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The goal of this research is to provide a

dynamical formulation of mass transporta-

tion problems with possible concentration or

congestion effects.

• Concentration effects for instance occur in

several models of branching transportation

(roots of trees, roads, delta of rivers, blood

vessels, . . . )

• Congestion effects may be used to simulate

traffic flows with high density and movement

of crowds under panic effects.
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The main tool is a good comprehension of

lower semicontinuous functionals defined on

the space of measures.

A complete analysis (lower semicontinuity,

relaxation, integral representation) for this

kind of functionals was made in a series of

paper by Bouchitté-Buttazzo:

Nonlinear Anal., 15 (1990), 679–692

Ann.IHP Anal.NonLin., 9 (1992), 101–117

Ann.IHP Anal.NonLin., 10 (1993), 345–361
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Example 1 - Lebesgue For Lp measures
µ = u dx define

F (µ) =
∫
Ω
|u|p dx p > 1.

Example 2 - Dirac For discrete measures
µ =

∑
mkδxk define

F (µ) =
∑
k

|mk|α =
∫
Ω
|µ(x)|α d#(x) α < 1.

Example 3 - Mumford-Shah For measures
with no Cantor part µ = u dx+

∑
mkδxk define

F (µ) =
∫
Ω
|u|p dx+

∫
Ω
|µ(x)|α d#(x) p > 1, α < 1.
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A full classification of all weakly* l.s.c. func-

tionals on M(Ω) (translation invariant for

simplicity) is the following

F (µ) =
∫
Ω

f(µa) dm(x) Lebesgue part

+
∫
Ω

f∞(µc) Cantor part

+
∫
Ω

g(µ(x)) d#(x) Dirac part

where f is convex, f∞ is its recession func-

tion, g is subadditive, and the compatibility

condition f∞ = g0 holds.
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In Example 1 f(z) = |z|p, g(z) ≡ +∞;
In Example 2 f(z) ≡ +∞, g(z) = |z|α;
In Example 3 f(z) = |z|p, g(z) = |z|α.

Previous attempts have been made to model
concentration/congestion effects:
• Q. Xia (2003) through the minimization of
a suitable functional defined on currents;
• V. Caselles, J. M. Morel, S. Solimini, . . .
(2002) through a kind of analogy of fluid
flow in thin tubes;
• A. Brancolini, G. Buttazzo, F. Santambro-
gio (2006) through geodesic curves in the
space of measures.
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The idea in this last paper was to study the

evolution of densities as a curve in the spa-

ce of probabilities P(Ω) endowed with the

Wasserstein distance which minimize a kind

of length functional:

L(µ) =
∫ 1

0
J(µ(t))|µ′(t)|W dt.

Here |µ′|W is the metric derivative in the

Wasserstein space. In a general (X, d) space

the definition of the metric derivative is

|x′(t)|X = lim
ε→0

d
(
x(t + ε), x(t)

)
ε

.
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Theorem Let X be a compact metric space
(or closed bounded subsets of X are com-
pact), let x0, x1 ∈ X and consider

L(φ) =
∫ 1

0
J(φ(t))|φ′(t)|W dt.

Assume that
i) J is lower semicontinuous in X;
ii) J ≥ c with c > 0;
iii) L(φ) < +∞ for at least one curve φ joi-
ning x0 to x1.
Then there exists an optimal path for the
problem

min
{
L(φ) : φ(0) = x0, φ(1) = x1

}
.
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Take now X the Wasserstein space of pro-

babilities on Ω (a compact subset of RN).

In the concentration case (J of Dirac type

with α < 1):

• Two discrete measures µ0, µ1 can be joined

by a path φ(t) of finite minimal cost L.

• If α > 1 − 1/N every µ0, µ1 can be joined

by a path φ(t) of finite minimal cost L, with

counterexamples if α ≤ 1− 1/N).
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In the diffusion case (J of Lebesgue type

with p > 1):

• Two measures µ0, µ1 with Lp densities can

be joined by a path φ(t) of finite minimal

cost L.

• If p < 1 + 1/N every µ0, µ1 can be joined

by a path φ(t) of finite minimal cost L, with

counterexamples if p ≥ 1 + 1/N).
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A coefficient J of Lebesgue type then provi-
des a congestion functional, while J of Dirac
type gives a model for describing concentra-
tions.

