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Motivation
Impurities dominate low temperature (low frequency) properties of metals and
superconductors. (spectral functions (ARPES), microwave conductivity,
thermal conductivity.) Potential scattering leads to Tc-suppression in
unconventional superconductors.
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Motivation
Impurities dominate low temperature (low frequency) properties of metals and
superconductors. (spectral functions (ARPES), microwave conductivity,
thermal conductivity.) Potential scattering leads to Tc-suppression in
unconventional superconductors.

δ-function potentials in 2D and 3D do not lead to scattering, unless
uncontrolled approximations are made.

Many results based on these approximations have been published.

When the same uncontrolled approximations are applied to finite range
potentials, results which are clearly unphysical follow.
The finite range, when correctly treated, will not only provide a scattering
mechanism, it will affect the conductivity (no longer universal) and the
Tc-suppression (d-wave pairing + d-wave scattering?)
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Motivation
Impurities dominate low temperature (low frequency) properties of metals and
superconductors. (spectral functions (ARPES), microwave conductivity,
thermal conductivity.) Potential scattering leads to Tc-suppression in
unconventional superconductors.

δ-function potentials in 2D and 3D do not lead to scattering, unless
uncontrolled approximations are made.

Many results based on these approximations have been published.

When the same uncontrolled approximations are applied to finite range
potentials, results which are clearly unphysical follow.
The finite range, when correctly treated, will not only provide a scattering
mechanism, it will affect the conductivity (no longer universal) and the
Tc-suppression (d-wave pairing + d-wave scattering?)

Variations in the Local Density of States (LDOS) near a defect, experimentally
accessible through Scanning Tunneling Microscopy/Spectroscopy (STM/STS)
provide information on the properties of the host system, as well as the defect.
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Microwave Absorption - Experimental Facts
The dissipation, measured by σ1(ω, T ) or Rs(ω, T ), at microwave frequencies and
low temperatures is not well understood, even in the linear r esponse regime:

it is too high at very low T,

it’s temperature dependence is in conflict with any fairly st raightforward
semi-microscopic theory.

Real part of the in-plane conductivity of Bi 2Sr2CaCu2O8+δ poses the biggest problems!
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Microwave Absorption - Experimental Facts
The dissipation, measured by σ1(ω, T ) or Rs(ω, T ), at microwave frequencies and
low temperatures is not well understood, even in the linear r esponse regime:

it is too high at very low T,

it’s temperature dependence is in conflict with any fairly st raightforward
semi-microscopic theory.

Real part of the in-plane conductivity of Bi 2Sr2CaCu2O8+δ poses the biggest problems!
J. Corson et al., PRL 85 (2000) 2569

σ1 plotted versus tempera-
ture for 0.2, 0.3, 0.4, 0.6, and 0.8
THz as squares, octagons, dia-
monds, circles, and triangles,
respectively.
At each frequency the arrows
mark the temperature where
σ1 begins to decrease.

H. Kitano et al., J. Low Temp.
Phys. 117 (1999) 1241

σ1 plotted versus temperature
for 50 GHz.
Note the logarithmic scale.

Shih-Fu Lee et al.,
PRL 77 (1996) 735

σ1plotted versus temperature
for 14.4, 24.6, and 34.7 GHz
σ1 is basically frequency inde-
pendent in this frequency re-
gime and exhibits a broad peak
at VERY low temperature.
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Microwave conductivity in terms of the two-fluid model
σtwo−fl

1 (ω, T ) = 1
µ0λ2

p

2Γ(ω,T)

4Γ2(ω,T)+ω2
ρn

which relates σ(ω, T ) to the normal fluid fraction ρn = 1−ρs, the London penetration
depth λp, and a frequency and temperature dependent scattering rate Γ(ω, T ).

For σ1 to be large, ρn must remain finite (how large can ρn be?) for low T .
This requires extremely anisotropic s-wave or unconventional superconductivity.
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1 (ω, T ) = 1
µ0λ2

p

2Γ(ω,T)

4Γ2(ω,T)+ω2
ρn

which relates σ(ω, T ) to the normal fluid fraction ρn = 1−ρs, the London penetration
depth λp, and a frequency and temperature dependent scattering rate Γ(ω, T ).

