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1 Variational problems with weak coupling.

Abstract setting: X ,Y,Z real Hilbert spaces.

A : X 7−→ Z and B : Y 7−→ Z linear continuous operators.

min{f(x) + g(y) + µ
2
‖ Ax − By ‖2

Z : x ∈ X , y ∈ Y}.

1. Transmission problem: h ∈ L2(Ω), µ > 0 given. Solve

min{
1

2

Z

Ω1

|∇v1|
2 +

1

2

Z

Ω2

|∇v2|
2 +

µ

2

Z

Γ

[v]2 −

Z

Ω

hv : vi ∈ H1(Ωi)}

v = v1 on Ω1, v = v2 on Ω2 and [v] = jump of v through the interface Γ.

Ω1 Ω2Γ

8
>><
>>:

X = H1(Ω1), Y = H1(Ω2), Z = L2(Γ)

A : X = H1(Ω1) → Z = L2(Γ) trace operator

B : Y = H1(Ω2) → Z = L2(Γ) trace operator



2. Optimal control theory

State equation: Ax = By, x = state variable, y = control variable.

min{f(x) + g(y) : Ax − By = 0, x ∈ X , y ∈ Y}.

Penalized approximation (J.L Lions, 1983).

Augmented Lagrangian methods (Glowinski - Le Tallec, 1989).

min{f(x) + g(y) +
µ

2
‖ Ax − By ‖2

Z : x ∈ X , y ∈ Y}. (1)

3. Potential Games

Two interrelated players 1 and 2:

• f : ξ ∈ X 7→ f(ξ) ∈ R individual payoff of player 1

• g : η ∈ Y 7→ g(η) ∈ R individual payoff of player 2.

• c: X × Y −→ R joint payoff of the two players, coupling term.

attractive case (team games), repulsive case (congestion games).

Static normal form of the potential game (Monderer-Shapley, 1996)

8
<
:

F (ξ, η) = f(ξ) + βc(ξ, η)

G(ξ, η) = g(ξ) + µc(ξ, η)

Convex setting: Nash equilibria = solutions of

min{
1

β
f(x) +

1

µ
g(y) + c(ξ, η) : x ∈ X , y ∈ Y}. (2)

Compromise solutions between the individual and collective

aspects.



4. Questions

min{f(x) + g(y) + µ
2
‖ Ax − By ‖2

Z : x ∈ X , y ∈ Y}.

• Numerical optimization: splitting, decomposition methods for

complex variational systems involving n coupled variables (n

large), parallel computing.

• Modelling in decision sciences: Incremental processes leading

to equilibria and selection of equilibria in the real world: Best

response dynamic, Nash equilibration processes. Friction, inertia,

routines, learning, memory, path dependence aspects.

Dynamical approach to equilibria, discrete (algorithms) and

continuous (differential) dissipative systems.

Results:

• Inertia, anchoring, frictions (viscous, dry) and memory aspects

(short, long) play an important role.

• New alternating algorithms (with inertia), proximal algorithms

with costs to move. New parallel algorithms for large systems

(co-ordinated games).

• Convex and Nonconvex (analyticity, subanalyticity) results.

Nonlinear coupling, unilateral transmission.

• Coupled inclusions associated to maximal monotone operators,

coupled dissipative dynamical systems.



2 Alternating minimization algorithms.

Some classical results.

2.1 Von Neumann theorem

(1933), Annals of Math. (1950)

H Hilbert

C, D closed affine subspaces of H, C ∩ D 6= ∅

x0 ∈ H, x1 = projCx0, x2 = projDx1,. . .

Then xk
s−H
−→ projC∩Dx0 as k → +∞.

�
�

�
�

�
�

�
�

�
�

�
�

C

D

q

x0

q

x1

qx2

q

x3

qx4

q

x5

qx6

q

x7

lim x2k = lim x2k+1 = projC∩Dx0

Extension: Halperin (1962), N subspaces: C1,. . . , CN

x0 ∈ H, x1 = projC1
x0, x2 = projC2

x1,. . . , xN = projCN
xN−1,

xN+1 = projC1
xN

Solving numerically linear systems (Kaczmarz, 1937).



