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CANONICAL QUANTIZATION

Quantum Hamiltonian

H =
N

i=1

�

− ~
2

2m
∇2

i + Φ(ri)

�

+ Φint(r1, ....., rN , α)

( H is bounded from below)

i ~∂tΨ̂ =

�

− ~
2

2m
∇̂2 + Φα,N

tot

�
Ψ̂

where ∇̂ := (∇1, . . . ,∇N ) and Φα,N
tot :=

�N
i=1 Φ(ri) + Φint(r1, . . . , rN , α).
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STOCHASTIC QUANTIZATION BY LAGRANGIAN VARIATIONAL PRINCI PLE

The basic object is the classical lagrangian

L[q̂cl] =

N

i=1

�

1

2
m(q̇cl

i )2(t) − Φ(qcl
i (t))

�

− Φint(q
cl
1 (t), ...,qcl

N (t), α)

q̂cl := classical N - body configuration.

Quantization comes from requiring that the configuration of the system evolves in
fact as a Markov diffusion q̂ in R

3N .
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ASSUMPTIONS

i) q̂ = (q1, . . . ,qN ) is a pathwise solution of the 3N -dimensional stochastic
differential equation

dq̂(t) = b̂(q̂(t), t)dt+

�

~

m

�1/2

dŴ (t)

ii) The drift b̂, is smooth both as function of r̂ and t ∈ [0, T ], T <∞.

iii) A finite energy condition is satistied.

Ŵ := (W1, . . . ,WN ) and Wi, i = 1, . . . , N are three-dimensional independent
standard Brownian Motions which model quantum fluctuations acting on the i-th
particle.
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NOTICE:

ρ̂ := time dependent joint probability density of the N-particles configuration

• there exists smooth 3-N dimensional current velocity field V̂ such that

b̂ = V̂ +
~

2m
∇̂ ln ρ̂

• the 3-N dimensional continuity equation holds

∂ρ̂

∂t
= −∇̂ · (ρ̂ V̂ )
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STOCHASTIC LAGRANGIAN VARIATIONAL PRINCIPLE

“The actual motion of a finite dimensions quantum system is described by a Markov diffusion
which makes extremal the mean discretized classical action related to L among smooth
diffusions which satisfy a stochastic differential equation in the configurations space, with the
same fixed Brownian Motion and such that the initial current velocity and the final
configuration are fixed as random variables” (M., Phys. Rev. D ’85; Loffredo and M., JMP ’88)

Necessary and sufficient condition b̂ = V̂ + ~

2m
∇̂ ln ρ̂

(in the limit of the discretization going to infinity)
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∂tρ̂ = −∇̂ ·

�

ρ̂ V̂

�

�

∂tV̂ +

�

V̂ · ∇̂

�

V̂ − ~2

2m2
∇̂

�

∇̂2
√

ρ̂√
ρ̂

� 	

k

+

+
~

2m

3N

p=1

(∂p ln ρ̂ + ∂p)

�

∂kV̂p − ∂pV̂k

�

= − 1

m
∂kΦα,N

tot k = 1, . . . , 3N

MADELUNG EQUATIONS WITH VORTICITY
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Irrotational and rotational solutions

NOTE :

1) if V̂ = 1
m
∇̂Ŝ (smooth gradient-field )

Ψ̂ = ρ̂
1
2 e

i
~

Ŝ

i ~∂tΨ̂ =

�

− ~
2

2m
∇̂2 + Φα,N

tot
�

Ψ̂

(3N -dimensional Schrödinger equation )

2) For general initial data the rotational terms, of the first order in ~

m
, induce

dissipation !!
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Relaxation to dynamical equilibrium

Energy Theorem (Loffredo and M., JMP ’88; extended in 2007)

E[ρ̂, V̂ ] :=
3N

�

1

2
mV̂

2 +
1

2
mÛ

2 + Φα,N
tot

�

ρ̂ dr̂

with Û := ~

2m
∇̂ ln ρ̂ (3N -dimensional osmotic velocity).

d

dt
E[ρ̂, V̂ ] = −~

2
E

�

3N

k=1

3N

p=1

(∂pV̂k − ∂kV̂p)2

2

�

NOTE: Irrotational solutions conserve the energy and

E =< Ψ,HΨ >

For generic initial data Schrödinger solutions act as an attracting set, which
corresponds to DYNAMICAL EQUILIBRIUM.
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SCHRÖDINGER VERSUS ROTATIONAL SOLUTIONS

Schrödinger solutions

Rotational solutions

t

Σ

(ρt, vt)t>0

Note

• Schrödinger solutions :
singular velocity field in cor-
respondence of nodes of the
wave function.

• Rotational solutions : smooth
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ADVANTAGES OF STOCHASTIC QUANTIZATION FOR THE N-PARTICLE S YSTEM ?

