
Lecture 2: The NLSE method

1. The NLSE and quantised vortices

2. Nucleation and reconnections

3. Sound generation

4. Finite–temperature effects
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Weakly interacting Bose gas

Imperfect Bose–Einstein condensate, Hartree approx.
Ψ(x, t) = single particle wavefunction for N bosons
of mass m

ih̄
∂Ψ

∂t
= −

h̄2

2m
∇2Ψ + Ψ

∫

|Ψ(x′, t)|2V (|x − x′|)dx′

called Non Linear Schroedinger Equation (NLSE)
or Gross–Pitaevskii (GP) equation)

Normalisation:
∫

|Ψ|2dx′ = N

Weakly interacting system: replace potential V with
a repulsive delta function of strength V0:

ih̄
∂Ψ

∂t
= −

h̄2

2m
∇2Ψ + V0Ψ|Ψ|2

Mass, momentum and energy:

M =
∫

|Ψ|2dx′

P =
h̄

2i

∫

(Ψ∗∇Ψ − Ψ∇Ψ∗) dx′

E =
h̄2

2m

∫





|∇Ψ|2 +
V0

2
|Ψ|4





 dx′
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Simple solutions of the NLSE

Uniform condensate at rest in the laboratory frame:

Ψ = eiE0/h̄

E0 = increase of energy when one boson is added
(chemical potential).

Look for deviations from that state: Ψ = ψeiE0/h̄

ih̄
∂ψ

∂t
= −

h̄2

2m
∇2ψ + V0|ψ|

2ψ − E0ψ

• Uniform solution:

ψ = ψ∞ =

√

√

√

√

√

√

√

E0

V0

• 1–dim solution near wall:

ψ = ψ∞ = tanh(x/a0) a0 =

√

√

√

√

√

√

√

h̄2

mE0

healing length

0 x

Ψ8

a
0
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Sound waves

Perturb the uniform state: ψ = ψ∞ + φ
Substitute into NLSE, assume φ small and linearise

ih̄
∂φ

∂t
= −

h̄2

2m
∇2φ + E0(φ + φ∗)

Let φ = a + ib, assume 1–dim for simplicity

−h̄bt = − h̄2

2m
axx + 2aE0,

h̄at = − h̄2

2mbxx

Let a = âeikx−iωt, b = b̂eikx−iωt. Non-trivial solu-
tions â, b̂ exist only if

ω = k

√

√

√

√

√

√

√

√

E0

m











1 +
h̄2k2

4mE0











k

ω

k ≪ 1: ω ≈ ck where c =
√

E0/m = sound speed
k ≫ 1: ω ≈ h̄2k2/(2m) free particles
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Fluid dynamics interpretation of NLSE

Apply Madelung transformation

ψ = ReiS

Define

ρs = mR2

vs =
h̄

m
∇S ( hence ∇× vs = 0)

then the NLSE is equivalent to:

• The continuity equation:

∂ρs
∂t

+ ∇ · (ρsvs) = 0

• The (quasi) Euler equation:

ρs







∂vsj
∂t

+ vsk
∂vsj
∂xk





 = −
∂p

∂xj
+
∂Σjk

∂xk

where the pressure p and the quantum stress Σjk

are

p =
V0

2m2
ρ2

s, Σjk =






h̄

2m







2

ρs
∂2 ln ρs
∂xj∂xk

The quantum stress Σjk makes the NLSE different
from the Euler equation.
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• The (quasi) Euler equation:

ρs







∂vsj
∂t

+ vsk
∂vsj
∂xk





 = −
∂p

∂xj
+
∂Σjk

∂xk

where

p =
V0

2m2
ρ2

s, Σjk =






h̄

2m







2

ρs
∂2 ln ρs
∂xj∂xk

The quantum stress Σjk makes the NLSE different
from the Euler equation.

Let L be the typilcal lengthscale of the problem.
The ratio of the pressure term and the quantum
stress term scales as

pressure

quantum stress
∼

h̄2

mE0L2

which is unity for L ∼ a0. So the quantum stress
term is important only at scales smaller then the
healing length, L≪ a0, and is responsible for

• vortex nucleation

• vortex reconnections

Away from vortices, where ρs varies little, the NLSE
is essentially the Euler equation.
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Vortex line solution of NLSE

Cylindrical coordinates (r, φ, z). Let S = φ, then

vs =
h̄

m
∇S =

h̄

mr
φ̂ =

κ

2πr
φ̂

which is a vortex line aligned along z

0

v

r

sφ

and

0 a

ρ

ρ
s

r

Note the hollow core.