In this presentation however we adopt a dif-
ferent point of view, introduced by Brenier
to give a dynamic formulation of mass trans-
portation problems.

min
{ ∫ 1

0

∫
Ω

ρ|v|2 dx dt : ρt + divx(ρv) = 0
}

under the initial/terminal conditions ρ|t=0 =
ρ0 and ρ|t=1 = ρ1.
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Setting ρv = E the continuity equation be-

comes linear:

ρt + divx E = 0

and the cost functional (representing the ki-

netic energy) becomes convex:∫ 1

0

∫
Ω

|E|2

ρ
dx dt.

To be precise, the correct meaning has to be

given in terms of measures:∫ 1

0

∫
Ω

∣∣∣∣dE

dρ

∣∣∣∣2 dρ(x) dt.
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Setting Q = [0, T ] ×Ω, σ = (ρ, E), and f =
δT (t)⊗ρ1(x)−δ0(t)⊗ρ0(x) the problem above
can be written in the form

min
{
Ψ(σ) : −div σ = f in Q, σ·ν = 0 on ∂Q

}
where Ψ(σ) is a functional defined on M(Q).

Theorem If Ψ is a weakly* l.s.c. functional
on M(Q) and f ∈M(Q), then the minimum
problem

min
{
Ψ(σ) : −div σ = f in Q, σ·ν = 0 on ∂Q

}
has a solution, provided

∫
Q df = 0 and Ψ is

coercive, i.e. Ψ(σ) ≥ c|σ| − c1.
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The functionals Ψ we have in mind are of

the form

Ψ(σ) =
∫ T

0
J

(
σ(t)

)
dt

and again J of Lebesgue type would provi-

de congestion models, while J of Dirac type

would provide concentration models.

From now on we limit ourselves to the case

of congestion, where the function J is con-

vex. Similar arguments for the other non-

convex cases have not yet been developed.
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Dual formulation:

sup
{
〈f, φ〉 −Ψ∗(Dφ) : φ ∈ C1(Q)

}
.

Primal-dual relation:

Ψ(σopt) + Ψ∗(Dφopt) = 〈σopt, Dφopt〉.

The point is that the maximizer in the dual

formulation is not of class C1 in general. A

relaxation formula is then needed for Ψ∗ to

extend it to its natural space.

15



The natural spaces for functionals like Ψ∗

are the Sobolev spaces W
1,p
µ with respect to

a measure µ, defined by relaxation of the
energies ∫

|Du|p dµ.

All the usual properties known for the stan-
dard Sobolev spaces continue to hold, provi-
ded the gradient is replaced by the tangential
gradient Dµu suitably defined.

We do not enter in the details of this ra-
ther delicate theory, referring to Bouchitté-
Buttazzo-Seppecher (Calc.Var. 1997).
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The numerical approximation has been per-

formed following the scheme used in Benamou-

Brenier, which is an augmented Lagrangian

algorithm. This consists in solving, instead

of

min
{
Ψ(σ) : −div σ = f in Q, σ·ν = 0 on ∂Q

}
the min-max problem

min
σ

max
ϕ∈C(Q)

L(σ, ϕ)

where L(σ, ϕ) is the Lagrangian:

L(σ, ϕ) = Ψ(σ)− 〈Dϕ, σ〉+ 〈ϕ, f〉.
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Using the primal-dual relation this is in turn

equivalent to solve the max-min problem

max
σ

min
σ∗,ϕ

Lr(σ, σ∗, ϕ)

where Lr is the augmented Lagrangian

Lr(σ, σ∗, ϕ) := Ψ∗(σ∗) + 〈Dϕ− σ∗, σ〉 − 〈ϕ, f〉
+

r

2

∫
|Dϕ− σ∗|2 dy

for r > 0 fixed.

This is the iterative process we used (algori-

thm ALG2, Fortin-Glowinski):
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• let (σn, σ∗n−1, ϕn−1) be given;

• Step A: find ϕn solving (freeFEM3D by Del
Pino-Pironneau)

min
{
Lr(σn, σ∗n−1, ϕ) : ϕ ∈ C1(Q)

}

• Step B: find σ∗n solving

min
{
Lr(σn, σ∗, ϕn) : σ∗ ∈ C1(Q,Rd+1)

}

• Step C: set σn+1 = σn + r(Dϕn − σ∗n);

• go back to Step A.
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The following animations deal with a domain
Ω not convex (a kind of subway gate) and
with the cases:

• J(ρ, E) = |E|2
ρ in which the transportation

simply follows the Wasserstein geodesics.

• J(ρ, E) = |E|2
ρ + cρ2 in which the Was-

serstein transportation is perturbed by the
addition of a diffusion term (panic effect).

• J(ρ, E) = |E|2
ρ + χ{ρ≤M} in which there is

the additional constraint that two different
individual do not want to stay too close.
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