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Relaxation of homogeneous energies

f :Rn → [0, +∞[ Borel,

Ω a smooth bounded open subset of Rn.

Relaxation problems for the integral energy

F : u ∈ U 7→

∫

Ω

f(∇u) dLn,

where U = W 1,∞(Ω) (Neumann problem), U = u0 + W 1,∞
0 (Ω) (Dirichlet problem).

Relaxation process has been widely developed in the last decades in various frameworks, and under

different assumptions on f .

Books:

Morrey, Ekeland-Temam, Attouch, Buttazzo, Dacorogna, Dal Maso, Carbone-De Arcangelis,

Fonseca-Leoni, . . .
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Topology = L1(Ω).

Two main L1(Ω)-lower semicontinuous envelope of F corresponding to Neumann and Dirichlet

problems

F : u ∈ L1(Ω) 7→ min

{

lim inf
h→+∞

∫

Ω

f(∇uh) dLn : {uh} ⊆ W 1,∞(Ω), uh → u in L1(Ω)

}

,

F0: u ∈ L1(Ω) 7→ min

{

lim inf
h→+∞

∫

Ω

f(∇uh) dLn : {uh} ⊆ u0 + W 1,∞
0 (Ω), uh → u in L1(Ω)

}

.
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Integral representation properties of F and F0

Under convexity assumptions on f , case of the Neumann problem in BV (Ω)

U a Sobolev space, or a space of smooth functions,

F (u) =

∫

Ω

f(∇u) dLn +

∫

Ω

f∞

(

dDsu

d|Dsu|

)

d|Dsu| for every u ∈ BV (Ω),

where (z0 any point in Rn)

f∞: z ∈ Rn 7→ lim
t→+∞

f(z0 + tz) − f(z0)

t
.

The case of the Dirichlet problem in BV (Ω)

F0(u) =

∫

Ω

f(∇u) dLn +

∫

Ω

f∞

(

dDsu

d|Dsu|

)

d|Dsu| +

∫

∂Ω

f∞((uz0
− u)nΩ) dHn−1

for every u ∈ BV (Ω).
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When f is not convex, it turns out that

F (u) =

∫

Ω

cof(∇u) dLn for every u ∈ W 1,∞(Ω),

F0(u) =

∫

Ω

cof(∇u) dLn for every u ∈ W 1,∞
0 (Ω),

where cof is the convex envelope of f defined as

cof : z ∈ Rn 7→ sup{φ(z) : φ:Rn → [0, +∞] convex, φ(ζ) ≤ f(ζ) for every ζ ∈ Rn}.

Results in the same spirit hold also in different settings. For example, when f is defined on the

set of the n × m matrices and the elements of U are Rm-valued, the above formulas still holds

provided cof is replaced by the quasiconvex envelope of f .
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In the above results the gradients of the elements of U are allowed to lie in the whole of Rn without

any restriction. When this does not occur, namely when a condition like

∇u(x) ∈ E for a.e. x ∈ Ω,

must be fulfilled by the elements of U for some given subset E of Rn, the corresponding relaxation

processes become pointwise gradient constrained. The treatment of this case can be handled

by allowing the value +∞ in the target space of f . Indeed, in this case the only elements of U

that play a role are those that satisfy the following pointwise gradient constraint

∇u(x) ∈ domf for a.e. x ∈ Ω,

where domf = {z ∈ Rn : f(z) < +∞}.

Constraint conditions can be very restrictive, entailing serious technical difficulties and hin-

dering the development of a wide range of results like those described in the unconstrained case.
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Gradient constrained convex homogenization processes

Carbone L., Corbo Esposito A., De Arcangelis R.: Homogenization of Neumann Problems

for Unbounded Functionals; Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 2-B, (1999),

463–491,

Carbone L., Cioranescu D., De Arcangelis R., Gaudiello A.: Homogenization of Un-

bounded Functionals and Nonlinear Elastomers. The Case of the Fixed Constraints Set; ESAIM

Control Optim. Calc. Var. 10, 1, (2004), 53–83,

Cioranescu D., Damlamian A., De Arcangelis R.: Homogenization of Integrals with Point-

wise Gradient Constraints via the Periodic Unfolding Method; Ric. Mat. 55, (2006), 31–53.



R. De Arcangelis: Relaxation of Gradient Constrained Energies and Applications. Rate-Independence, Homogenization and Multiscaling, November 17, 2007 7

Few results exist in literature on pointwise gradient constrained relaxation for non-convex

f with convex domain (in some cases just a ball).