For σ1 to be large, ρn must remain finite (how large can ρn be?) for low T .
This requires extremely anisotropic s-wave or unconventional superconductivity.

Hensen et al., Phys. Rev. B 56 (1997) 6237

σ1(T) obtained from measurements of Rs(T)
on a high quality YBCO film at 87 GHz.
σ1(T) extracted from Rs(T) depends strongly
on the choice of λ(0) , which is much more difficult
to measure accurately than the change of penetrati-
on depth with temperature.

Furthermore, Γ(T ) has to decrease as
T → 0. But this increases σ1 only as
long as 2Γ > ω.

Defect scattering needs to be taken into
account!

When ρs(T ) is determined from mea-
surements of the penetration depth, the
linear T -dependence of σ1 observed in
the cleanest samples requires Γ to be
temperature independent.
THERE IS A PROBLEM!
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Measurements on YBa2Cu3O7−δ single crystals,
Calculations for point-like defects of arbitrary strength.

Measurements of the surface resistance Rs as function of temperature at a range of

microwave frequency on high quality YBa 2Cu3O7−δ single crystals from BaZrO 3

crucibles. Since extracting the conductivity requires ass umptions with respect to the

penetration depth, we have fitted Rs itself.
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Measurements on YBa2Cu3O7−δ single crystals,
Calculations for point-like defects of arbitrary strength.

Measurements of the surface resistance Rs as function of temperature at a range of

microwave frequency on high quality YBa 2Cu3O7−δ single crystals from BaZrO 3

crucibles. Since extracting the conductivity requires ass umptions with respect to the

penetration depth, we have fitted Rs itself.

Exp:Hosseini et al., Phys. Rev. B 60(1999)1349
Theory: Rieck et al., J. Low Temp. Phys. 117
(1999) 1295

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70 80 90

R
s 

/ ω
2  [1

0-2
5  Ω

 s
2 ]

T [K]

 1.14 GHz
 2.25 GHz
13.4  GHz
22.7  GHz
75.3  GHz

A very small elastic scattering rate

Γel
N = 0.015 meV and a scattering

phase shift δN = 0.44π have been deduced
from the low temperature data. At higher
temperatures a phenomenological temperature
dependent scattering rate has been introduced.

The peak heights can only be reproduced if the

T3–dependence of the inelastic scattering rate
derived from spin fluctuation exchange is absent
from the scattering rate relevant for electrical
transport. (Umklapp processes!?)

A better fit to the peaks observed at the two
lowest frequencies could be obtained by changing

Γel
N and δN . Agreement at higher frequencies

then deteriorates, but this only indicates that the
T–dependent inelastic scattering should also be
frequency dependent.

Note the strange behaviour of the fit at low temperatures and l ow frequencies!
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Strong and Weak Scatterers

Combined effect of strong and weak point-like scatterers on the real part of the
conductivity of a d-wave superconductor at 4.13GHz. The first and third column o f the
legend contain the normal state elastic scattering rates in meV for strong (S) and weak
(W) scatterers. The center column gives the phase shift in un its of π. Weak scattering
implies: δN = 0.01π.

SUMMARY: Weak point-like scatterers have no effect on the real part of the
conductivity at low temperatures, but drastically reduce the peak at
intermediate temperatures.

Rôle of forward scattering? International Workshop on Many-body theory of inhomogeneous superfluids, Pisa, 9-29. July 2007 – p. 7



Strong Scattering

Effects of strongly scattering impurities are described by a (generalized)
T -matrix, which is to be determined from a (2D) Fredholm integral equation
of the 2nd kind.

It cannot be solved by iteration (Born series diverges! Use wavelets)

For isotropic systems a Fourier expansion with respect to angle ist possible.
This leads to sets of one-dimensional integral equations which we have solved!
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Strong Scattering

Effects of strongly scattering impurities are described by a (generalized)
T -matrix, which is to be determined from a (2D) Fredholm integral equation
of the 2nd kind.

It cannot be solved by iteration (Born series diverges! Use wavelets)

For isotropic systems a Fourier expansion with respect to angle ist possible.
This leads to sets of one-dimensional integral equations which we have solved!