2.2 From linear → convex analysis

Theorem (Acker and Prestel, Ann. Toulouse, 1980) H Hilbert

f, g : H 7→ R ∪ {+∞} convex, lower semicontinuous, 6≡ +∞

(xk, yk) → (xk+1, yk) → (xk+1, yk+1):

8
>><
>>:

xk+1 = argmin{f(ξ) + µ
2
‖ ξ − yk ‖2: ξ ∈ H}

then

yk+1 = argmin{g(η) + µ
2
‖ xk+1 − η ‖2: η ∈ H}

Then (xk, yk)
w−H×H
−→ (x∞, y∞) as k → +∞, with

(x∞, y∞) ∈ argmin{f(ξ) + g(η) +
µ

2
‖ ξ − η ‖2: ξ ∈ H, η ∈ H}

Algorithm = alternating minimization of the bivariate function

Lµ(ξ, η) = f(ξ) + g(η) + µ
2
‖ ξ − η ‖2

Application to inverse problems

(Cheney and Goldstein 59; Gubin, Polyak and Raik 67)

f = δC , g = δD, C, D closed convex sets in H

‖ x∞ − y∞ ‖ = min{‖ x − y ‖: x ∈ C, y ∈ D}

q

y0

qx1

q

y1

qx2

qy2

q
x3

qy3

q
x∞

q

y∞

C

D



2.3 Application to the inverse Cauchy problem

Cimetière, Delvare, Jaoua, Pons, Inverse problems (2001)

Γd

Γi∆u = 0

Ω

8
<
:

u = u0

∂u
∂n

= u1

B
BM

Lacking data on Γi 6= superabundant measured data on Γd.
8
>><
>>:

∆u = 0 on Ω

u = u0, ∂u
∂n

= u1 on Γd

u unknown on Γi

Ill-posed inverse problem:

• data may be incompatible (measurements, noise).

• Hadamard example of instability: un(x, y) = 1

n
sin(nx)ch(ny).

Alternating projection method in H = H1(Ω)

D = {v ∈ H1(Ω) : ∆v = 0 on Ω, v = u0 on Γd}

N = {v ∈ H1(Ω) : ∆v = 0 on Ω, ∂v
∂n

= u1 on Γd}



2.4 Passty theorem

Theorem (Passty, J. Math Analysis Appl., 1979) H Hilbert

f, g : H 7→ R ∪ {+∞} convex, lower semicontinuous, 6≡ +∞

∂(f + g) = ∂f + ∂g

. (x0, y0) ∈ H×H given

. (xk, yk) → (xk+1, yk) → (xk+1, yk+1):

8
>><
>>:

xk+1 = argmin{f(ξ) + µk

2
‖ ξ − yk ‖2 : ξ ∈ H}

then

yk+1 = argmin{g(η) + µk

2
‖ xk+1 − η ‖2 : η ∈ H}

Suppose µk → +∞ not to fast and not to slow :
1

µk
= λk → 0 with

P
λ2

k ≺ ∞ and
P

λk = ∞.

Define sk =
Pk

1 λp, Xk = 1

sk

Pk
1 λpxp, Yk = 1

sk

Pk
1 λpyp

Then, Xk
w−H
−→ z∞ , Yk

w−H
−→ z∞ as k → +∞, with

z∞ ∈ argmin{f(ξ) + g(ξ) : ξ ∈ H}

Remarks on Passty theorem:

1. Valid for A, B maximal monotone operators, A+B max.

monotone. Extension of Brezis-Lions thm. (Israel J. Math., 1978).

2. Time scaling problem with different internal and external

(coupling) time scales.

3. Weak ergodic −→ weak convergence? (Bruck, JFA., 1975).

4.
P

λk = ∞ is enough? (Güler, SIAM J. Control Opt., 1991).



3 Link with decision sciences and

dynamical games

3.1 Dynamical decision with costs to change

• Goal oriented human cognition (motivated agent): Vroom

(1964), Locke and Lathan (1990). Agent = problem solver.

Solving problem = reducing (gradually) unsatisfied needs.

:

r
x0 r

xk

r

xk+1
goal

� -� - -

• Satisficing, bounded rationality: (Carnegie school), H.

Simon, Nobel prize of economics (1978), artificial intelligence.

