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Analogical Models
A large class of mathematical models are built by coupling

• a (universal) balance law,

e.g., the dynamical equation, the Maxwell system, the energy balance, and so on,

• a set of constitutive relations (that characterize the specific material),

• appropriate initial- and boundary-conditions.

In continuum mechanics, electricity, magnetism, and so on

constitutive behaviours are often represented via so-called analogical models, namely

networks of elementary components arranged in series and / or in parallel.

If each element fulfils a constitutive law, a global law is then derived for each network.



Rheological Models
ε: deformation tensor, σ: stress tensor.

— For a discrete family of elements {Aj : j = 1, ...,M}
(i) Combination in Series: σ = σ1 = σ2, ε = ε1 + ε2;

(ii) Combination in Parallel: ε = ε1 = ε2, σ = σ1 + σ2.

E.g., for a parallel arrangement

σj = Bj :εj ∀j, ⇒ σ =
M∑
j=1

Bj :ε.

— For a continuous distribution of elements {A(y) : y ∈ Y } (Y := [0, 1[3):

(i) Combination in Series: σ(y) = constant, ε =
∫
Y
ε(y) dy;

(ii) Combination in Parallel: ε(y) = constant, σ =
∫
Y
σ(y) dy.

E.g., for a parallel arrangement

σ(y) = B(y) :ε(y) for a.e. y ⇒ σ =
∫
Y

B(y) dy :ε.
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Schemes of Series and Parallel Arrangements

Series:



ε =

∑
j

εj

σ = σj ∀j.
Parallel:



σ =

∑
j

σj

ε = εj ∀j.



Examples of Basic Components

Classically linear elasticity is assumed for the spheric components: σ(s) = aε(s),

whereas several relations are considered for the deviatoric components, e.g.:

(i) Linear Elasticity: σ(d) = A :ε(d) (A = Aijk�).

(ii) Nonlinear Viscosity: ε̇(d) ∈ ∂ϕ(σ(d)), with ϕ l.s.c. and convex.

(iii) Rigid Perfect Plasticity: as above for ϕ = IK , K being the yield criterion.

Examples of Composed Model

(i) Maxwell model: series arrangement of linear elasticity and nonlinear viscosity:

B : σ̇ + ∂ϕ(σ) � ε̇ whence σ = G(ε).

(ii) Generalized Maxwell model: parallel arrangement of Maxwell models:

σ =
∑
j

Gj(ε) or σ =
∫
Y

G(ε, y) dy.
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Two Mechanical Models with Hysteresis

(iii) Prandtl-Reuss Model (or Stop): as in the Maxwell model, with ϕ = IK :

σ = G(ε) (G : hysteresis operator).

(iv) Prandtl-Ishlinskiı̆ Model of Stop-Type: parallel arrangement of stops:

σ =
∑
j

Gj(ε) or σ =
∫
Y

G(ε, y) dy.
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What is the significance of analogical models ?

May networks of series / parallel arrangements represent composites?

May the corresponding constitutive relations be then retrieved via homogenization?

Which models do arise by assembling (either elementary or composite) models?

The answer depends upon the coupled PDEs and the space-dimension:

ε :=
∂u

∂x
, ρ

∂2u

∂t2
− ∂σ
∂x

= f in 1 space-dimension,

ε := ∇s�u, ρ
∂2�u

∂t2
−∇ · σ = �f in 3 space-dimensions.



A Model of Elasto-Visco-Plasticity

σ: stress tensor, ε: linearized strain tensor,

B(x): compliance tensor, ϕ(·, x) : R9
s → R ∪ {+∞} convex l.s.c.

∂ε

∂t
−B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x), namely (1)

(∂ε
∂t
−B(x) :

∂σ

∂t

)
: (σ − v) ≥ ϕ(σ, x)− ϕ(v, x) ∀v ∈ R9

s. (1)′

This relation accounts for elasto-visco-plasticity, including

the nonlinear Maxwell model, and

the Prandtl-Reuss model.

(The latter is a weak formulation of the evolution of the elasto-plastic interface...)

(1) is assumed pointwise and is coupled with the dynamical equation

ρ
∂2�u

∂t2
−∇·σ = �f in ΩT := Ω×]0, T [. (2)



Program for Two- and Single-Scale Homogenization

1. Model of a Macroscopically Inhomogeneous Material. Here the fields only depend

on the coarse-scale variable x (besides time). A single-scale initial- and boundary-value

problem P1 is formulated and solved.

2. Model of a Mesoscopically Inhomogeneous Material. The constitutive data B and ϕ

are assumed to depend periodically on a fine-scale variable y := x/η (η being a the ratio

between the two space-scales). The problem P1 is then relabelled as P1η.