Ekeland I., Temam R.: “Convex Analysis and Variational Problems”; Stud. Math. Appl. 1,

North-Holland, Amsterdam (1976),

Marcellini P., Sbordone C.: Semicontinuity Problems in the Calculus of Variations; Nonlinear

Anal. 4, (1980), 241–257,

Carbone L., De Arcangelis R.: On the Relaxation of Some Classes of Unbounded Integral

Functionals; Matematiche 51, (1996), 221–256,

Carbone L., De Arcangelis R.: On the Relaxation of Dirichlet Minimum Problems for Some

Classes of Unbounded Integral Functionals; Ricerche Mat. 48-Suppl., (1999), 347–372,

Carbone L., De Arcangelis R.: On a Non-Standard Convex Regularization and the Relaxation

of Unbounded Functionals of the Calculus of Variations; J. Convex Anal. 6, (1999), 141–162,

Carbone L., De Arcangelis R.: “Unbounded Functionals in the Calculus of Variations. Rep-

resentation, Relaxation, and Homogenization”; Chapman & Hall/CRC Monogr. Surv. Pure Appl.

Math. 125, Chapman & Hall/CRC, Boca Raton, FL (2001).
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Representation formulas

f :Rn → [0, +∞] Borel, Ω convex bounded open subset of Rn,

F (u) =

∫

Ω

f∗∗(∇u) dLn +

∫

Ω

(f∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu| for every u ∈ BV (Ω),

F0(u) =

∫

Ω

f∗∗(∇u) dLn +

∫

Ω

(f∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu| +

∫

∂Ω

(f∗∗)∞((uz0
− u)nΩ) dHn−1

for every u ∈ BV (Ω),

where f∗∗ is the convex lower semicontinuous envelope of f defined as

f∗∗: z ∈ Rn 7→ sup{φ(z) : φ:Rn → [0, +∞] convex and lower semicontinuous,

φ(ζ) ≤ f(ζ) for every ζ ∈ Rn}.

Some cases in which domf has empty interior have been treated.
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Remark

f∗∗(z) = sc−(cof)(z).

inf

{

lim inf
h→+∞

∫

Ω

f(∇uh) dLn : {uh} ⊆ W 1,∞(Ω), uh → u in weak*-W 1,∞(Ω),

∇uh(x) ∈ domf for a.e. x ∈ Ω

}

=

∫

Ω

co(sc−f)(∇u) dLn.

co(sc−f) 6= sc−(cof).

This feature does not occur if f is only real valued.

Sufficient conditions for identity between co(sc−f) and sc−(cof).

If limz→∞ f(z)/|z| = +∞, then co(sc−f) = sc−(cof).
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All these papers assume the structure assumption

(Cd) domf is convex.

In particular, the treatment of the case in which the gradients of the admissible configurations lie

in disconnected or finite sets cannot be approached in this context.
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Pointwise gradient constrained relaxation processes when assumption (Cd) is dropped.

De Arcangelis R.: On the Relaxation of Some Classes of Pointwise Gradient Constrained En-

ergies; Ann. Inst. H. Poincaré Anal. Non Linéaire 24, (2007), 113–137.

Very little is known on this problem, the measure theoretic techniques developed in the

above mentioned papers seem not to be well suited for this case.

New approach allows us to treat both the cases of Neumann and Dirichlet problems.
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Gradient constrained Neumann problems

U = W 1,∞(Ω),

Theorem. Let f :Rn → [0, +∞] be Borel. Then

F (u) =

∫

Ω

f∗∗(∇u) dLn +

∫

Ω

(f∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu| for every u ∈ BV (Ω)

for every convex bounded open set Ω, u ∈ BV (Ω).

Of course, the above formula agrees with the above recalled one established under (Cd).

No need to assume any topological or geometrical condition on domf .