• Landscape theory: The environment (landscape) is largely

unknown, exploration aspects: Levinthal and Warglien (1999),

learning aspects: Sobel (2000), Berthoz (2003).

• Worthwhile to move and inertia: Temporary satisficing with

not too much sacrificing. Attouch and Soubeyran (J. Math. Psy.)

g(xk+1) − g(xk) ≥ θk c(xk+1, xk)

m

Marginal gain ≥ Cost to change

8
>><
>>:

X state, performance, strategy space

g : X −→ R gain function

c : X × X −→ R
+ cost to change



3.2 Proximal algorithms in decision sciences.

Worthwhile to move principle + Optimization ⇒ Proximal Dynamics.

The vision the agent has of his environment and of his gain function

depends on his current position (local aspects).

Difficulty to change, inertia, frictions, anchoring effect ⇒

at stage k, his gain function is given by ξ 7−→ g(ξ) − c(ξ, xk).

Proximal dynamics: xk → xk+1

xk+1 ∈ argmax{g(ξ) − c(ξ, xk) : ξ ∈ X}

Take ξ = xk, sum w.r. to k, ” Finite ressource assumption ” supX g ≺ +∞

g(xk+1) − g(xk) ≥ c(xk+1, xk)

⇓
P

k c(xk+1, xk) ≤ supX g − g(x0) ≺ +∞

⇓

c(xk+1, xk) −→ 0 as k → +∞

Classical prox. dynamics: H Hilbert, f = −g, c(ξ, x) =‖ ξ − x ‖2, λk ≻ 0

xk+1 ∈ argmin{f(ξ) +
1

2λk

‖ ξ − xk ‖2 : ξ ∈ H}

Local search proximal algorithms:

xk+1 ∈ ǫk − argmax{g(ξ) − θkc(ξ, xk) : ξ ∈ E(xk, rk)}

• ǫk : psychological features (motivation, degree of resolution)

• θk : cognitive features (speed, learning, reactivity).

• E(xk, rk) : exploration set.



3.3 Alternating algorithms with friction and Nash

potential games

2 agents (players)

• f: X −→ R payoff of player 1, individual behaviour

• g: Y −→ R payoff of player 2, individual behaviour

• c: X × Y −→ R joint payoff of the two players, coupling term

Static normal form of the potential game (Monderer-Shapley, 1996)

8
<
:

F (ξ, η) = f(ξ) + βc(ξ, η)

G(ξ, η) = g(ξ) + µc(ξ, η)

Dynamical game: Inertial non autonomous Nash equilibration process

• h: X × X −→ R
+ cost to move in X for player 1

• g: Y × Y −→ R
+ cost to move in Y for player 2

• non autonomous aspects: αk ≻ 0, νk ≻ 0

8
>><
>>:

xk+1 ∈ argmin{f(ξ) + βc(ξ, yk) + αkh(xk, ξ) : ξ ∈ X}

then

yk+1 ∈ argmin{g(η) + µc(xk+1, η) + νkk(yk, η) : η ∈ Y}

Nash equilibrium

(x, y) is a Nash equilibrium of the normal form game if

8
<
:

x ∈ argmin{f(ξ) + βc(ξ, y) : ξ ∈ X}

y ∈ argmin{g(η) + µc(x, η) : η ∈ Y}



4 Convergence of proximal dynamics

4.1 The convex case

Theorem (Martinet 70, Rockafellar 76, Güler 91)

• H Hilbert space

• f : H 7→ R∪{+∞} convex, lower semicontinuous, infXf ≻ −∞

• λk ≻ 0,
P

λk = +∞

• xk+1 = argmin{f(ξ) + 1

2λk
‖ ξ − xk ‖2 : ξ ∈ H}

Then,

• a) (xk)k∈N is a minimizing sequence for f .

• b) If argminf 6= ∅

xk
w−H
−→ x∞ as k → +∞, with x∞ ∈ argminf.

1. Proximal algorithm = implicit discretization of the generalized

steepest descent differential inclusion (x(tk) = xk)

0 ∈ ẋ(t) + ∂f(x(t))

0 ∈
1

λk

(x(tk+1) − x(tk)) + ∂f (x(tk+1))

λk = tk+1 − tk,
X

k

λk = +∞ ⇐⇒ tk → +∞

Hence, asymptotic behaviour of proximal algorithms ≈ asymptotic

behaviour of the steepest descent (Bruck theorem, Opial lemma).

