# Polytopes, partition functions and box-splines 

Claudio Procesi.

PISA 2010
(1) Introduction
(2) Combinatorics
(3) Splines
(4) Algebra
(5) Approximation theory
(0) Arithmetic
(3) Residues

A real, sometimes integer $n \times m$ matrix $A$.
We always think of $A$ as a LIST of vectors in $V=\mathbb{R}^{n}$, its columns:

$$
A:=\left(a_{1}, \ldots, a_{m}\right)
$$

## Constrain

We assume that 0 is NOT in the convex hull of its columns.
From $A$ we make several constructions, algebraic, combinatorial, analytic etc..

## BASIC REFERENCE

## The book:

C. De Boor, K. Höllig, S. Riemenschneider,

## Box splines

Applied Mathematical Sciences 98 (1993).

Forthcoming book
Topics in hyperplane arrangements, polytopes and box-splines

De Concini C., Procesi C.
http://www.mat.uniroma1.it/~procesi/dida.html

## SEVERAL NAMES OF CONTRIBUTORS

## From numerical analysis

A.A. Akopyan; Ben-Artzi, Asher; C.K. Chui, C. De Boor, W. Dahmen, H. Diamond, N. Dyn, K. Höllig, C. Micchelli, Jia, Rong Qing, A. Ron, A.A. Saakyan

From algebraic geometry
Orlik-Solomon on cohomology, Baldoni, Brion, Szenes, Vergne and of Jeffrey-Kirwan, on partition functions.
In fact a lot of work originated from the seminal paper of Khovanskiĭ, Pukhlikov, interpret the counting formulas as Riemann-Roch formulas for toric varieties

From enumerative combinatorics
A.I. Barvinok, Matthias Beck, Sinai Robins, Richard Stanley

## CONVEX POLYTOPES

from the matrix $A$ we produce:
First a system of linear equations:

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} x_{i}=b, \quad \text { or } \quad A x=b, \quad A:=\left(a_{1}, \ldots, a_{m}\right) \tag{1}
\end{equation*}
$$

The columns $a_{i}, b$ are vectors with $n$ coordinates

$$
\left(a_{j, i}, b_{j}, j=1, \ldots, n\right)
$$

## Variable polytopes

As in Linear Programming Theory we deduce and want to study the

## VARIABLE POLYTOPES:

$$
\begin{gathered}
\Pi_{A}(b):=\left\{x \mid A x=b, x_{i} \geq 0, \forall i\right\} \\
\Pi_{A}^{1}(b):=\left\{x \mid A x=b, 1 \geq x_{i} \geq 0, \forall i\right\}
\end{gathered}
$$

which are convex and bounded for every $b$.

## Variable polytopes

The fact that

$$
\begin{gathered}
\Pi_{A}(b):=\left\{x \mid A x=b, x_{i} \geq 0, \forall i\right\} \\
\Pi_{A}^{1}(b):=\left\{x \mid A x=b, 1 \geq x_{i} \geq 0, \forall i\right\}
\end{gathered}
$$

are convex polyhedra for every $b$ is by definition.
The property of being bounded is trivial for $\Pi_{A}^{1}(b)$ while for $\Pi_{A}(b)$ depends on the fact that there is a linear function $\phi$ with $\phi\left(a_{i}\right)>0$ for all $i$ so that $\phi\left(a_{i}\right)>c>0$.

$$
\sum_{i} x_{i} a_{i}=b \Longrightarrow \sum_{i} x_{i} \phi\left(a_{i}\right)=\phi(b) \Longrightarrow \sum_{i} x_{i}<\phi(b) c^{-1}
$$

## Geometric picture

The polytopes $\Pi_{A}^{1}(b)$ are sections of a hypercube, for instance the simple case of a cube $A$ a list of 3 numbers:

$x+z=0$
$x+y+z=0$
$x+y+z-\frac{1}{2}=0$

1

$\sqrt{2} / 2$

## Geometric pictures



## The object of study

## Basic functions

- Set $T_{A}(x), B_{A}(x)$ to be the volume of $\Pi_{A}(x), \Pi_{A}^{1}(x)$.
- If $A, b$ have integer coordinates


## Arithmetic case, $A, x$ with integer coefficients

In this case set $P_{A}(x)$ to be the number of solutions of the system in which the coordinates $x_{i}$ are non negative integers.

- In other words
$P_{A}(x)$ is the number of integral points in the variable polytope $\Pi_{A}(x)$.

Up to a multiplicative normalization constant:
$T_{A}(x)$ is the Multivariate-spline
$B_{A}(x)$ the Box-spline
$P_{A}(x)$ is called the partition function

## We are interested in

Computing the three functions $T_{A}(x), B_{A}(x), P_{A}(x)$ and describe their qualitative properties.
Applications of these functions to arithmetic, numerical analysis, Lie theory, equivariant cohomology, equivariant K-theory, symplectic geometry and index theory.

