
Lecture 3: Motion of small particles in He II

1. The problem of flow visualisation

2. Particle Image Velocimetry (PIV) in liquid he-
lium

3. One–way model

4. Two–way model

5. Interaction of particle and quantised vortex
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Flow visualisation in classical fluids

• Ink

• Smoke

• Kalliroscope flakes

• Hydrogen bubbles

• Baker’s pH method

• Hot wire anemometry

• Laser Doppler velocimetry

• Particle Image Velocimetry (PIV)
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Flow visualisation in Helium II

• Second sound

• Ion trapping

• Temperature, pressure and chemical potential gra-
dients

Difficulty: poor resolution in space and time (for
turbulent fluctuations), no flow patterns.

Current work:

• Improve resolution (Roche, Ihas)

• New methods:

– shadography (Lucas)

– laser induced fluorescence (McKinsey, Vinen)

– PIV (the subject of this lecture)
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PIV method
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Properties of the tracer particles

Material: Hollow glass or polymer spheres, solid
hydrogen

Size: typically ap ≈ 10−4 cm

Density: from ρp ≈ ρ (neutrally buoyant) to 10ρ
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PIV results

Van Sciver et al: counterflow blocked by an object
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Sreenivasan et al: Left: He I. Right: remnant vortex
lines in He II

Vortex lines in rotating helium (side view)
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Other iconic images of quantised vorticity:

He II: Packard et al using electrons

Atomic BEC: Ketterlee et al using laser
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What do tracer particles actually trace ?

The normal fluid ? The superfluid ? Neither ? Do
they get trapped into the quantised vortex lines,
hence trace the superfluid vorticity ?
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One–way interaction

Generalise classical approach to helium two–fluid
hydrodynamics:
normal fluid = classical viscous Navier–Stokes fluid
superfluid = classical ideal Euler fluid

Assume that the particles are small enough that:

• Presence of particles does not affect flow and do
not get trapped in quantised vortices or disturb
them

• Flow velocity varies little in distance of order of
particle size

ap ≪ δ typical intervortex spacing

ap ≪ η Kolmogorov length

Re =
ap|vp − vn|

ν
≪ 1,

• Linear Stokes drag

• Neglect

– Faxen correction to Stokes drag

– Basset history force

– Saffman lift force on particle in a shear

– Magnus lift force on rotating particle in uni-
form flow
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Lagrangian equations of particle motion

drp

dt
= up

dup

dt
=

1

τ
(vn−up)+

(ρp − ρ)

ρo
g+

3ρn

2ρo

Dvn

Dt
+

3ρs

2ρo

Dvs

Dt

where

τ =
2ρoa

2

p

9µn
, ρo = ρp +

1

2
ρ

and
Dvn

Dt
=

∂vn

∂t
+(vn·∇)vn,

Dvs

Dt
=

∂vs

∂t
+(vs·∇)vs,

For neutrally buoyant particles (ρp = ρ)

ρo =
3

2
ρ, τ =

a2

pρ

3µn

dup

dt
=

1

τ
(vn − up) +

ρn

ρ

Dvn

Dt
+

ρs

ρ

Dvs

Dt

Note the viscous effect (arising from the normal
fluid) and the inertial effects (arising from the nor-
mal fluid and the superfluid)
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Sedimentation

Let vn = vs = 0. Then, in the presence of gravity,
particles fall with terminal velocity

u∞ =
2a2

pg(ρp − ρ)

9µ
, (1)

which can be used to determine the particle size.

Classical limit

Single fluid of density ρf and velocity vf . We have

drp

dt
= up,

dup

dt
=

1

τ
(vf − up) +

(ρp − ρo)

ρo
g +

3ρ

2ρo

Dvf

Dt
.
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Comparison with ideal Lagrangian tracer

Ideal Lagrangian tracer (fluid parcel):

drp

dt
= vf

where vf = vf(rp).

If the particle is neutrally buoyant we have

dup

dt
=

1

τ
(vf − up) +

Dvf

Dt
.