As input, some scattering potential is required. (Model: Gaussian, hard disk)

Single impurity: Calculate the LDOS and, in the case of superconductors,
the spatial modulation of the Order Parameter.

For an ensemble of independent scattering centers, averaging with
respect to defect positions makes the system translationally invariant.
The (normal and anomalous) selfenergies have to be calculated
selfconsistently.
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Equation of motion for the Green functions
Singlet pairing:

[iωn+ 1

2m
~∇2+µ+V (~r )]G↑↑(~r,~r ′,iωn)−

�

d2ρ∆↑↓(~r,~ρ )F̄↓↑(~ρ,~r ′,ωn) = δ(~r−~r ′)

�

d2ρ ∆̄↓↑(~r,~ρ ) G↑↑(~ρ,~r ′,ωn)−[iωn− 1

2m
~∇2−µ−V (~r )]F̄↓↑(~ρ,~r ′,ωn) = 0
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Equation of motion for the Green functions
Singlet pairing:

[iωn+ 1

2m
~∇2+µ+V (~r )]G↑↑(~r,~r ′,iωn)−

�

d2ρ∆↑↓(~r,~ρ )F̄↓↑(~ρ,~r ′,ωn) = δ(~r−~r ′)

�

d2ρ ∆̄↓↑(~r,~ρ ) G↑↑(~ρ,~r ′,ωn)−[iωn− 1

2m
~∇2−µ−V (~r )]F̄↓↑(~ρ,~r ′,ωn) = 0

BCS Theory: ∆↑↓(~r, ~ρ ) = ∆↑↓(~r ) δ(~r − ~ρ ) (cf. Fetter)

Translationally invariant system (V (~r ) absent): ∆↑↓(~r, ~ρ ) = ∆↑↓(~r − ~ρ )
Then the equation of motion can be solved by Fourier transformation.

The result is a set of BCS-like Green functions with ∆ replaced by ∆(~k )
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Equation of motion for the Green functions
Singlet pairing:

[iωn+ 1

2m
~∇2+µ+V (~r )]G↑↑(~r,~r ′,iωn)−

�

d2ρ∆↑↓(~r,~ρ )F̄↓↑(~ρ,~r ′,ωn) = δ(~r−~r ′)

�

d2ρ ∆̄↓↑(~r,~ρ ) G↑↑(~ρ,~r ′,ωn)−[iωn− 1

2m
~∇2−µ−V (~r )]F̄↓↑(~ρ,~r ′,ωn) = 0

BCS Theory: ∆↑↓(~r, ~ρ ) = ∆↑↓(~r ) δ(~r − ~ρ ) (cf. Fetter)

Translationally invariant system (V (~r ) absent): ∆↑↓(~r, ~ρ ) = ∆↑↓(~r − ~ρ )
Then the equation of motion can be solved by Fourier transformation.

The result is a set of BCS-like Green functions with ∆ replaced by ∆(~k )

With V (~r ) present, F̄↓↑(~ρ, ~r ′, ωn) is modified and hence, via the

selfconsistency equation, also ∆̄↓↑(~r, ~ρ ). Separation of relative and center of

mass coordinates is a problem when one is interested in Friedel oscillations of
a d-wave order parameter near an impurity!
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Equation of motion for the Green functions in integral form:

(without the order parameter fluctuation)

Ĝ(r, r′;ω)=Ĝ0(r−r′;ω) +
∫

d2ρ Ĝ0(r−ρ;ω) V (ρ)σ̂3 Ĝ(ρ, r′;ω)

Given Ĝ0(r− r′;ω) and V (ρ), this could be solved directly to give the

LDOS N(r) = −
1

π
ImG11(r, r;ω) (or ρ(r); March, Angilella)
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Equation of motion for the Green functions in integral form:

(without the order parameter fluctuation)

Ĝ(r, r′;ω)=Ĝ0(r−r′;ω) +
∫

d2ρ Ĝ0(r−ρ;ω) V (ρ)σ̂3 Ĝ(ρ, r′;ω)

Given Ĝ0(r− r′;ω) and V (ρ), this could be solved directly to give the

LDOS N(r) = −
1

π
ImG11(r, r;ω) (or ρ(r); March, Angilella)

For V (ρ) = V δ(ρ), the solution is trivial:

Ĝ(r, r′;ω) = Ĝ0(r − r′;ω) +

+V Ĝ0(r;ω) σ̂3

(

σ̂0 −V Ĝ0(0;ω) σ̂3

)−1

Ĝ0(−r′;ω)

In 2D Ĝ0(0;ω) =
∫

dDk
(2π)D Ĝ0(k;ωn) diverges as ln r as r → 0 so that the

second term vanishes, unless the band width is finite!