• At dynamical equilibrium : ancillary stochastic description

• Out of dynamical equilibrium: non canonical rotational dynamics ?
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ONE PARTICLE CURRENT VELOCITY

Define: (i = 1)

“1-th particle probability density” :

ρ1(r1, t) =
3(N−1)

ρ̂(r1, . . . , rN , t)dr2, . . . , drN

“1-th particle current velocity”:

v1(r, t) = Eq1(t)=rV1(q1(t), . . . , . . . ,qN (t), t)

notations:

V̂ =(V1, ...VN)

Eq1(t)=r := expectation given q1(t) = r
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ONE PARTICLE CONTINUITY EQUATION

Proposition 1

Defining (i = 1)

v1(r, t) = Eq1(t)=rV1

Then under mild regularity assumptions, if ρ̂ is invariant under permutation of
positions of any two particles (IDENTICAL PARTICLES), then

ρ1(r) = ρ2(r) = · · · = ρN (r) := ρ(r)

and

∂tρ = −∇ · (ρv1)
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One-particle non Markovian diffusion

Proposition 2

Under mild regularity assumptions, if ρ̂ is invariant under permutation of positions
of any two particles (IDENTICAL PARTICLES), then, (i = 1)

dq1(t) =

�

v1 (q1(t), t) +
~

m
∇1

1

2
ln ρ (q1(t), t)

�

dt+

+ ζ1 (q1(t),q2(t), ...,qN (t), t) dt+

�

~

m

� 1
2

dW1(t)

where

Eq1(t)=r ζ1 = 0

ζ1= differentiable noise due to interactions !!
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One-particle Bose Dynamics

Theorem

If particles are identical BOSONS, then, in the GRADIENT-case (and in general at dynamical
equilibrium), up to mild regularity conditions, we have

v = v1, . . . ,vN

and the couple (ρ,v) evolves as

[∂tρ+ ∇ · (ρv)] (r, t) = 0

�

∂tv + (v · ∇)v − ~
2

2m2
∇ ∇2√ρ

√
ρ

�

(r, t) =

= − 1

m
Eq1(t)=r

�

∇1Φ
α,N
tot (q1(t), . . . ,qN (t))

�

− β(α,N, r, t)

This is a rigorous result which holds for any N
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Decomposition of dynamical pertubationβ

β(α,N, r, t) :=

�

β
time + β

conv − ~
2

2m2
β

Q

�

(α,N, r, t)

where

β
time(α,N, r, t) := Eq1(t)=r [∂tV1 − ∂tv1]

β
conv(α,N, r, t) := Eq1(t)=r

�

(V̂ · ∇̂)V1 − (v1 · ∇)v1

�

β
Q(α,N, r, t) := Eq1(t)=r ∇1

∇̂2√ρ̂√
ρ̂

−∇1

∇2√ρ
√
ρ
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PROBLEM

“Find proper scales and orders of approximation so that dynamical equations for
(ρ,v) can be put in a (deterministic or stochastic ) closed form “
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DILUITE GAS WITH SMOOTH SHORT-RANGE INTERACTION

Gross-Pitaevskii equation ?

• Necessary condition :

Ψ̂(0) is not entangled and Ψ̂(t) has a regular dependence on α.

• Method :

1) Fix natural scales from the analysis of β.
2) Rigorously calculate the interation therm to O(α2).
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Analizing contributions to β - 1

c1) βtime = 0 : true for all stationary solutions.

In general: fix a time scale where

Eq1(t)=r∂t[V1(q1(t), ...,qN (t), t) − v(q1(t), t)] = 0
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Analizing contributions to β - 2

c2) βconv = 0 : true for the ground state.

In general: if we fix a space scale where

Eq1(t)=r∇1[V1(q1(t), ...,qN (t), t) − v(q1(t), t)] = 0

we have

β
conv = O(α2) + Eq1(t)=r∇1

N

i=2

1

2
|Vi|2

We will assume N finite but sufficiently large to neglect the last term (size
scale)
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Analizing contributions to β - 3

c3) ( ~
2

m2 )βQ = 0 : we are neglecting a term of order O( ~
2

m2 )O(α).

Therefore, in our assumptions, in general for the proper space-time and size

scales, β can be neglected to the order O(α)O( ~
2

m2 ) and O(α2).
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Calculating interaction term

Bα(r) sphere of volume α

hBα(r) good smooth approximation of the indicator of Bα(r).

