u)_{j}|},$$

or,

$$\frac{1}{C} = K = ||A^{-1}||.$$

Truss Examples

Truss Examples (continued)