This approach was used to calculate the LDOS of graphene.
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Generalized T -Matrix
Introducing the generalized T -Matrix

T̂ (k,k′;ω) = V (k−k′)σ̂3 +
∫

d2p

(2π)2
V (k−p) σ̂3 Ĝ0(p, ω) T̂ (p,k′;ω) ,

the equation of motion for the Green functions can be recast in the form

Ĝ(r, r′, ω) = Ĝ0(r − r′, ω) +

+

∫

d2k

(2π)2

∫

d2k′

(2π)2
eikr Ĝ0(k, ω)T̂ (k,k′;ω)Ĝ0(k′, ω) e−ik′r′

.

The T -matrix known from scattering theory is T̂ (k,k′) = T̂ (k,k′; ε(k′))
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T̂ (k,k′;ω) = V (k−k′)σ̂3 +
∫

d2p

(2π)2
V (k−p) σ̂3 Ĝ0(p, ω) T̂ (p,k′;ω) ,

the equation of motion for the Green functions can be recast in the form

Ĝ(r, r′, ω) = Ĝ0(r − r′, ω) +

+

∫

d2k

(2π)2

∫

d2k′

(2π)2
eikr Ĝ0(k, ω)T̂ (k,k′;ω)Ĝ0(k′, ω) e−ik′r′

.

The T -matrix known from scattering theory is T̂ (k,k′) = T̂ (k,k′; ε(k′))

With V (ρ) representing a single defect, we used these two equations for an
isotropic system to calculate the LDOS.
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With V (ρ) representing an ensemble of defects, taking a configuration average
leads to a translationally invariant Green function

Ĝ(r, r′, ω) = Ĝ0(r−r′, ω)+

∫

d2k

(2π)2
eik(r−r′) Ĝ0(k, ω)Σ̂(k, ω)Ĝ(k, ω)

where the selfenergy Σ̂(k, ω) = nimpt̂(k,k, ω) has been introduced.
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With V (ρ) representing an ensemble of defects, taking a configuration average
leads to a translationally invariant Green function

Ĝ(r, r′, ω) = Ĝ0(r−r′, ω)+

∫

d2k

(2π)2
eik(r−r′) Ĝ0(k, ω)Σ̂(k, ω)Ĝ(k, ω)

where the selfenergy Σ̂(k, ω) = nimpt̂(k,k, ω) has been introduced.

The solution for the Green function is straightforward

Ĝ(k, ω) =
[

ωσ̂0 − ε(k)σ̂3 − ∆(k)σ̂1 − Σ̂(k, ω)
]−1

t̂(k,k′;ω) = v(k − k′)σ̂3 +

∫

d2p

(2π)2
v(k − p) σ̂3 Ĝ(p, ω) t̂(p,k′;ω)

t̂ is the T -matrix for a single defect, to be calculated selfconsistently!

Ĝ and t̂ are expanded in terms of Pauli matrices.
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t0 =

∫

d2p

(2π)2
v

[

ω

D
t3 +

ε

D
t0 −

∆

D
t2

]

t1 =

∫

d2p

(2π)2
v

[

ω

D
t2 +

ε

D
t1 −

∆

D
t3

]

t2 =

∫

d2p

(2π)2
v

[

ω

D
t1 +

ε

D
t2 +

∆

D
t0

]

t3 = v +

∫

d2p

(2π)2
v

[

ω

D
t0 +

ε

D
t3 +

∆

D
t1

]

D = ω2 − ε2(p) − ∆2(p)
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ω
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ε
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∆
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ε

D
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∆
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Quasiclassical Approximation: perform the energy integration assuming
particle-hole symmetry. Terms marked in red vanish!
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∫
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[
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ε

D
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∆

D
t1

]

D = ω2 − ε2(p) − ∆2(p)

Quasiclassical Approximation: perform the energy integration assuming
particle-hole symmetry. Terms marked in red vanish!