2. Weak convergence of (xk)k∈N and not strong convergence: see

Hundal counterexample (Nonlinear Analysis, 2004).



4.2 The analytic and subanalytic case

• f : R
n 7→ R ∪ {+∞} lower semicontinuous, infX f ≻ −∞.

• The restriction of f to its domain is a continuous function.

• f satisfies the Lojasiewicz property : (L) For any limiting-critical

point x̂, that is ∂f(x̂) ∋ 0, there exist C, ǫ > 0 and θ ∈ [0, 1) s.t.

|f(x) − f(x̂)|θ ≤ C|x∗|, ∀x ∈ B(x̂, ǫ), ∀x∗ ∈ ∂f(x).

Theorem (Attouch and Bolte, Math. Programming, 2007)

Let (xk)k∈N be a bounded sequence generated by the proximal algo-

rithm, then

+∞
X

k=0

|xk+1 − xk| < +∞,

and the whole sequence (xk) converges to some critical point of f .

The rate of convergence is intimately related to the Lojasiewicz

exponent which measures some flatness (curvature) property of f .

Theorem (rate of convergence) Let xk −→ x∞ be a convergent

sequence generated by the proximal algorithm. Let us denote by θ

a Lojasiewicz exponent of x∞ ∈ crit f. Then,

(i) If θ = 0, the sequence (xk) converges in a finite number of steps,

(ii) If θ ∈ (0, 1

2
] then there exist c > 0 and Q ∈ [0, 1) such that

|xk − x∞| ≤ c Qk,

(iii) If θ ∈ ( 1

2
, 1) then there exists c > 0 such that

|xk − x∞| ≤ c k
− 1−θ

2θ−1 .



4.3 Subdifferential calculus for nonsmooth

subanalytic functions

Definition: Let f : R
n → R ∪ {+∞} be a proper lower semicontinuous

function.

For each x ∈ domf , the Fréchet subdifferential of f at x, written b∂
f(x), is the set of vectors x∗ ∈ R

n which satisfy

lim inf

y 6= x

y → x

1

|x − y|
[f(y) − f(x) − 〈x∗, y − x〉] ≥ 0.

If x /∈ domf , then b∂ f(x)) = ∅.

The limiting-subdifferential of f at x ∈ R
n, written ∂f , is defined as

follows

∂f(x) := {x∗ ∈ R
n : ∃xn → x, f(xn) → f(x), b∂f(xn) → x∗}.

Remarks: The above definition implies that b∂ f(x) ⊂ ∂ f(x), where the

first set is convex while the second one is closed.

Clearly a necessary condition for x ∈ R
n to be a minimizer of f is

∂f(x) ∋ 0.

Unless f is convex the above is not a sufficient condition. A point x ∈ R
n

that satisfies ∂f(x) ∋ 0 is called limiting-critical or critical. The set of

critical points of f is denoted by critf .



On the class of nonsmooth real valued functions
involving analytic features

1. Real-analytic functions have the Lojasiewicz property, see

Lojasiewicz (Editions du CNRS, Paris, 1963).

2. If f is subanalytic and is continuous on its domain with dom f closed

in R
n, in particular if f is continuous and subanalytic, it has the

Lojasiewicz property, see Bolte-Daniilidis-Lewis (JMAA., 2005),

Kurdyka-Parusinski (CRAS., 1994).

3. An interesting class of functions satisfying the Lojasiewicz property is

given by semialgebraic functions. These are functions whose

graphs can be expressed as

∪p
i=1

∩q
j=1

{x ∈ R
n : Pij(x) = 0, Qij(x) ≻ 0}

where for all 1 ≤ i ≤ p, 1 ≤ j ≤ q the Pij , Qij : R
n 7→ R are

polynomial functions. Due to the Tarski-Seidenberg principle, which

asserts that the linear projection of a set of the above type remains of

this type, semialgebraic objects enjoy remarkable stability properties.