If we approximated

Dvf

Dt
=

∂vf

∂t
+(vf ·∇)vf ≈

∂vf

∂t
+(up·∇)vf =

dvf

dt
,

then we would have

d(up − vf)

dt
= −

1

τ
(up − vf),

of solution

up − vf = [up(0) − vf(0)]e−t/τ ,

that is up → vf for t ≫ τ . However this is not
correct.
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Neutrally buoyant particles (Babiano 2000) move
away from regions of high vorticity and preferen-
tially segregate in regions of high strain.

Example: ABC flow:

vx = A sin (2πz) + C cos (2πy),

vy = B sin (2πx) + A cos (2πz),

vz = C sin (2πy) + B cos (2πx),
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Note the segregation in regions of high rate of strain.

Fortunately, the time taken to segregate is of the
order of few turnover times, and the typical lifetime
of turbulent eddies is of the order of the turnover
time too.

This example shows that the classical PIV tech-
nique has its limitations. Still, PIV has proved itself
very useful in classical fluid dynamics.
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Tracer particles at very low temperatures

At T < 1 K ρn ≈ ρ → 0 and helium II is effec-
tively a pure superfluid. The equation of motion of
a neutrally buoyant particle becomes

dup

dt
=

Dvs

Dt
.

Use Euler’s equation:
∂vs

∂t
+ (vs · ∇)vs = −

1

ρs
∇p,

hence the particle obeys
dup

dt
= −

1

ρs
∇p.

Right hand side = force per unit mass acting on
a parcel of superfluid = force on the particle that
replaces that superfluid. Therefore

up(t) = vs(rp(t), t), rp(t) = rs(t)

is a formal solution of the equation of motion, where
rs(t) is the Lagrangian trajectory of a superfluid
parcel.

It would seem that small particles are ideal La-
grangian tracers suitable for studying low tempera-
ture turbulence, but it is not the case: in the absence
of damping forces, the issue of stability of particle
trajectories becomes crucial.
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Motion of particle around vortex at T=0

Vortex line: vs = (vsr, vsθ, vsz) = (0, κ/(2πr), 0).

Particle’s equation becomes

dup

dt
=

κ2

8π2
∇




1

r2


 ,

like unit mass in the central potential −κ2/(8π2r2).

Let rp = (r, θ) and up = (ur, uθ) = (dr/dt, rdθ/dt).
Angular momentum:

l = ruθ

Energy:

u2

θ + u2

r −
κ2

4π2r2
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Let ur = 0 when r = r0. Express radial position as
x = r/r0, so that x = 1 at t = 0.

• If l > κ/2π then

x2 = 1 +


l2 −

κ2

4π2




t2

r4
0

.

θ =


1 −

κ2

4π2l2




−1/2

tan−1





l2 −

κ2

4π2




1/2
t

r2
0



.

Particle spirals outwards towards r → ∞.

• If l < κ/2π then

x2 = 1 −




κ2

4π2
− l2




t2

r4
0

,

θ =




κ2

4π2l2
− 1




−1/2

tanh−1







κ2

4π2
− l2




1/2
t

r2
0



.

Particle spirals inwards towards the vortex.

• If l = κ/2π (initially the velocity of the particle is
exactly equal to the velocity of the superfluid) the
particle follows the superfluid but it can be shown
(Sergeev et al 2006) that the orbit is unstable.

We conclude that the tracer particle cannot even
trace the orbit around a single vortex line.
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Similar instability for the more complicated case
of the motion of a particle in the presence of three
vortices:
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Why does a vortex tend to trap particles ?

• Energy
• Pressure
• Forces

21



• Energy

When a particle of radius ap is trapped on a vortex
the energy of the helium is reduced by an amount
approximately equal to the kinetic energy ∆E of
the displaced superfluid.

