
Lecture 1: The vortex filament method

1. Helium II and quantised vortex lines

2. Vortex line as space curves

3. Applications
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Normal fluid and superfluid

Helium II: ρ = ρn + ρs

• Normal fluid:

density ρn, velocity vn,

entropy S, viscosity η

• Super fluid:

density ρs, velocity vs,

no entropy, no viscosity
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Superfluid vortex lines

and quantization of the circulation

Onsager (1948), Feynman (1955), Vinen (1961)
∮

C vs · dℓ = κ

κ =
h

m
= 9.97 × 10−4 cm2/sec
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Let the path C be a circle of radius r; then the
superfluid velocity around the line is

vsφ =
κ

2πr

for r ≥ a ≈ 10−8 cm (vortex core radius).
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Quantum turbulence

L = Vortex line density = Vortex length/volume
Typical intervortex spacing δ ≈ L−1/2

Quantum turbulence can be generated in many ways.
Perhaps the most studied form is counterflow turbu-
lence, which is relevant to heat transfer applications.
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Laminar counterflow

A channel has a resistor at the closed end and is
open to the helium bath at the other end. The
heat flux Q̇ is carried away by the normal fluid,
vn = Q̇/(ρST ). Being the channel closed, the mass
flux is zero, ρnvn + ρsvs = 0, hence the superfluid
moves towards the resistor: vs = (ρn/ρs)vn, setting
up a counterflow velocity proportional to the applied
heat flux:

vns = vn − vs =
Q̇

ρsST

Vn

VsQ
.
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Turbulent counterflow

If Q̇ (hence Vns = Vn − Vs) exceeds a critical value
then a tangle of vortex lines appears (superfluid tur-
bulence).

Vortex line density

L = γ2V 2
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Vortex lines as space curves

Vortex core a ≈ 10−8 cm ≪ any other length scale,
hence we can model vortex lines as space curves, an
approach pioneered by Klaus Schwarz.

Tangent T̂, normal N̂ and binormal B̂

s = s(ξ) = position, ξ = arclength,
c = |s′′| = curvature, R = 1/c radius of curvature

s′ =
ds

dξ
= T̂

dT̂

dξ
= cN̂

B̂ = T̂ × N̂

O

s’

s’’

s

s’ s’’
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The Biot–Savart law and the LIA

Velocity v, vorticity ω = ∇× v

vector potential v = ∇× A

Poisson equation ∇2A = −ω

Solution

A(x) =
1

4π

∫ ω(x′)d3x′

r

where r = |x − x′|. If ω(x′)d3x′ = κdℓ(x′) then

A =
κ

4π

∮ 1

r
dℓ

′

hence the Biot–Savart law

v(x) = −
κ

4π

∮ (x − x′)

r3
× dℓ

′

Local induction approximation (LIA)

v(x) ≈ βs′ × s′′

β =
κ

4πR
ln (R/aeff)

where R = 1/|s′′|.

Problem: use LIA or BS ?
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Vortex knots

Motivations:

• not as trivial as a vortex ring (unknot) but not
as difficult as a vortex tangle

• Lord Kelvin and vortex theory of matter

Trefoil Tp,q: a closed non–self–intersecting curve which
cuts the meridian at p > 1 points and a longitude
at q > 1 points (p and q being relatively prime inte-
gers). The winding number w = q/p is a topological
invariant. Top left: T3,2. Top right: T2,3

Special cases: if p = 1 or q = 1 we have an unknot.
Tm,1 is a toroidal coil (bottom left), and T1,m is a
poloidal coil (bottom right).
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Linear stability theory

Ricca and Kida proved that Tp,q is stable under LIA
if and only if q > p, that is if and only if w > 1.

We expect T2,3 to be stable and T3,2 to be unstable.
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Numerical evolution of T3,2 under LIA

Unstable as predicted.
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Numerical evolution of T3,2 under BS

Surprise: the vortex knot is structurally stable.
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Schwarz’s equation

vL = vortex line velocity
Forces acting on unit length of vortex line:

• Magnus force:

fM = ρsκ × (vL − vs)

(κ = κs′ = κω̂)

high V, low P

low V, high P

f
M

• Drag force:

fD = ρsκαs′ × [s′ × (vs − vn)] + α′s′ × (vs − vn)

Mutual friction coefficients

α =
Bρn

2ρ
, α′ =

B′ρn

2ρ
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No inertia, so fM + fD = 0 per unit length, hence

vL =
ds

dt
= vs−αs′×(vs−vn)+α′s′×[s′×(vs−vn)]

where
vs = vself

s + vext
s

vself
s self–induced velocity (Biot–Savart or LIA)

vext
s externally applied superflow.

