An explicit Kontsevich integral for welded braids

Stefan Papadima

Institute of Mathematics Simion Stoilow of the Romanian Academy
CRM Pisa, 26th May 2010

Reference

Barbu Berceanu, Stefan Papadima

Universal representations of braid and braid-permutation groups

J. Knot Theory Ramif., 2009

(9) Braid groups and welded braid groups
(2) Universal representations of welded braids
(3) Drinfeld representations of braids
4. Main results for welded braids
(5) About proofs

Artin braid groups

$$
1 \rightarrow P B_{n} \longrightarrow B_{n} \xrightarrow{\pi} \Sigma_{n} \rightarrow 1
$$

- Artin's braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ (E. Artin, Ann. Math. 1947)
- symmetric group $\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle ; s_{i}=\pi\left(\sigma_{i}\right)$ transposition $(i, i+1)$
- pure braid group $P B_{n}=\pi_{1} F(n, \mathbb{C})$ arrangement group

Theorem (Orlik-Solomon, Invent. Math. 1980)

The complement of a complex hynernlane arrangement is a formal space, in the sense of D. Sullivan (Publ. IHES, 1977).

Artin braid groups

$$
1 \rightarrow P B_{n} \longrightarrow B_{n} \xrightarrow{\pi} \Sigma_{n} \rightarrow 1
$$

- Artin's braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ (E. Artin, Ann. Math. 1947)
- symmetric group $\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle ; s_{i}=\pi\left(\sigma_{i}\right)$ transposition $(i, i+1)$
- pure braid group $P B_{n}=\pi_{1} F(n, \mathbb{C})$ arrangement group

Theorem (Orlik-Solomon, Invent. Math. 1980)
 The complement of a complex hvperplane arrangement is a formal space, in the sense of D. Sullivan (Publ. IHES, 1977).

Artin braid groups

$$
1 \rightarrow P B_{n} \longrightarrow B_{n} \xrightarrow{\pi} \Sigma_{n} \rightarrow 1
$$

- Artin's braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ (E. Artin, Ann. Math. 1947)
- symmetric group $\Sigma_{n}=\left\langle s_{1}, \ldots, s_{n-1}\right\rangle ; s_{i}=\pi\left(\sigma_{i}\right)$ transposition $(i, i+1)$
- pure braid group $P B_{n}=\pi_{1} F(n, \mathbb{C})$ arrangement group

Theorem (Orlik-Solomon, Invent. Math. 1980)

The complement of a complex hyperplane arrangement is a formal space, in the sense of D. Sullivan (Publ. IHES, 1977).

Welded braid groups

\mathbb{F}_{n} free group on $\left\{x_{1}, \ldots, x_{n}\right\}$
Welded braid group W_{n} (Fenn-Rimanyi-Rourke, Topology 1997):
$a \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ s.t. $a\left(x_{i}\right)=y_{i}^{-1} x_{s(i)} y_{i}$ for some $y_{i} \in \mathbb{F}_{n}, s \in \Sigma_{n}$

Theorem (Artin)
$B_{n}=\left\{a \in W_{n} \mid a\left(x_{1} \cdots x_{n}\right)=x_{1} \cdots x_{n}\right\}$

Welded braid groups

\mathbb{F}_{n} free group on $\left\{x_{1}, \ldots, x_{n}\right\}$
Welded braid group W_{n} (Fenn-Rimanyi-Rourke, Topology 1997):
$a \in \operatorname{Aut}\left(\mathbb{F}_{n}\right)$ s.t. $a\left(x_{i}\right)=y_{i}^{-1} x_{s(i)} y_{i}$ for some $y_{i} \in \mathbb{F}_{n}, s \in \Sigma_{n}$

Theorem (Artin)
$B_{n}=\left\{a \in W_{n} \mid a\left(x_{1} \cdots x_{n}\right)=x_{1} \cdots x_{n}\right\}$

- $1 \rightarrow P W_{n} \longrightarrow W_{n} \xrightarrow{\pi} \Sigma_{n} \rightarrow 1$ splits
- generators $\left\{a_{i j} \mid 1 \leq i \neq j \leq n\right\}$ for $P W_{n}$ given by

$$
x_{i} \mapsto x_{j}^{-1} x_{i} x_{j} ; x_{k} \mapsto x_{k}(k \neq i)
$$

- $s a_{i j} s^{-1}=a_{s(i), s(j)}$, for $s \in \Sigma_{n}$
- $\sigma_{i}=a_{i, i+1} S_{i}$

