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The goal of this research is to provide a
dynamical formulation of mass transporta-
tion problems with possible concentration or
congestion effects.

e Concentration effects for instance occur in
several models of branching transportation
(roots of trees, roads, delta of rivers, blood
vessels, ...)

e Congestion effects may be used to simulate
traffic flows with high density and movement
of crowds under panic effects.



The main tool is a good comprehension of
lower semicontinuous functionals defined on
the space of measures.

A complete analysis (lower semicontinuity,
relaxation, integral representation) for this
kind of functionals was made in a series of
paper by Bouchittée-Buttazzo:

Nonlinear Anal., 15 (1990), 679—692
Ann.IHP Anal.NonLin., 9 (1992), 101-117
Ann.IHP Anal.NonLin., 10 (1993), 345—361



Example 1 - Lebesgue For LP measures
u = udx define

F(u) = /Q |ulP dx p>1.

Example 2 - Dirac For discrete measures
p = mydg, define

F(n) = D mi® = L In@|"d#@)  a<i

Example 3 - Mumford-Shah For measures
with no Cantor part p = udz—+>_ myog, define

F(u) = |_[ul? dat [ u(@)|*d#(@@) p>1, a <1
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A full classification of all weakly* |.s.c. func-

tionals on M(2) (translation invariant for

simplicity) is the following

F(p) = /Qf(u“) dm(x) Lebesgue part
+ | >u°) Cantor part

+j;g(u(a?))d#(w) Dirac part

where f is convex, f°° is its recession func-
tion, g is subadditive, and the compatibility
condition f° = ¢ holds.



In Example 1 f(z) = |z|P, g(2) = Ho0;
In Example 2 f(z) = 4o0, g(z) = |2]%;
In Example 3 f(z) = |z|P, g(z) = |z|*.

Previous attempts have been made to model
concentration/congestion effects:

e Q. Xia (2003) through the minimization of
a suitable functional defined on currents;

e V. Caselles, J. M. Morel, S. Solimini, ...
(2002) through a kind of analogy of fluid
flow in thin tubes;

e A. Brancolini, G. Buttazzo, F. Santambro-
gio (2006) through geodesic curves in the
space of measures.



The idea in this last paper was to study the
evolution of densities as a curve in the spa-
ce of probabilities P(€2) endowed with the
Wasserstein distance which minimize a kind
of length functional:

1
L(w) = [ T D]y dt

Here |u/|yw is the metric derivative in the
Wasserstein space. In a general (X, d) space
the definition of the metric derivative is

d(a;(t + 6),:1:(75))

/ .
x (t = |im :
/()] = lim -




Theorem Let X be a compact metric space
(or closed bounded subsets of X are com-
pact), let xg,x1 € X and consider

1
£(@) = [ J(6W)NS/ Dy at.

Assume that

i) J is lower semicontinuous in X;

ii) J>c with ¢ > 0;

iii) L(¢$) < +oo for at least one curve ¢ joi-
ning xqg to 1.

Then there exists an optimal path for the
problem

min{£(¢) : #(0) = w0, ¢(1) = o1 |-
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Take now X the Wasserstein space of pro-
babilities on © (a compact subset of RV).

In the concentration case (J of Dirac type
with a < 1):

e T wo discrete measures ug, i1 can be joined
by a path ¢(t) of finite minimal cost L.

o If «a >1—1/N every ug,u1 can be joined
by a path ¢(¢) of finite minimal cost £, with
counterexamples if «a <1 —-1/N).



In the diffusion case (J of Lebesgue type
with p > 1):

e T WO measures ug, u1 With LP densities can
be joined by a path ¢(¢t) of finite minimal
cost L.

e If p <14 1/N every ug,u1 can be joined

by a path ¢(t) of finite minimal cost £, with
counterexamples if p> 14+ 1/N).
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A coefficient J of Lebesgue type then provi-
des a congestion functional, while J of Dirac
type gives a model for describing concentra-
tions.