Under LIA vself
s = βs′× s′′ and Schwarz’s equation

reduces to

ds

dt
= vext

s + βs′ × s′′ + αs′ × (vext
ns − βs′ × s′′)

−α′s′ × [s′ × (vext
ns − βs′ × s′′)]

where vext
ns = vext

n − vext
s

and vext
n is the externally applied normal flow.
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Numerical discretization

Space discretization: variable meshing along fila-
ments to resolve regions of high curvature and same
computational power if filaments are less curved.

Time discretization: explicit. Can be adaptive.

Computer cost increases with N 2, where N is the
number of vortex points.
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Reconnections

Schwarz recognized that they are essential for tur-
bulence
Reconnections are performed ad hoc by the numer-
ical algorithm

before after

Later Koplik and Levine proved vortex reconnec-
tions using the NLSE method
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KW Schwarz, PRB 38, 2398, 1988: First self–sustaining
reconnecting vortex tangle, L ∼ V 2

ns
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Limitations of the approach of Schwarz

• The normal fluid velocity is imposed externally
(bad if the normal fluid is turbulent)

• The model is uncompressible (bad at low T)
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Stability of the normal fluid

Normal flow with parabolic profile of amplitude Vax

in cylindrical pipe of radius R forced by vortex line
density L0

ρn







∂vn

∂t
+ (vn · ∇)vn





 = −
ρn

ρ
∇p − ρsS∇T

+η∇2vn −









Bρnρs

2ρ















2

3





 κL0(vn − vs)

Stability boundary for m = 1 azimuthal mode and
various axial wavelengths k (Melotte and Barenghi,
PRL 80, 4181, 1998):

β =
BρsκL0R

2

3ρνn

The fact that many modes becomes unstable at the
same L0 suggests the onset of turbulence.
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Comparison with experiments

∆ = L
−1/2

0 R−1

Conclusion: in the T-2 state both superfluid and
normal fluid are turbulent
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Perturbation of the normal fluid

2–dim action of a vortex line on the normal fluid

Vn

sV

Idowu, Willis, Barenghi and Samuels, PRB 62, 3409,
2004
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Self–consistent vortex dynamics

V Vs n

Schwarz 

Navier−Stokes

Implement Schwarz’s equation with a Navier–Stokes
solver for vn.

A superfluid vortex ring carries along two normal
fluid rings of opposite polarity (Kivotides, Barenghi
and Samuels, Science 290, 777, 2000)
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Scaling

vself
s ≈ βs′ × s′′under LIA

β =
κ

4π
ln









R

aeff








R ≈ 1/|s′′|

Consider a homogeneous vortex tangle. Assume
that the only variables which matter are β and the
counterflow Vns which creates the tangle.

[Vns] = cm/sec [β] = cm2/sec [β/Vns] = cm

The vortex line density

L =
1

V

∫

dξ =
Λ

V

(where Λ = length V = volume) has dimension
1/cm2, thus

L = CL









Vns

β









2

for some dimensionless CL, hence L ∼ V 2

ns, as ob-
served in the experiments.

Similarly the average radius of curvature R scales
as R = 1/|s′′| ∼ L−1/2.
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Vinen’s equation

Vinen (1957) argued that the steady–state vortex
line density L0 in counterflow turbulence is due to
the balance of production and destruction processes,
which he modelled as the growth of vortex rings and
the annihilation of opposite oriented vortex lines,
obtaining

dL

dt
=

χ1Bρn

2ρ
VnsL

3/2 −
χ2κ

2π
L2

where χ1 and χ2 are dimensionless and O(1).

Steady state solution:

L0 = γ2V 2

ns

where

γ =
πBρnχ1

κρχ2
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It can be shown that Vinen’s equation arises from
vortex dynamics. Infact

dL

dt
=

1

V

∫

dξs′ ·
ds′

dt

Use Schwarz equation (LIA) and assume isotropic
configuration:

dL

dt
=

α

V
vext

ns ·
∫

dξs′ × s′′ −
αβ

V

∫

dξ|s′′|2 −
α′

V
vext

ns ·
∫

dξs′′

=
α

V
vext

ns ·
∫

dξs′ × s′′ −
αβ

V

∫

dξ|s′′|2

= αvext
ns · IℓL

3/2 − αβc2

2
L2

which has the form of Vinen equation, where

Iℓ =
1

V L3/2

∫

dξs′ × s′′

c2

2
=

1

V L2

∫

dξ|s′′|2

Note that the second term at the RHS is always
negative, so

∫

dξs′ × s′′ 6= 0

hence some anisotropy is actually necessary to main-
tain a steady state.
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Kelvin waves

Consider a vortex line with the shape of a helix
(Kelvin wave) of amplitude ǫ:

s = (ǫ cos φ; ǫ sin φ; z), φ = kz − ωt

If ǫ ≪ 1 then z ≈ ξ. Using LIA, the self–induced
velocity is

vself
s = βs′ × s′′ ≈ βk2ǫ(sin φ;− cos φ; 0)