Oriented Artin algebra \mathcal{O}_{n}^{*}

H^{*} connected graded algebra

- filtration $F_{k} H=H^{\geq k} ; F_{k} H \cdot F_{r} H \subseteq F_{k+r} H$
- completion $\widehat{H}: \sum_{k \geq 0} h_{k}, h_{k} \in H^{k}$
- complete filtration $F_{k} \widehat{H}=\widehat{H}^{\geq k} ; F_{k} \widehat{H} \cdot F_{r} \widehat{H} \subseteq F_{k+r} \widehat{H}$
- $1+F_{1} \widehat{H} \subseteq \widehat{H}^{\times}$(units): $(1-h)^{-1}=\sum_{k \geq 0} h^{k}$
- tensor algebra $\mathbb{Q}\langle v\rangle$; completion $\mathbb{Q}\langle\langle v\rangle\rangle$ (Hopf algebras)

Oriented Artin algebra \mathcal{O}_{n}^{*}

H^{*} connected graded algebra

- filtration $F_{k} H=H^{\geq k} ; F_{k} H \cdot F_{r} H \subseteq F_{k+r} H$
- completion $\widehat{H}: \sum_{k \geq 0} h_{k}, h_{k} \in H^{k}$
- complete filtration $F_{k} \widehat{H}=\widehat{H}^{\geq k} ; F_{k} \widehat{H} \cdot F_{r} \widehat{H} \subseteq F_{k+r} \widehat{H}$
- $1+F_{1} \widehat{H} \subseteq \widehat{H}^{\times}$(units): $(1-h)^{-1}=\sum_{k \geq 0} h^{k}$
- tensor algebra $\mathbb{Q}\langle v\rangle$; completion $\mathbb{Q}\langle\langle v\rangle\rangle$ (Hopf algebras)

Definition

\mathcal{O}_{n}^{*} is the quotient of $\mathbb{Q}\left\langle v_{i j} \mid 1 \leq i \neq j \leq n\right\rangle$ by

$$
\begin{array}{lll}
\text { (I) } & {\left[v_{i k}, v_{j k}\right]} & 1 \leq i \neq j \neq k \leq n \\
\text { (II) } & {\left[v_{i j}, v_{i k}+v_{j k}\right]} & 1 \leq i \neq j \neq k \leq n \tag{1}\\
\text { (III) }\left[v_{i j}, v_{k I}\right] & 1 \leq i \neq j \neq k \neq I \leq n
\end{array}
$$

The representation R_{n}

Theorem (McCool, Canadian J. 1986)
Defining relations of $P W_{n}$:

$$
\begin{array}{lll}
\text { (I) } & \left(a_{i k}, a_{j k}\right) & 1 \leq i \neq j \neq k \leq n \\
\text { (II) } & \left(a_{i j}, a_{i k} \cdot a_{j k}\right) & 1 \leq i \neq j \neq k \leq n \tag{2}\\
\text { (III) } & \left(a_{i j}, a_{k l}\right) & 1 \leq i \neq j \neq k \neq i \leq n
\end{array}
$$

where $(a, b)=a b a^{-1} b^{-1}$.

Lemma

The representation R_{n}

Theorem (McCool, Canadian J. 1986)
Defining relations of $P W_{n}$:

$$
\begin{array}{lll}
\text { (I) } & \left(a_{i k}, a_{j k}\right) & 1 \leq i \neq j \neq k \leq n \\
\text { (II) } & \left(a_{i j}, a_{i k} \cdot a_{j k}\right) & 1 \leq i \neq j \neq k \leq n \tag{2}\\
\text { (III) } & \left(a_{i j}, a_{k l}\right) & 1 \leq i \neq j \neq k \neq I \leq n
\end{array}
$$

where $(a, b)=a b a^{-1} b^{-1}$.

Lemma

$a_{i j} \mapsto \exp \left(v_{i j}\right) \in{\widehat{\mathcal{O}_{n}}}^{\times}$gives representation $R_{n}: \mathbb{Q}\left[P W_{n}\right] \longrightarrow \widehat{\mathcal{O}_{n}}$

Proof.