Circulation
∮

C vs · dℓ =
∫

2π
0
vsφrdφ = κ
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Vortex reconnections

J Koplik and H Levine, PRL 71, 1375, 1993:
First evidence of vortex reconnections
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Vortex nucleation

Frish, Pomeau and Rica, PRL, 69, 1644, 1992

Winiecki and Adams, Europhysics Lett 52, 257, 2000

9



Energy dissipation near absolute zero

Experiments show that at temperatures of few mK,
so low that the normal fluid is virtually absent, vor-
ticity decays (Davis, Hendry and McClintock, Phys-
ica B 280, 43, 2000).

Question: What is the energy sink in the absence of
viscosity ?

Lecture 1: sound emission is responsible for decay
of kinetic energy. Kelvin wave cascade to wavenum-
bers k large enough that sound is radiated.

The NLSE model confirms that reconnections trig-
ger Kelvin waves and that vortices radiate sound.
It also shows that reconnection events generate a
sound pulse which decreases the kinetic energy.
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Sound emission at vortex reconnections

Leadbeater, Winiecki, Samuels, Barenghi and Adams
(PRL 86, 1410, 2001) studied collisions of vortex
rings and found that a short, intense sound pulse is
emitted at a reconnection event.

11



Density profiles at different times

Elost ∼ tan2 (θ/2)
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In a vortex tangle, sound pulses and Kelvin wave
cascade are present together - both arise from vortex
reconnections (Leadbeater, Samuels, Barenghi and
Adams, PRA 67, 015601, 2002)

Note the sound pulse (the dot at t = 120) and the
Kelvin wave created by the reconnection.
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Collision of four rings:
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Energy loss
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Trapped condensate

ih̄
∂ψ

∂t
=











−
h̄2

2m
∇2 + V + gnc











ψ

Condensate density

nc(r, t) = |ψ(r, t)|2,

Interaction parameter and trap potential:

g = 4πh̄2Nca/m, V (r) =
m

2
(ω2

⊥r
2 + ω2

zz
2)
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Sound emission

Barenghi, Parker, Proukakis and Adams studied the
sound emission by accelerating vortices (J. Low Temp.
Physics 138, 629, 2005).
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Dipolar radiation pattern emitted by a vortex pre-
cessing in a trapped atomic Bose–Einstein conden-
sate (NLSE model):

Quadrupolar sound emission of a co–rotating vortex–
vortex pair in a homogeneous condensate (NLSE
model):

18



A vortex–antivortex pair in a homogeneous conden-
sate interacts with an isolated vortex. Note the
sound which is radiated away. Because of this loss of
energy, the size of the vortex–antivortex pair after
the interaction is less.
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Collapsing ultrasound bubble

Berloff and Barenghi, PRL 93, 090401, 2004

Condensate density vs distance from centre of cavity
at different times. Insets show real and imaginary
parts of ψ.
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If bubble radius exceeds 28 healing lengths, vortex
rings are generated.
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Finite T: ZNG formalism

Zaremba, Nikuni, Griffin, JLTP, 116, 277, 1999

Generalised GP equation for trapped condensate

ih̄
∂ψ

∂t
=











−
h̄2

2m
∇2 + V + gnc + 2gñ− iR











ψ

Boltzmann equation:
∂f

∂t
+

p

m
· ∇f −∇U · ∇pf = C22 + C12

Condensate density and thermal cloud density:

nc(r, t) = |ψ(r, t)|2, ñ(r, t) =
∫ dp

(2πh̄)3
f(p, r, t)

Interaction parameter and trap potential:

g = 4πh̄2Nca/m, V (r) =
m

2
(ω2

⊥r
2 + ω2

zz
2)

Effective potential:

U (r, t) = V (r) + 2g (nc(r, t) + ñ(r, t))

C22 = collisions between atoms in the thermal cloud
C21 = collisions between condensate and thermal
atoms

R(r, t) =
h̄

2nc

∫ dp

(2πh̄)3
C12

• Solve GP equation for ψ

• Evolve Kinetic equation using N-body simula-
tions
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Decay of a vortex

Vortex set initially off–centre

Vortex trajectories at T = 0.5, 0.6 and 0.7 Tc
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Connection to vortex dynamics

ds

dt
= vself − αs′ × vself − α′vself

drv
dt

r̂ + rv
dφv
dt

φ̂ = αvself r̂ + (1 − α′)vselfφ̂

dφv
dt

= (1 − α′)
vself
rv

,
drv
dt

= αωvrv

ωv = (1 − α′)ω0

v, rv = r0

ve
αωvt

α′: changes precession speed, but we find α′ ≈ 0
α: exponential radial decay
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Decay of vortex lattice

t = 0.7 Tc

Central vortex decays slowly

25