Consider a straight vortex line along the z direc-
tion. The kinetic energy per unit length is

E =
∫

2π
0

dφ
∫ ∞
0

dr r
1

2
ρsv

2

sφ ≈
ρsκ

2

4π
ln (b/a0), (2)

Then

∆E ≈
ρsκ

2ap

4π
log (ap/a0)

Since ∆E ≫ kBT for typical ap, thermal effects do
not inhibit trapping.

2ap
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• Pressure

Flow field around vortex creates a pressure gradient

∇p =
ρsκ

2

8π2
∇




1

r2




• Forces

high V

low p

high V

low p
high p

low Vlow V

high p F F

F=0
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Approach of particle to vortex

Assume that the particle is neutrally buoyant and
at rest at distance r0 from an isolated stationary rec-
tilinear vortex which does not respond to the par-
ticle (one-way model). Let vn = 0. The particle
obeys

dup

dt
= −

1

τ
up +

3ρs

2ρo
(vs · ∇)vs.

hence the radial motion is driven by (vs·∇)vs which
has the form of a radial pressure gradient ∇(1/r2).
Let up denote the radial component of up. Then

dup

dt
= −

up

τ
−

2β

r3

where

β =
ρsκ

2

8π2ρ
,

We solve this equation and conclude that the par-
ticle, which started at distance r0 from the vortex,
arrives at radial distance r = 2ap from the vortex
at time ta given by

ta =
r4

0

8βτ
(1 −

(2ap)
4

r4
0

).
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The approximation (solid line) is not too bad, com-
pared to the dynamically self–consistent calculation
(dashed line):
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Self–consistent interaction

Allow the (neutrally buoyant) tracer particle which
approaches the vortex to affect it in a dynamically
self–consistent way (Kivotides et al 2006, Kivotides
et al 2007).

Particle’s equation of motion:

drp

dt
= up,

and

meff
dup

dt
= f = fd + ft + fb,

where

meff = m + 2πρa3

p/3

fd = 6πapµ(vn − up),

ft = 2πρsa
3

p

∂vsi

∂t
,

fb =
ρs

2

∫

S(vsi + vb)
2n̂dS,

with vn = 0 and n̂ = unit radial vector pointing
out of the surface S of the sphere.
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Represent the vortex as a space curve X = X(ξ, t)
where ξ is arclength which obeys Schwarz’s equation

dX

dt
= vsi + vb + vφ + vmf ,

• First term: It is the velocity which the vortex
induces upon itself due to its own curvature:

vsi(X) = −
κ

4π

∫
dξ

X′ × (X − x)

|X − x|3
,

The integral extends on the entire vortex configura-
tion, thus describing the advection of a vortex line
by another vortex line (multiple vortex loops can be
generated by the particle–vortex interaction).

X′ = dX/dξ is the unit tangent vector at the point
X in the direction of the circulation.
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• Second term: It makes sure that the combined
flow induced by the vortex and by the particle has
zero radial component at the particle’s surface. vb =
∇Φb is obtained by solving

∇2Φb = 0

in terms of an expansion of N associated Legendre
functions. The number N is variable to keep the
same level of approximation throughout the time
evolution (more terms are needed when the the par-
ticle is close to the vortex).

Example: vortex ring flying around a sphere:
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•Third term: It is the potential flow field induced
by the motion of a spherical particle with velocity
up:

vφ = −
1

2




ap

r




3

up ·


I − 3

(x − z)(x − z)

|x − z|2




• Fourth term: It describes the friction on the
vortex arising from the stationary normal fluid;

vmf = h⋆⋆(vsi + vb + vφ)

+h⋆X
′ × (vn − (vsi + vb + vφ))

+h⋆⋆X
′ × (X′ × vn)

where vn = 0.
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T = 1.3 K, particle initially at rest at distance 2ap

from the vortex.