$\exp (u) \cdot \exp (v)=\exp (u+v)$, if $u v=v u$

Extension to the full welded braid group

- semidirect product $A \rtimes \Sigma$ (where the group Σ acts on the algebra A): $A \otimes \mathbb{Q}[\Sigma]$, with multiplication

$$
(a \otimes s) \cdot(b \otimes t)=a \cdot{ }^{s} b \otimes s t
$$

Definition

Oriented diagram algebras: $\widehat{\widehat{O}_{n}} \rtimes \Sigma_{n}$

Definition
Universal finite-type representations of welded braid groups

Extension to the full welded braid group

- semidirect product $A \rtimes \Sigma$ (where the group Σ acts on the algebra A): $A \otimes \mathbb{Q}[\Sigma]$, with multiplication

$$
(a \otimes s) \cdot(b \otimes t)=a \cdot{ }^{s} b \otimes s t
$$

Definition

Oriented diagram algebras: ${\widehat{\mathcal{O}_{n}} \rtimes \Sigma_{n}}$

Definition

Universal finite-type representations of welded braid groups

$$
R_{n} \otimes \mathrm{id}: \mathbb{Q}\left[W_{n}\right] \longrightarrow \widehat{\mathcal{O}_{n}} \rtimes \Sigma_{n}
$$

The construction (Drinfeld, Leningrad J. 1991)

- associator $\Phi \in \mathbb{Q}\langle\langle A, B\rangle\rangle$: axioms (hexagons, pentagon, ...)
- Artin algebra \mathcal{A}_{n}^{*} is the quotient of $\mathbb{Q}\left\langle t_{i j}=t_{j i} \mid 1 \leq i \neq j \leq n\right\rangle$ by

$$
\begin{array}{ll}
\text { (II) }\left[t_{i j}, t_{i k}+t_{j k}\right] & 1 \leq i \neq j \neq k \leq n \tag{3}\\
\text { (III) }\left[t_{i j}, t_{k l}\right] & 1 \leq i \neq j \neq k \neq I \leq n
\end{array}
$$

- diagram algebra $\widehat{\mathcal{A}_{n}} \rtimes \Sigma_{n}$
- Drinfeld representations $\rho_{n}: \mathbb{Q}\left[B_{n}\right] \longrightarrow \widehat{\mathcal{A}_{n}} \rtimes \Sigma_{n}$

$$
\begin{cases}\sigma_{1} & \mapsto \exp \left(\frac{t_{12}}{2}\right) \otimes s_{1} \tag{4}\\ \sigma_{i>1} & \mapsto \Phi\left(\sum_{j<i} t_{j i}, t_{i, i+1}\right)^{-1} \cdot\left(\exp \left(\frac{t_{i, i+1}}{2}\right) \otimes s_{i}\right) \cdot \Phi\left(\sum_{j<i} t_{j i}, t_{i, i+1}\right)\end{cases}
$$

Filtrations

- multiplicative degree filtration $\left\{F_{k}\right\}:{\widehat{\mathcal{A}_{n}}}^{\geq k} \otimes \mathbb{Q}\left[\Sigma_{n}\right],{\widehat{\mathcal{O}_{n}}}^{\geq k} \otimes \mathbb{Q}\left[\Sigma_{n}\right]$
- associated graded ring gref ${ }_{F}^{*}: \mathcal{A}_{n}^{*} \rtimes \Sigma_{n}, \mathcal{O}_{n}^{*} \rtimes \Sigma_{n}$

Vassiliev-type filtrations: iteration of local move

- for B_{n} : exchange negative and positive crossings; $V^{k} \subseteq \mathbb{Q}\left[B_{n}\right]$ V ideal generated by $\sigma_{i}-\sigma_{i}^{-1}$
- for W_{n} : replace weld by positive crossing; $J^{k} \subseteq \mathbb{Q}\left[W_{n}\right]$ J ideal generated by $\sigma_{i}-s_{i}$

Filtrations

- multiplicative degree filtration $\left\{F_{k}\right\}:{\widehat{\mathcal{A}_{n}}}^{\geq k} \otimes \mathbb{Q}\left[\Sigma_{n}\right], \widehat{\mathcal{O}_{n}}{ }^{\geq k} \otimes \mathbb{Q}\left[\Sigma_{n}\right]$
- associated graded ring $\operatorname{gr}_{F}^{*}: \mathcal{A}_{n}^{*} \rtimes \Sigma_{n}, \mathcal{O}_{n}^{*} \rtimes \Sigma_{n}$

Vassiliev-type filtrations: iteration of local move

- for B_{n} : exchange negative and positive crossings; $V^{k} \subseteq \mathbb{Q}\left[B_{n}\right]$
V ideal generated by $\sigma_{i}-\sigma_{i}^{-1}$
- for W_{n} : replace weld by positive crossing; $J^{k} \subseteq \mathbb{Q}\left[W_{n}\right]$ J ideal generated by $\sigma_{i}-s_{i}$
- $V^{k} \subseteq J^{k}$