This approximation is justified (Eilenberger, Larkin, Ovchinnikov) with the
argument that only differences between the superconducting and the normal
state need to be considered. Here, subtracting the corresponding normal state
equations does not improve the convergence of the ε-integral.
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Fermi surface restricted approximation

For a circular Fermi surface the previous set of equations re duces to

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

t1(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t2(ψ,φ) − g1(ψ) t3(ψ,φ)
]

t2(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t1(ψ,φ) + g1(ψ) t0(ψ,φ)
]

t3(ϕ,φ) = v(ϕ−φ)+πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0 t0(ψ,φ)+g1 t1(ψ,φ)
]
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Fermi surface restricted approximation

For a circular Fermi surface the previous set of equations re duces to

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

t1(ϕ,φ) = πNF

2π
∫

0

dψ
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v(ϕ−ψ)

[

g0(ψ) t2(ψ,φ) − g1(ψ) t3(ψ,φ)
]

t2(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t1(ψ,φ) + g1(ψ) t0(ψ,φ)
]

t3(ϕ,φ) = v(ϕ−φ)+πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0 t0(ψ,φ)+g1 t1(ψ,φ)
]

g0(ψ;ω) and g1(ψ;ω) are the energy integrated Green functions.

g0 and g1 are independent of t3(ψ,ψ) and g3 vanishes.
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Fermi surface restricted approximation

For a circular Fermi surface the previous set of equations re duces to

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

t1(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t2(ψ,φ) − g1(ψ) t3(ψ,φ)
]

t2(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t1(ψ,φ) + g1(ψ) t0(ψ,φ)
]

t3(ϕ,φ) = v(ϕ−φ)+πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0 t0(ψ,φ)+g1 t1(ψ,φ)
]

g0(ψ;ω) and g1(ψ;ω) are the energy integrated Green functions.

g0 and g1 are independent of t3(ψ,ψ) and g3 vanishes.

All four components t`(ϕ, φ) are required for the calculation of Σ0,1.
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Fermi surface restricted approximation

δ-function scatterers.

v = v0 is independent of angle and so are the t`.

Then one has to average g1(ψ), which gives zero

FOR UNCONVENTIONAL SUPERCONDUCTORS

and hence t1 = t2 = 0.
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Fermi surface restricted approximation

δ-function scatterers.

v = v0 is independent of angle and so are the t`.

Then one has to average g1(ψ), which gives zero

FOR UNCONVENTIONAL SUPERCONDUCTORS

and hence t1 = t2 = 0. Final results:

t0 =
πNFv

2
0 < g0 >

1 − (πNFv0)
2 < g0 >2

, t3 =
v0

1 − (πNFv0)
2 < g0 >2
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Fermi surface restricted approximation

δ-function scatterers.

v = v0 is independent of angle and so are the t`.

Then one has to average g1(ψ), which gives zero

FOR UNCONVENTIONAL SUPERCONDUCTORS

and hence t1 = t2 = 0. Final results:

t0 =
πNFv

2
0 < g0 >

1 − (πNFv0)
2 < g0 >2

, t3 =
v0

1 − (πNFv0)
2 < g0 >2

Standard results, no problems!
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Fermi surface restricted approximation

δ-function scatterers.

v = v0 is independent of angle and so are the t`.

Then one has to average g1(ψ), which gives zero

FOR UNCONVENTIONAL SUPERCONDUCTORS

and hence t1 = t2 = 0. Final results:

t0 =
πNFv

2
0 < g0 >

1 − (πNFv0)
2 < g0 >2

, t3 =
v0

1 − (πNFv0)
2 < g0 >2

Standard results, no problems!

Note some anomalies, however: t3vanishes for v0 → ∞.