Φint(r1, .., rN , α) :=
K

2

N

i=1

N

j=1,j 6=i

hBα(ri)(rj)

then we prove

Eq1(t)=r1 [∇1Φint] (q1(t), . . . ,qN (t), α) =

= K(N − 1)

�

O(α2) + ∇1

�

αρ(r1, t) +O(α2)

� �

• N finite
• No low energy assumption !
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G.P. EQUATION

We can prove

ρ̄ := Nρ = expected density of particles

Introducing

ψ̄ := ρ̄
1
2 exp

i

~
S

1

m
∇S := v

we get, up to terms of order O(α)O(( ~

m
)2) and O(α2), in the proper scales,

i~∂tψ̄ =

�

− ~
2

2m
∇2 + Φ +Kα|ψ̄|2

�

ψ̄

“MEAN FIELD” description by conditional expectations !
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Additional stochastic description

To every solution Ψ̄ to G.P. equation one can associate N diffusion processes :
(v = 1

m
∇S, ρ̄ = |Ψ̄|2)

dqi(t) =

�

v (qi(t), t) +
~

2m
∇ ln ρ̄ (qi(t), t)

�

dt+

+ ζi (q1(t),q2(t), ...,qN (t), t) dt+

�

~

m
� 1

2

dWi(t) , i = 1, . . . , N

- common drift !

- interactions and quantum effects are represented as noises
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MORE TO BE DONE

• The limit for N going to infinity under proper rescalings (KαN = const)
(Lieb and Seiringer, PRL 2002 : exact factorization of the ground state)

• Estimates of space-time and size scales

• More general interactions.
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NON CANONICAL ROTATIONAL DYNAMICS ?

Consider MADELUNG EQUATIONS WITH VORTICITY for N = 1, d = 3

�
�
�
�
�
�
�

∂tρ = −∇ · (ρv)

∂tv + (v · ∇) v − ~
2

2m2
∇ ∇2√ρ

√
ρ

− ~

m
(∇ ln ρ+ ∇) ∧ (∇∧ v) = − 1

m
∇Φ

∃ S s.t. Ψ := ρ
1
2 e

ı
~

S , A := mv −∇S

�
�
�

ı~∂tΨ = 1
2m

(ı∇ + A)2Ψ + ΦΨ

∂tA = b∗ ∧ (∇∧A) − ~

2m
∇∧ (∇∧A)

b∗ :=
1

m
[∇S −A− ~

2
∇ ln |Ψ|2] (Loffredo, M., JMP ’88)
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Non trivial behavior of vorticity

1) For ρ > 0 the vorticity ∇∧A does not go to zero monotonically
(firstly conjectured by Guerra in 1992)

“gaussian solutions to the bidimensional harmonic oscillator”
(M. and Ugolini, AHP ’94)
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t
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8

4

0

vorticity vs. time

2) The vorticity can concentrate in the zeroes of the density

Non gaussian solutions to the bidimensional harmonic oscillator, numerical results:
[Caliari, Inverso and M. 2004, New J. Phys., Vol 6, no. 69,
http://www.iop.org/EJ/journal/NJP]
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Numerical experiment (t=0)

ρ at time t = 0, E = 195 −∇∧ v = 2Ωo
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Numerical experiment (t=0.08)

ρ at time t = 0.08, E = 43 −∇ ∧ v
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Numerical experiment (t=0.14)

ρ at time t = 0.14, E = 17 −∇ ∧ v
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Numerical experiment (t=0.16)

ρ at time t = 0.16, E = 15 −∇ ∧ v
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Numerical experiment (t=0.19)

ρ at time t = 0.19, E = 11 −∇ ∧ v
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Numerical experiment (t=0.23)

ρ at time t = 0.23, E = 9 −∇ ∧ v
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Rotational G.P. equation ?

Proposal ( from first principles !!) : near dynamical equilibrium (see p. 10)

Ψ̄ := ρ̄
1
2 e

ı
~

S , A := mv −∇S

�
�
�

ı ~∂tΨ̄ = 1
2m

(ı∇ + A)2Ψ̄ + (Kα|Ψ̄|2 + Φ)Ψ̄

∂tA = v− ∧ (∇∧A) − ~

2m
∇∧ (∇∧A)

v− :=
1

m
[∇S −A− ~

2
∇ ln |Ψ̄|2]

NOTICE: DISSIPATION OUT OF DYNAMICAL EQUILIBRIUM !
(Loffredo and M., to appear)

Stochastic Quantization for a system of N identical interacting Bose particles – p. 34



Effort. . .

Numerical simulations of the “rotational G.P. equation”, with rotating asymmetric
potential, by spectral methods (Caliari, Zuccher, . . . )

(In the literature huge amount of numerical simulations leading to formation of
vortices, but with “rotating boundary conditions”. Stationary arrays need
dissipative devices)
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Conclusions

Stochastic Quantization of N identical interacting Bosons by Lagrangian
Variational Principle

• Ancillary stochastic description : general one-particle Bose dynamics. Derivation
of G.P. eq. from the N -body problem and new analysis of the G.P. model.

• Possible rotational dynamics with dissipation and concentration of vorticity in the
zeroes of the density
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