Universal finite-type invariant for braids

Theorem (Drinfeld)

$\rho_{n}: \mathbb{Q}\left[B_{n}\right] \longrightarrow \widehat{\mathcal{A}_{n}} \rtimes \Sigma_{n}$ induces $\mathrm{gr}_{v}^{*} \mathbb{Q}\left[B_{n}\right] \xrightarrow{\simeq} \mathcal{A}_{n}^{*} \rtimes \Sigma_{n}$

- Kontsevich, Adv. Soviet Mat. 1993: $\operatorname{gr}_{V}^{*} \mathbb{Q}[\mathcal{L}] \xrightarrow{\simeq} \mathcal{C}^{*}$
- similar results, over \mathbb{Z} : Papadima, Topology Appl. 2002 (for braid groups of \mathbb{C}); Meneses-Paris, Trans. AMS 2004 (for braid groups of aspherical compact Riemann surfaces)

Theorem (Kohno, Contemp. Math. 1994)

Universal finite-type invariant for braids

Theorem (Drinfeld)

$\rho_{n}: \mathbb{Q}\left[B_{n}\right] \longrightarrow \widehat{\mathcal{A}_{n}} \rtimes \Sigma_{n}$ induces $\mathrm{gr}_{V}^{*} \mathbb{Q}\left[B_{n}\right] \xrightarrow{\simeq} \mathcal{A}_{n}^{*} \rtimes \Sigma_{n}$

- Kontsevich, Adv. Soviet Mat. 1993: $\operatorname{gr}_{V}^{*} \mathbb{Q}[\mathcal{L}] \xrightarrow{\simeq} \mathcal{C}^{*}$
- similar results, over \mathbb{Z} : Papadima, Topology Appl. 2002 (for braid groups of \mathbb{C}); Meneses-Paris, Trans. AMS 2004 (for braid groups of aspherical compact Riemann surfaces)

Theorem (Kohno, Contemp. Math. 1994)
ρ_{n} faithful

Statement of main results

Theorem
 $R_{n} \otimes$ id induces $\mathrm{gr}_{j}^{*} \mathbb{Q}\left[W_{n}\right] \xrightarrow{\simeq} \mathcal{O}_{n}^{*} \rtimes \Sigma_{n}$

Theorem
$R_{n} \otimes \mathrm{id}: \mathbb{Q}\left[W_{n}\right] \hookrightarrow \widehat{\mathcal{O}_{n}} \rtimes \Sigma_{n}$

Key tools

Lower central series of a group G

- l.c.s. $\Gamma_{1} G=G, \Gamma_{2} G=G^{\prime}, \ldots, \Gamma_{k+1} G=\left(G, \Gamma_{k} G\right), \ldots ; \Gamma_{\infty} G=\cap \Gamma_{k} G$
- associated graded Lie algebras $\operatorname{gr}_{\Gamma}^{*} G$, $\operatorname{gr}_{\Gamma}^{*} G \otimes \mathbb{Q}$ (generated by gr ${ }^{1}$)

I-adic filtration

- augmentation ideal $I_{G}=\operatorname{ker}\{\varepsilon: \mathbb{Q}[G] \rightarrow \mathbb{Q}\} ; \varepsilon(g)=1$ for $g \in G$
- multiplicative filtration $\left\{l_{G}^{k}\right\} ; I_{G}^{\infty}=\cap I_{G}^{k}$

Theorem (Quillen, Ann. Math. 1969)

 $\operatorname{gr}_{I_{G}}^{*} \mathbb{Q}[G]=U \operatorname{gr}_{\Gamma}^{*} G \otimes \mathbb{Q}$, as Hopf algebras- Malcev Lie algebra: complete descending filtration $\left\{F_{k} M\right\}$ of \mathbb{Q}-Lie algebra M, with $F_{1} M=M ;\left[F_{k}, F_{r}\right] \subseteq F_{k+r} ; \operatorname{gr}_{F}^{*} M$ generated by gr ${ }^{1}$ - exponential group $E(M)$

Key tools

Lower central series of a group G

- l.c.s. $\Gamma_{1} G=G, \Gamma_{2} G=G^{\prime}, \ldots, \Gamma_{k+1} G=\left(G, \Gamma_{k} G\right), \ldots ; \Gamma_{\infty} G=\cap \Gamma_{k} G$
- associated graded Lie algebras $\operatorname{gr}_{\Gamma}^{*} G$, $\operatorname{gr}_{\Gamma}^{*} G \otimes \mathbb{Q}$ (generated by gr^{1})