As the particle approaches the vortex, the super-
flow generated by the particle tends to push away
the vortex. Then the vortex effectively sees an image
vortex with the opposite polarity behind the surface
of the particle and moves to the side, rotating un-
der the velocity self–induced by the curvature, and
reconnects with the particle.
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Trapping
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Drifting
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Initially, when the particle is at rest, the boundary
force is the most important force and attracts the
particle towards the vortex. As the particle accel-
erates, the main balance is between boundary and
drag forces. The local (time–dependent) force is
initially negligible because the vortex barely moves,
but becomes important when the particle and the
vortex are close to reconnection. After the reconnec-
tion it is the most important force, as the particle
is shaken by Kelvin waves.
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Escape
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Vertical counterflow

R

Vn Vs

Vns
2V0

L= γ v
2 2

ns

2

L

Zhang and Van Sciver expected the particles (ρp ≫
ρ) to fall with velocity vslip given by the balance of
viscous drag (up) and gravity (down), so that the
adjusted particle velocity, defined as

vpa = vp + vslip

was vpa = vn.
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Instead they found vpa = vn − vadd,
where vpa/vn ≈ 1/2.
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As a particle moves through the tangle, it traps
vortex lines. Although vortex lines may later discon-
nect, on the average the particle is likely to have one
or more loops attached. We expect that vortex re-
connections with the particle are not very frequent,
because ap ≪ δ.

Because the vortices, two extra forces act on a par-
ticle:
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First extra force

F1 =
∫

S pn̂dS =
ρs

2

∫

S(vℓ + vb)
2n̂dS,

where S is the surface of the particle, n̂ is the radial
unit vector point out of S into the fluid, vb comes
from the boundary condition that the normal com-
ponent of the total superfluid velocity at S vanishes,
and vℓ is the velocity field around the vortex line. If
the radius of curvature of the vortex is larger than
ap, then vb is negligible because the velocity field vℓ

at S is approximately tangential to S, and

F1 ≈ (
ρs

2
)

∫

S(vℓ)
2n̂dS ≈ (

ρs

2
)2π(

∫ a
a0

(
κ

2πr
)2rdr)n̂0

≈
ρsκ

2

4π
ln (a/a0)n̂0,

where n̂0 is the normal unit vector along one vortex
strand pointing out of the plane which represents S.
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Generalisation to N vortices attached to the sphere:

F1 ≈
ρsκ

2

4π
ln (a/a0)

N∑

i=1

n̂i.

F

high V
low p

low V
high p

n1
^

n2
^

(a) (b) (c) (d)
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It is likely that the particle, after connecting to
a vortex line, keeps moving, dragging a vortex loop
(two attachments) along for a fraction of the relative
distance to the next vortex with respect to its own
size. We expect that the particle suffers a body force
of magnitude

F1 ≈
ρsκ

2

4π
ln (a/a0) (

2βa

δ
) ,

where β is a geometrical factor of the order unity
which depends on the number of vortex pairs at-
tached to the sphere and the relative distance of
travel where they remain attached. For a single vor-
tex, 2βa is the length of this vortex.
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Second extra force

The second force on the sphere arises from the drag
of the attached vortex with the normal fluid. We
expect F2 = γ0ℓ(vn − vℓ) where γ0 is a known
temperature–dependence friction coefficient; setting
vℓ = vp (as vortex and particle move together) and
interpreting ℓ = 2βa, the friction is thus 2βaγ0(vn−
vp).
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Taking into account F1 and F2, we have

vn − vp = v′slip + vadd,

where v′slip = vslip/f , f = 1 + βγ0/(3πµ) and

vadd =
βκ2ρs

12π2fµδ
ln (a/a0) =

=
βκ2γρ

12π2fµ
ln (a/a0)vn

because 1/δ ≈ L1/2 = γvns = γρvn/ρs. We obtain

vpa = (
f − 1

f
)vslip + (1 −

βκ2γρ ln (a/a0)

12π2µf
)vn .

But vslip(f−1)/f is negligible and we conclude that
vpa is essentially proportional to vn:
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for β = 4.5 over the independent ranges of T and q
used in the experiment.
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Note the same linear dependence of vpa on vn and
the same temperature independence of the slope
vpa/vn which was observed in the experiment. The
value of β which best fit the observed slope (β =
4.5) suggests that the loops which remain attached
to the particles are not big.
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