In the absence of friction, the equation of motion is

vL = ds/dt = vself
s

Assuming ǫ constant, we have

ω = βk2

which is the dispersion relation of Kelvin waves.
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Glaberson instability

In the presence of friction (neglecting α′) the equa-
tion of motion is

ds

dt
= vself

s + αs′ × (vext
ns − vself

s )

Assuming vext
ns = (0; 0; Vns) and ǫ = ǫ(t) we have

dǫ

dt
= α(kVns − βk2)ǫ

hence the amplitude of the wave is

ǫ(t) = ǫ(0)eσt

where σ = α(kVns − βk2) is the growth rate.

If σ > 0 the Kelvin wave is unstable and grows
exponentially with time. Given Vns, the largest
growth rate is σmax = αV 2

ns/(4β) and occurs at
kmax = Vns/(2β)

Vn
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Tsubota, Araki and Barenghi, PRL 90, 205301, 2003.
Rotating vortex array in the presence of an axial
flow parallel to the vortices. Note how Kelvin waves
grow, until ǫ ≈ δ, at which point reconnections oc-
cur, and a tangle is formed.
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Energy dissipation near absolute zero

Experiments show that at temperatures of few mK’s,
so low that the normal fluid is virtually absent, vor-
ticity decays (Davis, Hendry and McClintock, Phys-
ica B 280, 43, 2000). It is thought that, in the ab-
sence of viscosity at such low T , the energy sink is
sound. Classically, rotating vortices radiate sound,
provided that the wavenumber k is large enough for
this effect to be important (Vinen, PRB 61, 1410,
2000). What creates the necessary large k ?
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Kelvin wave cascade

before after

A vortex reconnection creates a cusp, which launches
Kelvin waves. The nonlinear interaction of the waves
generates higher and higher k, until k is big enough
that energy can be efficiently radiated away.

Kivotides, Vassilicos, Samuels and Barenghi (PRL,
86, 3080, 2001) studied collision of vortex rings using
the vortex filament model and found evidence for
this Kelvin wave cascade. The resulting spectrum
scales as E(k) ∼ k−1.
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Time sequence:
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Energy spectrum before and after the reconnections.
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Diffusion of quantised vorticity

In an classical viscous Navier–Stokes fluid vorticity
can diffuse in space. In a classical inviscid Euler fluid
there is no viscous diffusion and reconnections can-
not occur, so a packet of vorticity initially localised
in a region of space cannot undo the links. In a su-
perfluid vortex lines can reconnect and change the
topology, so the packet can ”diffuse” away by evap-
oration of small loops (Barenghi and Samuels, PRL
89, 155302, 2002).

Note that in the following time sequence the scale
of the region containing the vortex loops becomes
larger and larger.
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Decay of counterflow turbulence

Second sound attenuation data
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The second sound wave equation is

q̈ + (2−B′)Ω× q̇−BΩ̂× (Ω× q̇) = c2∇(∇ · q)

where q = vn − vs and c = second sound speed

Assume sound propagation in the x direction:
q = eiωt−ikx(qx, qy, 0)

Vorticity: Ω = (Ω sin (θ), 0, Ω cos (θ))

θ = angle from the z direction.

If Ω/ω ≪ 1, then

k =




ω

c



 [1 −
iΩB cos2 (θ)

2ω
]

The negative imaginary part of k is the attenuation
coefficient, where γ = π/2 + θ is the angle between
the direction of the vorticity and that of the second
sound.
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Tangle at beginning of decay stage
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xy and xz projections.
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Relative projected lengths Λx(t)/Λx(0) (a, trian-
gles pointing up), Λy(t)/Λy(0) (b, triangles pointig
down) and Λz(t)/Λz(0) (c, squares) vs time. Also
plotted are the same quantities Λx(t)/Λx(0) (d, crosses),
Λy(t)/Λy(0) (e, diagonal crosses) and Λz(t)/Λz(0)
(f, circles) but computed using the LIA starting
from the same initial state.
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Decaying tangle

xy and xz projections.
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Define ∆Sx = Λ sin2 (γ1) = (Λ2

y + Λ2

z)/Λ and sim-
ilarly for ∆Sy, ∆Sz, then integrate over the tangle
to get Sx, Sy, Sz, which are proportional to the the
observed second sound signal propagating along x,
y and z.

Plot of Sx/S
0

x (triangles pointing up), Sy/S
0

y (squares)
and Sz/S

0

z (circles) vs time. Note the relatively
slower decay of the transverse signals Sx and Sy.
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The same but for longer time using LIA. Compare
to experimental data.
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