I-adic filtration

- augmentation ideal $I_{G}=\operatorname{ker}\{\varepsilon: \mathbb{Q}[G] \rightarrow \mathbb{Q}\} ; \varepsilon(g)=1$ for $g \in G$
- multiplicative filtration $\left\{l_{G}^{k}\right\} ; I_{G}^{\infty}=\cap I_{G}^{k}$

Theorem (Quillen, Ann. Math. 1969)

```
gr I
```

Malcev Lie algebras and exponential groups

- Malcev Lie algebra: complete descending filtration $\left\{F_{k} M\right\}$ of \mathbb{Q}-Lie algebra M, with $F_{1} M=M ;\left[F_{k}, F_{r}\right] \subseteq F_{k+r} ; \operatorname{gr}_{F}^{*} M$ generated by gr ${ }^{1}$
- exponential group $E(M)=M: x \cdot y=x+y+\frac{1}{2}[x, y]+\ldots$

Malcev completion (Quillen)

$G \rightsquigarrow M_{G}$ Malcev Lie algebra and $G \rightarrow E\left(M_{G}\right)$ group homomorphism, inducing Lie algebra isomorphism

$$
\operatorname{gr}_{F}^{*} G \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}_{F}^{*} M_{G}
$$

- free (Malcev) Lie algebra: Prim $\mathbb{Q}\langle v\rangle=\mathbb{L}^{*}(v)$, Prim $\mathbb{Q}\langle\langle v\rangle\rangle=\widehat{\mathbb{L}}(v)$
- quadratic (Malcev) Lie algebra: $L^{*}=\mathbb{L}^{*}(v)$ modulo relations $\subseteq \mathbb{L}^{2}(v)$, $\widehat{L}=\widehat{\mathbb{L}}(v)$ modulo same relations
X connected CW-complex with $X{ }^{(1)}$ finite; $G=\pi_{1} X$
Theorem (D. Sullivan, Publ. IHES 1977)
X formal space implies G is 1 -formal group, i.e., MG quadratic

Malcev completion (Quillen)

$G \rightsquigarrow M_{G}$ Malcev Lie algebra and $G \rightarrow E\left(M_{G}\right)$ group homomorphism, inducing Lie algebra isomorphism

$$
\operatorname{gr}_{\Gamma}^{*} G \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}_{\digamma}^{*} M_{G}
$$

- free (Malcev) Lie algebra: Prim $\mathbb{Q}\langle v\rangle=\mathbb{L}^{*}(v)$, Prim $\mathbb{Q}\langle\langle v\rangle\rangle=\widehat{\mathbb{L}}(v)$
- quadratic (Malcev) Lie algebra: $L^{*}=\mathbb{L}^{*}(v)$ modulo relations $\subseteq \mathbb{L}^{2}(v)$, $\widehat{L}=\widehat{\mathbb{L}}(v)$ modulo same relations
X connected CW-complex with $X^{(1)}$ finite; $G=\pi_{1} X$

Theorem (D. Sullivan, Publ. IHES 1977)

X formal space implies G is 1-formal group, i.e., M_{G} quadratic

- example: $X=F(n, \mathbb{C}), G=P B_{n}$

Reduction to pure welded braids

Theorem (Berceanu-Papadima)

$$
\begin{aligned}
& M_{P W_{n}}=\widehat{\mathbb{L}}\left(v_{i j} \mid 1 \leq i \neq j \leq n\right) \text {, modulo relations }(I)-(I I I) \text {. In particular, } \\
& P W_{n} \text { is } 1 \text {-formal. }
\end{aligned}
$$

Set $R=\mathbb{Q}\left[W_{n}\right], I \subseteq \mathbb{Q}\left[P W_{n}\right]$ augmentation ideal

- subgroup $P W_{n}$ normal in $W_{n} \Rightarrow R l^{k}=I^{k} R=R l^{k} R$

Note $R=\mathbb{Q}\left[P W_{n}\right] \otimes \mathbb{Q}\left[\Sigma_{n}\right]$, additively
Lemma

Reduction to pure welded braids

Theorem (Berceanu-Papadima)
$M_{P W_{n}}=\widehat{\mathbb{L}}\left(v_{i j} \mid 1 \leq i \neq j \leq n\right.$), modulo relations (I) - (III). In particular, $P W_{n}$ is 1 -formal.