In this presentation however we adopt a dif-
ferent point of view, introduced by Brenier
to give a dynamic formulation of mass trans-
portation problems.

min{/ol /Qp|fv|2da:dt . oy + divg(pv) = o}

under the initial/terminal conditions p|;—g =
po and pl=1 = p1.
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Setting pv = E the continuity equation be-
comes linear:

pt +dive E =0

and the cost functional (representing the ki-
netic energy) becomes convex:

/ /Q ° ded.

To be precise, the correct meaning has to be
given in terms of measures:

1 dE 2
/ / ‘— dp(x) dt.
0 JQldp
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Setting Q = [0,T] x 2, 0 = (p, FE), and [ =
or(t)Rp1(x) —d0(t) Rpo(x) the problem above
can be written in the form

min {\U(a) . —dive=fin Q, cov=0 on 8@}
where W(o) is a functional defined on M(Q).

Theorem If W is a weakly* I.s.c. functional

on M(Q) and f € M(Q), then the minimum
problem

min {\U(a) . —dive=fin @, cov=0 on 8@}

has a solution, provided [odf = 0 and W is
coercive, i.e. V(o) > clo| —cq.
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The functionals W we have in mind are of
the form

(o) = /OTJ(a(t)) dt

and again J of Lebesgue type would provi-
de congestion models, while J of Dirac type
would provide concentration models.

From now on we limit ourselves to the case
of congestion, where the function J is con-
vex. Similar arguments for the other non-
convex cases have not yet been developed.
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Dual formulation:

sup{<f,¢>—\lf*(D<b) : chCl(Q)}-

Primal-dual relation:

W(O'Opt) + W*(Dﬁbopt) — <Uopt7 D¢0pt>-

The point is that the maximizer in the dual
formulation is not of class C! in general. A
relaxation formula is then needed for W* to
extend it to its natural space.
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The natural spaces for functionals like W*
are the Sobolev spaces W, with respect to
a measure u, defined by relaxation of the
energies

/ | DulP du.

All the usual properties known for the stan-
dard Sobolev spaces continue to hold, provi-
ded the gradient is replaced by the tangential
gradient Dyju suitably defined.

We do not enter in the details of this ra-
ther delicate theory, referring to Bouchitté-
Buttazzo-Seppecher (Calc.Var. 1997).
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The numerical approximation has been per-
formed following the scheme used in Benamou-
Brenier, which is an augmented Lagrangian
algorithm. This consists in solving, instead
of

min {\U(a) . —dive=fin Q, oc.v=0 on 8@}
the min-max problem

min max L(o, )
T peC(Q)

where L(o,p) is the Lagrangian:

L(o,p) = W(o) — (Dyp,0) + (o, f).
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Using the primal-dual relation this is in turn
equivalent to solve the max-min problem

max min L (o, 0™, ¢)
g ot

where L, is the augmented Lagrangian
Lr(o,0%,¢) := W*(0*) + (D — o*,0) — (i, f)
T
+§/ Dy — 0*|2d?/

for »r > 0 fixed.

This is the iterative process we used (algori-
thm ALG2, Fortin-Glowinski):
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o let (on,0) _1,pn—1) be given;

e Step A: find ¢, solving (freeFEM3D by Del
Pino-Pironneau)

min {Lr(an,a;‘;_l,w) ; SOGCl(Q>}

e Step B: find o, solving

min {Lr(an,a*,sﬁn) : a*eCl(Q,Rd“)}

e Step C: set 0,41 = on + r(Den — 0}');

e go back to Step A.
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T he following animations deal with a domain
2 not convex (a kind of subway gate) and
with the cases:

2
o J(p, FE) = % in which the transportation
simply follows the Wasserstein geodesics.

2

o J(p,E) = % + ¢p2 in which the Was-
serstein transportation is perturbed by the
addition of a diffusion term (panic effect).

|E|? : : :
e J(p,E) = =4 x5,<an in which there is

ST 1p<M} .

the additional constraint that two different
individual do not want to stay too close.
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