## Variable polytopes

The

## VARIABLE POLYTOPE:

$$
\Pi_{A}(b):=\left\{x \mid A x=b, x_{i} \geq 0, \forall i\right\}
$$

Is the set of $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}, x_{i} \geq 0, \mid \sum_{i=1}^{m} x_{i} a_{i}=b$.
So it is empty unless $b$ belongs to the cone

$$
C(A):=\left\{\sum_{i=1}^{m} x_{i} a_{i}, x_{i} \geq 0\right\}
$$

of positive combinations of the $a_{i}$.
The hypothesis that 0 is NOT in the convex hull of the $a_{i}$ implies that $C(A)$ is pointed, that is there is a linear function $\phi$ strictly positive on all non zero points of $C(A)$,

## IMPORTANT EXAMPLE

$A$ is the list of POSITIVE ROOTS of a root system, e.g. $B_{2}$ :

$$
A=\left|\begin{array}{cccc}
-1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{array}\right|
$$

We also identify vectors with linear forms as:

$$
-x+y, x, x+y, y
$$

## IMPORTANT EXAMPLE

$A$ is the list of POSITIVE ROOTS of a root system, the associated cone $C(A)$ has three big cells


## EXAMPLE, the $C^{1}$ function $T_{A}$, case $Z P$

In the literature of numerical analysis the Box spline associated to the root system $B_{2}$ is called the Zwart-Powell or ZP element:

$$
A=\left|\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & 0 & 1 & 1
\end{array}\right|
$$

## EXAMPLE, the $C^{1}$ function $T_{A}$, case $B_{2}$ or ZP

$2 T_{A}$ is 0 outside the cone and on the three cells:

## EXAMPLE, the $C^{1}$ function $T_{A}$, case $B_{2}$ or ZP

$2 T_{A}$ is 0 outside the cone and on the three cells:

$\frac{(x+y)^{2}}{2}-x^{2}$
penthagon

## The box-spline for type $B_{2}$, ZP element



## WHAT DO WE SEE

The computation of the box-spline has some geometric, combinatorial and algebraic flavor. It appears as a piecewise polynomial function on a compact polyhedron.

From simple data we get soon a complicated picture!

## THE PARTITION FUNCTION

When $A, b$ have integer elements it is natural to think of an expression like:
$b=t_{1} a_{1}+\cdots+t_{m} a_{m}$ with $t_{i}$ not negative integers as a:

## partition of $b$ with the vectors $a_{i}$,

in $t_{1}+t_{2}+\cdots+t_{m}$ parts, hence the name partition function for the number $P_{A}(b)$, thought of as a function of the vector $b$.

## THE PARTITION FUNCTION

When $A, b$ have integer elements it is natural to think of an expression like:
$b=t_{1} a_{1}+\cdots+t_{m} a_{m}$ with $t_{i}$ not negative integers as a:

## partition of $b$ with the vectors $a_{i}$,

in $t_{1}+t_{2}+\cdots+t_{m}$ parts, hence the name partition function for the number $P_{A}(b)$, thought of as a function of the vector $b$.

SIMPLE EXAMPLE

$$
m=2, n=1, A=\{2,3\}
$$

## Parts are 2 and 3

In how many ways can you write a number $b$ as:

$$
b=2 x+3 y, \quad x, y \in \mathbb{N} ?
$$

## ANSWER (Quasi polynomial!)

It depends on the class of $n$ modulo 6 .

$$
\begin{array}{ll}
n \cong 0 & \frac{n}{6}+1 \\
n \cong 1 & \frac{n}{6}-\frac{1}{6} \\
n \cong 2 & \frac{n}{6}+\frac{2}{3} \\
n \cong 3 & \frac{n}{6}+\frac{1}{2} \\
n \cong 4 & \frac{n}{6}+\frac{1}{3} \\
n \cong 5 & \frac{n}{6}+\frac{1}{6}
\end{array}
$$

## What is a quasi-polynomial?

## Two equivalent definitions

FIRST
A function on a lattice $\Lambda$ which is a polynomial on each coset of some sublattice $M$ of finite index

## SECOND

The restriction to a lattice $\Lambda$ of a function which is a sum of products of a polynomial with an exponential function, periodic on some sublattice $M$ of finite index

## OTHER EXAMPLE, THE HAT FUNCTION

$A=\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right|$ the corresponding partition function $P_{A}$ is piecewise polynomial with top degree coinciding with $T_{A}$

0

$$
x+1
$$

$$
y+1
$$

## IMPORTANT EXAMPLE

In Lie theory the Kostant partition function counts in how many ways can you decompose a weight as a sum of positive roots.
This is used in many computations.