4. Convex functions satisfying the following growth condition near the

infimal set do satisfy the Lojasiewicz property:

∀bx ∈ argminf, ∃C ≻ 0, ∃r ≥ 1, ǫ ≻ 0, ∀x ∈ B(bx, ǫ),

f(x) ≥ f(bx) + Cd(x, argminf)r

5. Infinite-dimensional versions of the Lojasiewicz property have been

developed in view of the asymptotic analysis of dissipative evolution

equations, see Simon (Ann. Math., 1983) and Haraux.

6. Kurdyka has recently established a Lojasiewicz-like inequality for

functions definable in an arbitrary o-minimal structure (Ann. Inst.

Fourier, 1998).



5 Alternating proximal minimization: the

convex case

5.1 Strong coupling

Setting:

• X = Y = H Hilbert spaces.

• f, g : H 7→ R ∪ {+∞} convex, lower semicontinuous, 6≡ +∞

• αk, νk ≥ 0,
P+∞

k=0
|αk+1 − αk| ≺ ∞,

P+∞
k=0

|νk+1 − νk| ≺ ∞

Algorithm:

8
>><
>>:

xk+1 = argminξ{f(ξ) + β
2
‖ ξ − yk ‖2 + αk

2
‖ ξ − xk ‖2}

then

yk+1 = argminη{g(η) + µ
2
‖ η − xk+1 ‖2 + νk

2
‖ η − yk ‖2}

• Alternating minimization with anchoring (inertia) of

Lβ,µ(ξ, η) = µf(ξ) + βg(η) + βµ
2

‖ ξ − η ‖2

• Equilibrium: solutions of the minimization problem

min{µf(ξ) + βg(η) + βµ
2

‖ ξ − η ‖2: ξ ∈ H, η ∈ H}

Theorem (Attouch-Redont-Soubeyran, SIAM J. Optimization, 2007)

Assume S = argmin Lβ,µ 6= ∅. Then,

• a) (xk, yk)k∈N is a minimizing sequence for Lβ,µ.

• b) xk
w−H
−→ x∞ , yk

w−H
−→ y∞ with (x∞, y∞) ∈ S = argminLβ,µ

• c) xk+1 − xk
s−H
−→ 0, yk+1 − yk

s−H
−→ 0

• xk − yk
s−H
−→ x∞ − y∞ as k → +∞



Alternating projection with anchoring versus classical version
r

x0

r

y0

a
u1

rx1

a
v1

r

y1

a
u2

rx2

a
v2

r

y2

a
u3

rx3

a
v3

r

y3

C

D

r

y0

rx1

r

y1

rx2

r

y2

rx3

r

y3

r
x∞

r

y∞

C

D



5.2 Weak coupling

• X ,Y,Z Hilbert spaces.

• f : X 7→ R ∪ {+∞} convex, lower semicontinuous, 6≡ +∞

• g : Y 7→ R ∪ {+∞} convex, lower semicontinuous, 6≡ +∞

• Q : X × Y 7→ R
+ nonnegative quadratic form (convex, but possibly

nondefinite), for example Q(x, y) =‖ Ax − By ‖2
Z

Algorithm: Alternating minimization with anchoring (inertia) of

Lµ(ξ, η) = f(ξ) + g(η) + µ
2
Q(ξ, η).

8
>><
>>:

xk+1 = argminξ{f(ξ) + µ
2
Q(ξ, yk) + α

2
‖ ξ − xk ‖2}

then

yk+1 = argminη{g(η) + µ
2
Q(xk+1, η) + ν

2
‖ η − yk ‖2}

Equilibrium: solutions of the minimization problem

min{f(ξ) + g(η) + µ
2
Q(ξ, η) : ξ ∈ X , η ∈ Y}

Theorem (Attouch-Bolte-Redont-Soubeyran, JCA, 2008)

Assume S = argmin Lµ 6= ∅. Then,

• a) (xk, yk)k∈N is a minimizing sequence for Lµ.

• b) xk
w−X
−→ x∞ , yk

w−Y
−→ y∞ with (x∞, y∞) ∈ S = argminLµ

• c) xk+1 − xk
s−X
−→ 0, yk+1 − yk

s−Y
−→ 0

• f(xk) → f(x∞), g(yk) → g(y∞),Q(xk, yk) → Q(x∞, y∞) as

k → +∞.



5.3 Decomposition and splitting for P.D.E

Transmission through a thin weakly conducting layer, contact problems.