In this approximation, t3has now effect on single particle properties.

t3with v0very large but finite was essential in obtaining a microwave c onductivity

bearing some similarity with experimental results on YBCO a t low temperatures.
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Fermi surface restricted approximation

Solution of

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

etc.
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Fermi surface restricted approximation

Solution of

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

etc.

The potential v is an even function of the angle ϕ between kF and k′
F ,

which can be expanded as

v(ϕ) = v0

+∞
∑

k=−∞

uk e
ikϕ with u0 = 1

The uk’s could be treated as parameters or could be calculated from some

model potential in real space (hard disk, Gaussian, . . . )
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Fermi surface restricted approximation

Solution of

t0(ϕ,φ) = πNF

2π
∫

0

dψ

2π
v(ϕ−ψ)

[

g0(ψ) t3(ψ,φ) − g1(ψ) t2(ψ,φ)
]

etc.

The potential v is an even function of the angle ϕ between kF and k′
F ,

which can be expanded as

v(ϕ) = v0

+∞
∑

k=−∞

uk e
ikϕ with u0 = 1

The uk’s could be treated as parameters or could be calculated from some

model potential in real space (hard disk, Gaussian, . . . )

The resulting system of coupled linear equations is solved, which gives Σ̂, Ĝ
and hence all single particle properties.
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Selfenergy Σ0for point-like scatterers
The parameters introduced so far are combined in the followi ng way:

πNFv0 = tan δ0 , c = cot δ0 , Γel
N =

nimp

πNF

sin2 δ0

For point-like scatterers Σ1 = 0 and Σ0 is
independent of angle (momentum).

U: near unitary limit δ0 = 0.49π, c = 0.03,
B: near Born limit δ0 = 0.10π, c = 3.1

As is well-known: Σ
′′

B
� Σ

′′

U
for ω → 0.

For elevated frequencies one finds Σ
′′

U
≤ Σ

′′

B

For this reason, weak scatterers remove the peak
in the microwave surface resistance at intermedia-
te temperatures, without affecting the low tempe-
rature behavior.
(C.T. Rieck and K. Scharnberg: in New Trends in Su-
perconductivity, NATO Science Series II, Vol. 67,
J.F. Annett and S. Kruchinin (eds.), p.39)

For ω → ∞, Σ
′′

B
and Σ

′′

U
tend to Γel

N
, choosen to be 0.2 meV in these calculations.

International Workshop on Many-body theory of inhomogeneous superfluids, Pisa, 9-29. July 2007 – p. 17



Selfenergy Σ0 for Gaussian potential, limiting behavior
For ω � ∆max, (OP-Amplitude), Σ0` reduces to the normal state result:

Σ00 = −iΓel
N

M
∑

m=−M

u2
m

cos2 δ0 + sin2 δ0 u2
m

Unitary limit:

Σ00(δ0 = 0.5π) = −iΓel
N(1 + 2M) .

The limiting value in the Figure is 4.2 meV
since we have chosen M = 10.

There is a problem here with the Fermi sur-
face restricted approach! .

For δ0 = 0.49π, the contribution from
terms m > 7 is negligible. The limiting
value is much larger, though, than for point-
like scatterers.

limω→∞ Σ0` with ` 6= 0 vanishes,
because the normal state has been assumed to be isotropic.

International Workshop on Many-body theory of inhomogeneous superfluids, Pisa, 9-29. July 2007 – p. 18



Full Theory for NFE model

t3 = v +

∫

d2p

(2π)2
v

[

ω

D
t0 +

ε

D
t3 +

∆

D
t1

]

etc.

D(p, ψ) = ω2 − ε2(p) − ∆2(p) cos2 2ψ
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Full Theory for NFE model

t3 = v +

∫

d2p

(2π)2
v

[

ω

D
t0 +

ε

D
t3 +

∆

D
t1

]

etc.

D(p, ψ) = ω2 − ε2(p) − ∆2(p) cos2 2ψ

t3(k,k′,φ,φ′)=V (k,k′,cos(φ−φ′)) +

∞
∫

0

dp p

2π

2π
∫

0

dψ

2π
V (k,p,cos(φ−ψ))

[ω

D
t0(p,k′,ψ,φ′) +

ε(p)

D
t3(p,k′,ψ,φ′)

+
∆(p) cos 2ψ

D
t1(p,k′,ψ,φ′)

]

Expand in Fourierseries with respect to angle → System of coupled 1D integral

equations, because the d-wave OP breaks rotational invariance.