3. Two-Scale Homogenization. As η → 0 a subsequence of solutions of P1η weakly

two-scale converges to a solution of a two-scale problem, P2, in which the fields depend on

both the coarse- and fine-scale variables x and y (besides time).

4. Scale-Transformation of the Two-Scale Problem (“Upscaling”). A single-scale

problem P3 is derived from the two-scale problem P2, by averaging the mesoscopic fields

over the reference set Y and by homogenizing the constitutive relation.

5. Inversion of the Scale-Transformation (“Downscaling”). Conversely any solution of

P3 is represented as the Y-average of a solution of problem P2.



We may thus represent processes in our composite by means of four different models:

— (i) a single-scale model that can be represented via an analogical model, and rests on

an (apparently unjustified) mean-field-type hypothesis;

— (ii) an approximate single-scale model, that is characterized by a small but finite

parameter η; this might also be regarded as intermediate between a single-scale and a two-

scale model;

— (iii) a detailed representation via a two-scale problem, in which the fields depend on

both the coarse- and fine-scale variables x and y;

— (iv) a more synthetic but equivalent formulation, via a single-scale homogenized

model in which the fields only depend on the coarse-scale variable x.

The models (iii) and (iv) contain the same amount of information, although this is fully

displayed just in (iii).

In general the single-scale models (i) and (iv) need not be equivalent, for apparently there

is no reason why either the stress or the strain should be mesoscopically uniform.



Two-Scale Convergence

After Nguetseng and Allaire, denoting by Y the N -dim. unit torus,

uε ⇀
2
u in L2(RN×Y) ⇐⇒

def
‖uε‖L2(RN ) ≤ C and

∫
RN
uε(x) ψ

(
x,
x

ε

)
dx→

∫∫
RN×Y

u(x, y) ψ(x, y) dxdy ∀ψ∈D(RN×Y).

Example. For any ψ ∈ D(RN×Y), ψ(x, x/ε) ⇀
2
ψ(x, y) in L2(]0, 1[×Y). E.g.:

x sin(2πx/ε) ⇀
2
x sin(2πy) in L2(]0, 1[×Y).

G. Allaire: Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal. 23

(1992) 1482–1518

G. Nguetseng: A general convergence result for a functional related to the theory of

homogenization. S.I.A.M. J. Math. Anal. 20 (1989) 608–623



Theorem . If

uε ⇀ u in H1(Ω), (1)

then there exists w ∈ L2
(
Ω;H1(Y)

)
such that

∫
Y w(·, y)dy = 0 a.e. in Ω, and such that, as

ε→ 0 along a suitable subsequence,

∇uε ⇀
2
∇u +∇yw in L2(Ω×Y)3. (2)

Example.

uε(x) := εx sin(2πx/ε) ⇀ 0 =: u(x) in H1(0, 1), (3)

Dxuε(x) = ε sin(2πx/ε) + 2πx cos(2πx/ε)

⇀
2

2πx cos(2πy) = Dxu(x) +Dyw(x, y) in L2(]0, 1[×Y),
(4)

where w(x, y) = x sin(2πy).
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1. Model of a Macroscopically Inhomogeneous Material

Here the fields only depend on the coarse-scale variable x (besides time).

Problem 1. Find (�u, σ) such that, setting ε := ∇s�u,

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;W 1,q
0 (Ω)3

)
(1)

σ ∈W 1,∞(
0, T ;L2(Ω)9

s

)
, ∇·σ ∈ L∞

(
0, T ;L2(Ω)3

)
(2)

∂ε

∂t
−B(x) :

∂σ

∂t
∈ ∂ϕ(σ, x) a.e. in ΩT (3)

ρ
∂2�u

∂t2
−∇·σ = �f in D′(ΩT ). (4)

This problem is well-posed.

2. Model of a Mesoscopically Inhomogeneous Material

Just replace x by x/η, η being a (small) positive parameter.



3. Two-Scale Model

Problem 2. Find �u = �u(x, t), ε = ε(x, y, t), σ = σ(x, y, t) such that

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;W 1,q
0 (Ω)3

)
(1)

σ ∈W 1,∞(
0, T ;L2(Ω×Y)9

s

)
, ∇·

∫
Y
σ dy ∈ L∞

(
0, T ;L2(Ω)3

)
(2)

∃�u(1) ∈ Lq
(
ΩT ;W 1,q(Y)3

)
: ε = ∇s�u +∇y�u(1) a.e. in ΩT×Y (3)

∂ε

∂t
−B(y) :

∂σ

∂t
∈ ∂ϕ(σ, y) a.e. in ΩT×Y (4)

ρ
∂2�u

∂t2
−∇·

∫
Y
σ dy = �f in D′(ΩT ) (5)

∇y ·σ = �0 in D′(Y)3, a.e. in ΩT . (6)

This is retrieved by passing to the two-scale limit as η → 0 in Problem 1η.