Ω1 Ω2Σ

min{
1

2

Z

Ω1

|∇v1|
2 +

1

2

Z

Ω2

|∇v2|
2 +

1

2λ

Z

Σ

[v]2 −

Z

Ω

hv : v1 ∈ X , v2 ∈ Y}

X = {v ∈ H1(Ω1), v = 0 on ∂Ω ∩ ∂Ω1}, A : H1(Ω1) → Z = L2(Γ) trace

Y = {v ∈ H1(Ω2), v = 0 on ∂Ω ∩ ∂Ω2}, B : H1(Ω2) → Z = L2(Γ) trace

f(v1) =
1

2

Z

Ω1

|∇v1|
2 −

Z

Ω1

hv1

g(v2) =
1

2

Z

Ω2

|∇v2|
2 −

Z

Ω2

hv2.

8
<
:

v = v1 on Ω1

v = v2 on Ω2

A(v1) − B(v2) = [v] = jump of v through Σ.

Algorithm: uk = (u1,k, u2,k) ∈ X × Y = current point at stage k.



8
>><
>>:

u1,k+1 = argminv1
{f1(v1) + µ

2
‖ Av1 − Bu2,k ‖2

Z +α
2
‖ v1 − u1,k ‖2

X }

u2,k+1 = argminv2
{f2(v2) + µ

2
‖ Au1,k+1 − Bv2 ‖2

Z + ν
2
‖ v2 − u2,k ‖2

Y}

(3)

where α and ν are given fixed positive parameters.

Optimality conditions lead to the following Dirichlet-Neumann boundary

value problems respectively on Ω1

8
>>>>>>>><
>>>>>>>>:

−(1 − α)∆u1,k+1 = h + α∆u1,k on Ω1

(1 + α)
∂u1,k+1

∂ν1
+ µu1,k+1 = µu2,k + α

∂u1,k

∂ν1
on Γ

u1,k+1 = 0 on ∂Ω1 ∩ ∂Ω

and Ω2

8
>>>>>>>><
>>>>>>>>:

−(1 − ν)∆u2,k+1 = h + ν∆u2,k on Ω2

(1 + ν)
∂u2,k+1

∂ν2
+ µu2,k+1 = µu1,k+1 + ν

∂u2,k

∂ν2
on Γ

u2,k+1 = 0 on ∂Ω2 ∩ ∂Ω

We have adopted the classical notations, ∂zi

∂νi
is the derivative of zi in the

direction of νi which is the normal to Γ oriented outwards of Ωi.

The above algorithm converges. The initial problem on Ω has been

entirely decomposed into subproblems on Ω1 and Ω2.



6 Alternating proximal minimization: the

analytic and subanalytic cases.

• f : R
n 7→ R ∪ {+∞}, g : R

m 7→ R ∪ {+∞} lower semicontinuous,

• c: R
n × R

m 7→ R ∪ {+∞} is a smooth coupling function

(differentiable with gradient lipschitz continuous on bounded sets).

Equilibrium: critical points of the bivariate function

L : R
n × R

m 7→ R ∪ {+∞}

L(ξ, η) = f(ξ) + g(η) + c(ξ, η)

Algorithm: Alternating minimization with anchoring (inertia) of L

8
>><
>>:

xk+1 ∈ argmin{f(ξ) + c(ξ, yk) + 1

2θk
|ξ − xk|

2 : ξ ∈ R
n}

then

yk+1 ∈ argmin{g(η) + c(xk+1, η) + 1

2µk
|η − yk|

2 : η ∈ R
m}

where 0 ≺ θ− ≤ θk ≤ θ+ ≺ +∞, 0 ≺ µ− ≤ µk ≤ µ+ ≺ +∞.

Let us assume that infRnf ≻ −∞ and infRmg ≻ −∞ and that f and g

are respectively continuous on their domains dom f and dom g.

Theorem (Attouch-Bolte-Redont-Soubeyran, to appear)

Assume that L : R
n × R

m 7→ R ∪ {+∞} satisfy the Lojasiewicz

property. Let (xk, yk)k∈N be a bounded sequence generated by the

alternating proximal algorithm with anchoring, then

+∞X

k=0

(|xk+1 − xk| + |yk+1 − yk|) < +∞,

and the whole sequence (xk, yk)k∈N converges to some critical point

of L.