In the non-selfconsistent case the ψ-integral can bre done analytically for all Fourier

coefficients.
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Model
The potential v is an even function of the angle ϕ between kF and k′

F ,

which can be expanded as

v(ϕ) = v0

+∞
∑

k=−∞

uk e
ikϕ with u0 = 1

The uk could be varied at will!
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Model
The potential v is an even function of the angle ϕ between kF and k′

F ,

which can be expanded as

v(ϕ) = v0

+∞
∑

k=−∞

uk e
ikϕ with u0 = 1

The uk could be varied at will!

As a specific model, which

emphasizes forward scatte-

ring we consider a Gaussian

v(ϕ) = v0
1

I0(γ)
eγ cos ϕ for

which uk(γ) = Ik(γ)/I0(γ)

k 1 (p) 2 (d) 3 (f) 4 5 6

uk(5) 0.8934 0.6427 0.3793 0.1875 0.0792 0.0291

uk(1) 0.4463 0.1074 0.0174 0.0024 0.0002 < 10−4
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Full Theory: Normal State Results - LDOS

1 2 3 4 5 6 7 8 9 10 11 12

kFr

0.0

0.5

1.0

1.5

N
(r

,ω
=0

) 
/ N

(∞
)

M = 5

LDOS

kFa= 2

M=0

πN v = 31.8F

_

Strong repulsive Gaussian
scattering potential with fairly
large range (compared to the
Fermi wavelength)

Convergence of the Fourier
series.

The Friedel oscillations fall off as r−1 in two dimensions.

Their amplitudes are much larger in 2D than in 3D!
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Results - LDOS

Comparison of strong Gaussian scatterers with different ra nges.

Spatial average v̄ is kept constant!

0 2 4 6 8 10 12
kFr + δ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
(r

)/
N

(∞
)

kFa = 0.05, 0.2, 1, 2

LDOS

Area of the scatterer, where
N(r) � N(∞) has been
rescaled.

Period of oscillations is indepen-
dent of parameters describing
the scattering centers!

Amplitudes of oscillations de-
pend on the range (vanishing lo-
garithmically for a → 0), as
well as on the strength of the
scattering potential.
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Results - Selfenergy / Imaginary part

Strong potential leading to resonant scattering in the s- and p- wave
channels.

0 1 2 3 4 5 6 7 8

kFa

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

Σ 
’’(

E
F
) 

= 
Γ 

Σ m
=0

 Im
 t

m
(k

F
,k

F
,E

F
)

~
M

M=0

M=1

M=7

πN  v = 31.8F

_

The fully converged self-
energy shows no signature
of resonance scattering!

Σ′′ increases substantially
with the range. The average
potential is kept constant.

The behavior at very large a
could be a numerical arte-
fact.
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Results - Selfenergy / Imaginary part

A weaker potential with no resonant scattering.
The Born series still diverges, though.
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-0.4
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Σ 
’’(
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F
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= 
Γ 

Σ m
=0

  I
m

 t
m

(k
F
,k

F
,E

F
)

M
~

M=0

M=1

M=7

πN  v = 3.08F
_

Again |Σ′′| increases
substantially with incre-
asing range, this time
to a maximum around
kFa ≈ 2, before decrea-
sing again.

The absolute values are
much smaller.

Σ′′(ω) near EF for (unconventional) superconductors ???
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Summary - NFE Systems

We have shown what needs to be done to treat scattering off arbitrarily high
potentials of (almost) arbitrary shape correctly and have given results for the
LDOS near the defect and the selfenergy in the normal state assuming NFE.

The dependence of the selfenergy on the hight and the range of the potential
is of some interest when discussing an effective scattering strength, but can
hardly be checked experimentally (STM?). The easily accessible frequency
dependence is very smooth in the normal state for any potential.

This changes when there is a gap in the DOS (midgap states in d-wave
superconductors). Numerical calculations for this case have proved difficult,
but will be completed soon.
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