4. Single-Scale Homogenization of the Constitutive Law

Basic scale decomposition: we define the average and fluctuating components:

v̂ :=
∫
Y
v(y) dy, ṽ := v − v̂ ∀v ∈ L1(Y). (1)

Henceforth we take p = q = 2. We define the spaces

W := {η ∈ L2(Y)9 : η̂ = 0,∇·η = �0 in D′(Y)3} (2)

Z := {ζ ∈ L2(Y)9 : ζ̂ = 0, ζ = ∇s�v a.e. in Y , for some �v ∈ H1(Y)3} (3)

and notice the obvious orthogonality properties

∫
Y
ζ(y) :η(y) dy = 0 ∀ζ ∈ Z,∀η ∈W (4)

∫
Y
ζ̂ : η̃(y) dy = 0 ∀ζ, η ∈ L2(Y)9. (5)



The Fenchel Properties

∀u,w, F (u) + F ∗(w) ≥ w·u (Fenchel inequality)

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) = w·u (Fenchel property – I).
(1)

The latter statement then also reads

w ∈ ∂F (u) ⇔ F (u) + F ∗(w) ≤ w·u (Fenchel property – II). (2)

Trivial example : F (v) = |v|2/2, whence ∂F (u) = u

∀u,w, |u|2
2

+
|w|2

2
≥ w·u (Fenchel inequality)

w = u ⇔ |u|2
2

+
|w|2

2
= w·u (Fenchel property – I)

(3)

w = u ⇔ |u|2
2

+
|w|2

2
≤ w·u (Fenchel property – II). (4)



By the Fenchel properties, ∂ε∂t −B(x) : ∂σ∂t ∈ ∂ϕ(σ, x) a.e. in ΩT is equivalent to

ϕ(σ, x) + ϕ∗
(∂ε
∂t
−B(x) :

∂σ

∂t
, x

)
= σ :

(∂ε
∂t
−B(x) :

∂σ

∂t

)
, (1)

namely ∫∫∫
Ωτ×Y

[
ϕ(σ, x) + ϕ∗

(∂ε
∂t
−B(x) :

∂σ

∂t
, x

)]
dxdydt

+
1
2

∫∫
Ω×Y

(σ :B(x) :σ)
∣∣∣t=τ
t=0
dxdy =

∫∫∫
Ωτ×Y

σ :
∂ε

∂t
dxdydt ∀τ ∈ ]0, T ].

(2)

After a further integration in time and using the above orthogonality properties, we get an

equation of the form

A(σ, ε) =
∫∫∫

ΩT×Y
(T − t)σ :

∂ε

∂t
dxdydt =

∫∫
ΩT

(T − t)σ̂ :
∂ε̂

∂t
dxdt. (3)

Setting Λ(σ̂, ε̂) := inf
{
A(σ̂ + σ̃, ε̂ + ε̃) : (σ̃, ε̃) ∈ L2(ΩT ;W ×Z)

}
, we then get (by the

Fenchel properties...)

Λ(σ̂, ε̂) =
∫∫

ΩT

(T − t)σ̂ :
∂ε̂

∂t
dxdt. (4)



4. Homogenized Single-Scale Model

Problem 3. Find (�u, ε̄, σ̄) such that

�u ∈W 2,∞(
0, T ;L2(Ω)3

)
∩W 1,∞(

0, T ;H1
0 (Ω)3

)
(1)

σ̄ ∈W 1,∞(
0, T ;L2(Ω)9

s

)
, ∇·σ̄ ∈ L∞

(
0, T ;L2(Ω)3

)
(2)

Λ(σ̄, ε̄) =
∫∫

ΩT

(T − t)σ̄ :
∂ε̄

∂t
dxdt (3)

ρ
∂2�u

∂t2
−∇·σ̄ = �f in D′(ΩT ). (4)

A.V. : Homogenization of the nonlinear Kelvin-Voigt model of visco-elasticity and of the

Prager model of plasticity. Continuum Mech. Thermodyn. 18 (2006) 223-252

A.V. : Homogenization of the nonlinear Maxwell model of visco-elasticity and of the

Prandtl-Reuss model of elasto-plasticity. (in preparation)