Set $R=\mathbb{Q}\left[W_{n}\right], I \subseteq \mathbb{Q}\left[P W_{n}\right]$ augmentation ideal

Lemma

$R I^{k}=I^{k} R=R I^{k} R=J^{k}$

- subgroup $P W_{n}$ normal in $W_{n} \Rightarrow R I^{k}=I^{k} R=R I^{k} R$
- subgroup $P W_{n}$ normal in $W_{n} \Rightarrow J \subseteq R I R=\operatorname{ker}\left\{\pi: \mathbb{Q}\left[W_{n}\right] \rightarrow \mathbb{Q}\left[\Sigma_{n}\right]\right\}$
- enough: $a_{i j} \equiv 1$ modulo $J ; a_{i j}=s a_{i, i+1} s^{-1}=s\left(\sigma_{i} s_{i}^{-1}\right) s^{-1} \equiv 1$

Note $R=\mathbb{Q}\left[P W_{n}\right] \otimes \mathbb{Q}\left[\Sigma_{n}\right]$, additively

Lemma

$J^{k}=I^{k} \otimes \mathbb{Q}\left[\Sigma_{n}\right]$

Drinfeld's theorem for $P W_{n}$

- $R_{n}\left(a_{i j}-1\right)=\exp \left(v_{i j}\right)-1 \in \widehat{\mathcal{O}_{n}} \geq 1$
- $R_{n}: \mathbb{Q}\left[P W_{n}\right] \longrightarrow \widehat{\mathcal{O}_{n}}$ sends I^{k} into $\widehat{\mathcal{O}_{n}} \geq k$
- $\operatorname{gr}_{1}^{*} \mathbb{Q}\left[P W_{n}\right]=U \operatorname{gr}_{\Gamma}^{*} P W_{n} \otimes \mathbb{Q}=U \operatorname{gr}_{F}^{*} M_{P W_{n}}=\mathcal{O}_{n}^{*}$

Using this, Kohno's theorem for $P W_{n}$ follows from

Drinfeld's theorem for $P W_{n}$

- $R_{n}\left(a_{i j}-1\right)=\exp \left(v_{i j}\right)-1 \in \widehat{\mathcal{O}_{n}} \geq 1$
- $R_{n}: \mathbb{Q}\left[P W_{n}\right] \longrightarrow \widehat{\mathcal{O}_{n}}$ sends I^{k} into $\widehat{\mathcal{O}_{n}} \geq k$
- $\mathrm{gr}_{j}^{*} \mathbb{Q}\left[P W_{n}\right]=U \mathrm{gr}_{\Gamma}^{*} P W_{n} \otimes \mathbb{Q}=U g r_{r}^{*} M_{P W_{n}}=\mathcal{O}_{n}^{*}$

Using this, Kohno's theorem for $P W_{n}$ follows from

$$
\rho^{\infty}=0
$$

I-adic filtration and residual properties

- residually torsion-free nilpotent group G : any $1 \neq g \in G$ is detected in a residually torsion-free nilpotent quotient (inherited by subgroups)

Proposition (K.T.-Chen, Advances 1977)
G finitely generated is residually torsion-free nilpotent iff $\left.\right|_{G} ^{\infty}=0$

I-adic filtration and residual properties

- residually torsion-free nilpotent group G : any $1 \neq g \in G$ is detected in a residually torsion-free nilpotent quotient (inherited by subgroups)

Proposition (K.T.-Chen, Advances 1977)
G finitely generated is residually torsion-free nilpotent iff $\left.\right|_{G} ^{\infty}=0$

- Torelli group $T(G)=\left\{a \in \operatorname{Aut}(G) \mid H_{1}(a)=i d\right\}$
- note that $P W_{n} \subseteq T\left(\mathbb{F}_{n}\right)$

Proposition (Hain, Journal AMS 1997) If $\Gamma_{\infty} G=1$ and $\mathrm{gr}_{\Gamma}^{*} G$ is torsion-free, then $T(G)$ is residually torsion-free nilpotent

Kohno's theorem for $P W_{n}$

- (Magnus) $\Gamma_{\infty} \mathbb{F}_{n}=1$ and $\operatorname{gr}_{\Gamma}^{*} \mathbb{F}_{n}$ is torsion-free
- since $P W_{n} \subseteq T\left(\mathbb{F}_{n}\right)$ is residually torsion-free nilpotent, $I_{P W_{n}}^{\infty}=0$ \square