7 The case of n variables.

Pairwise quadratic coupling:

(Hn)

8
>>>>>>>>>>><
>>>>>>>>>>>:

- (Xi)i∈{1,...,n} n real Hilbert spaces;

- ∀i ∈ {1, ..., n}, fi : Xi 7→∈ R ∪ {+∞} closed, convex, proper.

-∀1 ≤ i < j ≤ n, Qij : Xi ×Xj 7→ R
+ continuous quadratic form;

- Q : (x1, ..., xn) ∈
Qn

i=1 Xi 7→ Q(x1, ..., xn) ∈ R
+

Q(x1, ..., xn) =
P

1≤i<j≤n Qij(xi, xj);

- L :
Qn

i=1 Xi 7→ R ∪ {+∞}

L(x1, ..., xn) =
Pn

i=1 fi(xi) + Q(x1, ..., xn)

has at least one minimum point.

Alternate algorithm for successively computing the components

(xi,k+1)i∈{1,..,n} at the (k + 1)-th step:

8
>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

x1,k+1 = argminξ∈X1
{f1(ξ) + Q(ξ, x2,k, ..., xn,k)+ ‖ ξ − x1,k ‖2}

..

.

xi,k+1 = argmin{fi(ξ) + Q(x1,k+1, . . . , xi−1,k+1, ξ, xi+1,k, . . . , xn,k)

+ ‖ ξ − xi,k ‖2: ξ ∈ Xi}

.

..

xn,k+1 = argminξ∈Xn
{fn(ξ) + Q(x1,k+1, . . . , xn−1,k+1, ξ)

+ ‖ ξ − xn,k ‖2}

Theorem (ABRS, J. Conv. Anal., 2008) Under assumptions (Hn), the

sequence k 7→ (xi,k)i∈{1,..,n} generated by the alternate algorithm is a

minimizing sequence for L converging weakly in
Qn

i=1 Xi to a minimum

point (xi,∞)i∈{1,..,n} of L. Moreover fi(xi,k) → fi(xi,∞) and

Q(x1,k, . . . , xn,k) → Q(x1,∞, . . . , xn,∞) as k → +∞.



8 Splitting parallel algorithms with friction.

(Attouch-Briceno-Combettes, 2007, in progress)

Let m ≥ 2 and p ≥ 1 be integers and let µ > 0.

For every i ∈ {1, . . . , m}, Hi real Hilbert space, fi ∈ Γ0(Hi).

For every k ∈ {1, . . . , p}, Gk real Hilbert space

ϕk ∈ Γ0(Gk) differentiable with a τ−1

k
-lipschitz gadient.

For every i ∈ {1, . . . , m}, Lik:Hi → Gk be a bounded linear operator.

min{
Pm

i=1 fi(xi)+µ
Pp

k=1
ϕk(

Pm
i=1 Likxi) : xi ∈ Hi, i = 1, ..., m}

under the assumption that solutions exist.

Set νk =
Pm

i=1 ‖Lik‖
2, β = 1

pmax1≤k≤pτkνk
.

Let (γn)n∈N be a sequence in ]0, 2β/µ[ and let (λn)n∈N be a sequence in

]0, 1] such that

infn∈Nγn > 0, supn∈Nγn < 2β
µ

, and infn∈Nλn > 0.

Let x1,0 ∈ H1, . . . , xm,0 ∈ Hm. ∀n ∈ N, ∀i ∈ {1, ..., m}, set

xi,n+1 = (1−λn)xi,n + λnproxγnfi
(xi,n −µγnBi(x1,n, ..., xm,n)).

where

g(x1, ..., xm) =
Pp

k=1
ϕk(

Pm
i=1 Likxi), i.e.,

Bi(x1, ..., xm) = ∇ig(x1, ..., xm),

Bi(x1, ..., xm) =
Pp

k=1
L∗

ik∇ϕk(
Pm

i=1 Likxi).

Convergence: ∀i ∈ {1, . . . , m}, (xi,n)n∈N converges weakly to a point

xi ∈ Hi and (xi)1≤i≤m is a solution to the above variational problem.