The constraint condition involved in the relaxed problem, at least on Sobolev functions, is given

by

∇u(x) ∈ co(domf) for a.e. x ∈ Ω.
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Corollary. Let g:Rn → [0, +∞[ be Borel, and let E be a Borel subset of Rn. Then

inf

{

lim inf
h→+∞

∫

Ω

g(∇uh) dLn : {uh} ⊆ W 1,∞(Ω), ∇uh(x) ∈ E for every h ∈ N and a.e.

x ∈ Ω, uh → u in L1(Ω)

}

=

∫

Ω

(g + IE)∗∗(∇u) dLn +

∫

Ω

((g + IE)∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu|

for every Ω ∈ A0(R
n) convex, u ∈ BV (Ω).
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Gradient constrained Dirichlet problems

int(co(domf)) 6= ∅

Proposition. Let f :Rn → [0, +∞] be Borel with int(co(domf)) = ∅. Let Ω be a bounded open

set, u0 ∈ W 1,∞
loc (Rn) satisfy ∇u0(x) ∈ aff(domf) for a.e. x ∈ Ω. Then, for every u ∈ L1(Ω),

F0(Ω, u) =

{

∫

Ω
f(∇u) dLn if u = u0 a.e. in Ω

+∞ otherwise.

Theorem. Let f :Rn → [0, +∞] be Borel with int(co(domf)) 6= ∅. Let z0 ∈ int(co(domf)). Then

F0(Ω, u) =

∫

Ω

f∗∗(∇u) dLn +

∫

Ω

(f∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu| +

∫

∂Ω

(f∗∗)∞((uz0
− u)nΩ) dHn−1

for every convex bounded open set Ω, u ∈ BV (Ω).
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Corollary. Let g:Rn → [0, +∞[ be Borel, and let E be a Borel subset of Rn with int(co(E)) 6= ∅.

Let z0 ∈ int(co(E)). Then

inf

{

lim inf
h→+∞

∫

Ω

g(∇uh) dLn : {uh} ⊆ uz0
+ W 1,∞

0 (Ω),

∇uh(x) ∈ E for every h ∈ N and a.e. x ∈ Ω, uh → u in L1(Ω)

}

=

=

∫

Ω

(g + IE)∗∗(∇u) dLn +

∫

Ω

((g + IE)∗∗)∞
(

dDsu

d|Dsu|

)

d|Dsu|+

+

∫

∂Ω

((g + IE)∗∗)∞((uz0
− u)nΩ) dHn−1

for every Ω ∈ A0(R
n) convex, u ∈ BV (Ω).
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Pointwise gradient constrained relaxation problems are related to first order differential inclu-

sions and Hamilton-Jacobi equations.

Ω open subset of Rn, E any subset of Rn, H:Rn → R.

∇u(x) ∈ E for a.e. x ∈ Ω,

H(∇u(x)) = 0 for a.e. x ∈ Ω (eikonal-type Hamilton-Jacobi equation),

the two frameworks are equivalent provided E = {z ∈ Rn : H(z) = 0}.

f = IE ,

where E is a Borel subset of Rn, and

IE(z) =

{

0 if z ∈ E
+∞ if z ∈ Rn \ E.
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Literature on existence in the scalar and vector-valued case by A. Bressan, F. Flores, A. Cellina,

M.G. Crandall, L.C. Evans, P.-L. Lions, I. Capuzzo-Dolcetta, G. Friesecke, B. Kirchheim, S. Müller,

V. Šverák, M.A. Sychev, B. Dacorogna, P. Marcellini, . . .

Existence but not uniqueness since, in general, the set of the solutions can even be so large to

verify a density property.

Criteria to select among the solutions.

De Arcangelis R.: First Order Differential Inclusions and Hamilton-Jacobi Equations with

Applications to Selection Criteria of the Solutions; to appear on Boll. Unione Mat. Ital. (2008)

A selection criterium based on a mass optimization type principle is proposed.

The criterium selects those solutions, possibly coupled with suitable boundary conditions, that

minimize (or maximize) a given integral functional G, for example of the type

G(u) =

∫

Ω

g(x, u(x)) dx,

where g is a Carathéodory integrand.



R. De Arcangelis: Relaxation of Gradient Constrained Energies and Applications. Rate-Independence, Homogenization and Multiscaling, November 17, 2007 18

Sol(Ω, E) = {u ∈ W 1,∞(Ω) : ∇u(x) ∈ E for a.e. x ∈ Ω},

Sol(u0, Ω, E) = {u ∈ u0 + W 1,∞
0 (Ω) : ∇u(x) ∈ E for a.e. x ∈ Ω}.

Minimization problems of G in Sol(Ω, E) or in Sol(u0, Ω, E) may have no solution.

One is led to use relaxation methods in calculus of variations to get existence of at least relaxed

solutions. These methods naturally require to close the above sets in suitable topological spaces

in which such closures turn out to be compact, and where G enjoys good continuity, or lower

semicontinuity, properties. Then, one obtains relaxed solutions of minimization problems of G in

Sol(Ω, E) or in Sol(u0, Ω, E) as elements of such closures.

In this setting, uniqueness of relaxed solutions can be obtained as well provided suitable assump-

tions on g are fulfilled.

Problem: Representation of the closures of Sol(Ω, E) and Sol(u0, Ω, E).

The elements of such closures can be seen as generalized or weak solutions of the differential

inclusion ∇u(x) ∈ E for a.e. x ∈ Ω.
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If E is bounded, the gradients of the elements of Sol(Ω, E) are uniformly bounded. Consequently,

Sol(Ω, E) enjoys natural compactness properties in the space of continuous functions. Because

of this, a natural closure of Sol(Ω, E) to take into account is the one in the topology of uniform

convergence. In this case, the closure of Sol(Ω, E) remains a subset of W 1,∞(Ω), and its description

follows directly from the previous relaxation results.

When E is not bounded, for example the one where E is the graph of a function defined on Rk

for some k < n, such kind of compactness does not hold anymore, and a natural way to retrieve a

similar property is to assume growth conditions on g, for example of the type

|u|p ≤ g(x, u) for a.e. x ∈ Ω and every u ∈ R

for some p > 1, that provide the weak compactness in Lp(Ω) of the sublevel sets of G in Sol(Ω, E).

Consequently, the closure of Sol(Ω, E) to take into account is the one in such topology.



R. De Arcangelis: Relaxation of Gradient Constrained Energies and Applications. Rate-Independence, Homogenization and Multiscaling, November 17, 2007 20

When applied to f = IE , the above relaxation reaults provides the following description of the

intersection of the closure in L1(Ω) of Sol(Ω, E) with BV (Ω), provided E is Borel and Ω is convex

and bounded,

BV (Ω) ∩ cl(L1(Ω))Sol(Ω, E) =

=

{

u ∈ BV (Ω) : ∇u ∈ co(E) for a.e. x ∈ Ω and
dDsu

d|Dsu|
(x) ∈

(

co(E)
)∞

for |Dsu|-a.e. x ∈ Ω

}

.

Extension to any subset E of Rn by dropping the assumption that E is Borel.
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Such new result, coupled with suitable approximation techniques, is used to describe the whole

closure of Sol(Ω, E) in various classes of topological spaces.

E ⊆ Rn, Ω convex bounded open set

cl(weak*-D′(Ω))Sol(Ω, E) =

=

{

u ∈ D′(Ω) : −〈u,∇ϕ〉 ∈ co(E) for every ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

,

cl(weak*-Mloc(Ω))Sol(Ω, E) =

=

{

u ∈ Mloc(Ω) : −

∫

Ω

∇ϕ du ∈ co(E) for every ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

,

and, provided p ∈ [1, +∞[ (when p = +∞ the weak*-L∞(Ω)-topology must be considered),

cl(Lp(Ω))Sol(Ω, E) =

=

{

u ∈ Lp(Ω) : −

∫

Ω

u∇ϕ dx ∈ co(E) for every ϕ ∈ C∞
0 (Ω) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

.
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Again when Ω is bounded and convex, the same representation problems are approached for

Sol(u0, Ω, E) when u0 is affine and ∇u0 ∈ int(co(E)).

cl(weak*-D′(Rn))Sol(u0, Ω, E) =

{

u ∈ D′(Rn) :

spt(u − u0) ⊆ Ω, −〈u,∇ϕ〉 ∈ co(E) for every ϕ ∈ C∞
0 (Rn) with ϕ ≥ 0 and

∫

Rn

ϕ dx = 1

}

,

cl(weak*-M(Ω))Sol(u0, Ω, E) =

{

u ∈ M(Ω) :

−

∫

Ω

∇ϕ du +

∫

∂Ω

ϕu0nΩ dHn−1 ∈ co(E) for every ϕ ∈ C∞
0 (Rn) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

,

and, if p ∈ [1, +∞[ (when p = +∞ the weak*-L∞(Ω)-topology must be considered),

cl(Lp(Ω))Sol(u0, Ω, E) =

{

u ∈ Lp(Ω) :

−

∫

Ω

u∇ϕ dx +

∫

∂Ω

ϕu0nΩ dHn−1 ∈ co(E) for every ϕ ∈ C∞
0 (Rn) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

.
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If p = 1, representation result on the whole L1(Ω) for the L1(Ω)-lower semicontinuous envelope of

the non-coercive functional ISol(Ω,E).

inf

{

lim inf
h→+∞

ISol(Ω,E)(uh) : {uh} ⊆ L1(Ω), uh → u in L1(Ω)

}

=

= I
{v∈L1(Ω):−

∫

Ω
v∇ϕ dx∈co(E) for every ϕ∈C∞

0
(Ω) with ϕ≥0 and

∫

Ω
ϕ dx=1}

(u)

for every u ∈ L1(Ω).

Analogously, all the above formulas can be interpreted as relaxed forms, in various spaces, of

differential inclusions and Hamilton-Jacobi equations. Roughly speaking, they establish relaxed

formulations in a distributional sense in spaces of distributions, measures, and not necessarily

smooth functions, obtained by means of the convexification of the constraint set E.
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As application, optimization based selection criterium.

Theorem. Let Ω be a convex bounded open subset of Rn, let E be a subset of Rn with

int(co(E)) 6= ∅, and let z0 ∈ int(co(E)). Let g: Ω × R → [0, +∞[ be a Carathéodory integrand

such that g(x, ·) is convex for a.e. x ∈ Ω, and assume that

|u|p ≤ g(x, u) ≤ Λ(a(x) + |u|p) for a.e. x ∈ Ω and every u ∈ R,

for some p ∈]1, +∞[, Λ ≥ 0 and a ∈ L1(Ω). Then, if u0 is an affine function on Rn having z0 as

gradient,

inf

{
∫

Ω

g(x, u(x)) dx : u ∈ Sol(u0, Ω, E)

}

=

= min

{
∫

Ω

g(x, u(x)) dx : u ∈ Lp(Ω), −

∫

Ω

u∇ϕ dx +

∫

∂Ω

ϕu0nΩ dHn−1 ∈ co(E)

for every ϕ ∈ C∞
0 (Rn) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

.

Moreover, the minimizing sequences of the above left-hand side have weakly Lp(Ω)-converging

subsequences that converge to solutions of the right-hand side. In particular, if g is strictly convex

in the u variable for a.e. x ∈ Ω, then the minimizing sequences of the left-hand side weakly

converge in Lp(Ω) to the unique minimizer of the right-hand side.
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Example. n = 2, Ω =] − 1, 1[2,

θ: (x, y) ∈ Ω 7→

{

1/2 if xy ≥ 0
−1/2 if xy < 0.

Find among the solutions of the Dirichlet problem (u0 = 0)

{

∇yu(x, y) = sin(∇xu(x, y)) for a.e. (x, y) ∈ Ω

u ∈ W 1,∞
0 (Ω),

or equivalently

{

(∇xu(x, y),∇yu(x, y)) ∈ E = {(z1, z2) ∈ R2 : z2 = sin z1} for a.e. (x, y) ∈ Ω

u ∈ W 1,∞
0 (Ω),

those that minimize the integral

∫

Ω

|u(x, y)− θ(x, y)|2 dx dy.
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inf

{
∫

Ω

|u(x, y)− θ(x, y)|2 dx dy : u ∈ W 1,∞
0 (Ω), ∇yu(x, y) = sin(∇xu(x, y)) for a.e. (x, y) ∈ Ω

}

This minimization problem has no solution in W 1,∞
0 (Ω).
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Relaxed minimization problem

co(E) = R × [−1, 1]

(0, 0) ∈ int(co(E))

min

{
∫

Ω

|u(x, y)− θ(x, y)|2 dx dy : u ∈ L2(Ω),

−

∫

Ω

u(x, y)∇ϕ(x, y) dx dy ∈ R × [−1, 1] for every ϕ ∈ C∞
0 (R2) with ϕ ≥ 0 and

∫

Ω

ϕ dx = 1

}

=

= min

{
∫

Ω

|u(x, y)− θ(x, y)|2 dx dy : u ∈ L2(Ω),

u(x, ·) ∈ W 1,∞
0 (] − 1, 1[) for a.e. x ∈ ] − 1, 1[, |∇yu(x, y)| ≤ 1 for a.e. y ∈ ] − 1, 1[

}

.
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u∞(x, y) ∈ Ω 7→







−x(1 + y)/|x| if −1 < y < −1/2
xy/|x| if −1/2 ≤ y ≤ 1/2
x(1 − y)/|x| if 1/2 < y < 1

is the only (non smooth) solution of the relaxed minimization problem.

Each minimizing sequence of the infimum problem weakly converges in L2(Ω) to u∞.