## THE OBJECTS OF STUDY

## Main objects associated to A

First we may think of the elements $a_{i}$ as a list of linear equations, each defining a hyperplane (in the dual space $U=V^{*}$ ), the points in which it vanishes. This is a

```
central hyperplane arrangement
```

One way to study this arrangement is to study the algebra of polynomials $S[V]$ localized at $\prod_{i=1}^{m} a_{i}$ so we study the algebra

$$
R_{A}:=S[V]\left[\prod_{i=1}^{m} a_{i}^{-1}\right] .
$$

## THE OBJECTS OF STUDY

The algebra $R_{A}$ consists of those rational functions which have at the denominator a product of powers of the linear forms $a_{i}$. It is clearly a module under the Weyl algebra of differential operators with polynomial coefficients and we analyze in depth the module structure.

## THE OBJECTS OF STUDY

When the coordinates of the elements $a_{i}=\left(a_{i, 1}, \ldots, a_{i, s}\right)$ are integers we think of $a_{i}$ as a character $\prod_{j=1}^{s} x_{j}^{a_{i, j}}$.
This defines a subgroup of the torus $\left(\mathbb{C}^{*}\right)^{s}$ the points in which the character is 1 or where $1-\prod_{j=1}^{s} x_{j}^{a_{i, j}}$ vanishes.
This is called a central toric arrangement.
One way to study this arrangement is to study the algebra of Lurent polynomials $S\left[x_{1}^{ \pm 1}, \ldots, x_{s}^{ \pm 1}\right]$ localized at $\prod_{i=1}^{m}\left(1-\prod_{j=1}^{s} x_{j}^{a_{i, j}}\right)$ so we study the algebra

$$
S\left[x_{1}^{ \pm 1}, \ldots, x_{s}^{ \pm 1}\right]\left[\prod_{i=1}^{m}\left(1-\prod_{j=1}^{s} x_{j}^{a_{i, j}}\right)^{-1}\right] .
$$

We study also his as a module over the algebra of differential operators with coefficients Laurent polynomials.

## THE THEOREMS

## Main

## Theorems

There are several general formulas to compute the previous functions which are obtained by a mixture of techniques. A main geometric notion that plays a role is that of BIG CELL

## What are the big cells?

## ASSUME THAT A SPANS $V$.

- The singular points are the points in the cone $C(A)$ lying in some cone $C(Y)$ for any sublist $Y$ of $A$ which does NOT span the ambient space.
- The other points are called regular
- A big cell is a connected component of the set or regular points.


## What are the big cells?

In other words, take all the hyperplanes $H$ spanned by sublists of $A$ and then the cones $C(H \cap A)$. The union of all these cones forms the set of singular vectors.
It is easy to see that the big cells are convex.

## CELLS ARE CONVEX POLYHEDRA

Take all bases $\underline{b}$ extracted from $A$, for each basis consider the cone $C(\underline{b})$ generated by $\underline{b}$. Its boundary is made of singular points. A standard fact of polyhedra is that

$$
C(A)=\cup_{\underline{b}} C(\underline{b})
$$

So if a point $p \in C(A)$ is regular it lies either in the interior ${ }^{\circ}(\underline{b})$ of outside each $C(\underline{b})$. It follows that the big cell $\mathfrak{c}$ in which $p$ lies is the intersection of all the $\stackrel{\circ}{C}(\underline{b})$ containing it.

$$
\mathfrak{c}=\cap_{\underline{b} \mid p \in \subset(\underline{b})} \stackrel{\circ}{C}(\underline{b}) .
$$

## A 3-dimensional example

The positive roots of type $A_{3}$ are

$$
\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}
$$

## Visualize the cone and the big cells.

We do everything on a transversal section, where the cone looks like a bounded convex polytope and then project.
We want to decompose the cone $C(A)$ into big cells and see its singular and regular points.

## PROJECTING A POLYHEDRON TO FORM A CONE



## EXAMPLE Type $A_{3}$ in section (big cells):



We have 7 big cells.

## Onen question, Type $A_{n}$ :

Which and how many are the big cells?

## Assume $A$ spans $\mathbb{R}^{n}$.

Let $m(A)$ denote the minimum number of columns that one can remove from $A$ so that the remaining columns do not span $\mathbb{R}^{n}$.

The basic function $T_{A}(x)$ is a spline
(1) $T_{A}(x)$ has support on the cone $C(A)$
(2) $T_{A}(x)$ is of class $m(A)-2$
(3) $T_{A}(x)$ coincides with a homogeneous polynomial of degree $m-n$ on each big cell.

## Assume $A$ spans $\mathbb{R}^{n}$.

Let $m(A)$ denote the minimum number of columns that one can remove from $A$ so that the remaining columns do not span $\mathbb{R}^{n}$.

The basic function $T_{A}(x)$ is a spline
(1) $T_{A}(x)$ has support on the cone $C(A)$
(2) $T_{A}(x)$ is of class $m(A)-2$
(3) $T_{A}(x)$ coincides with a homogeneous polynomial of degree $m-n$ on each big cell.

## SUMMARIZING

## In order to compute $T_{A}(x)$ we need to

## SUMMARIZING

## In order to compute $T_{A}(x)$ we need to

(1) Determine the decomposition of $C(A)$ into cells
© Compute on each big cell the homogeneous polynomial of degree $m-n$ coinciding with $T_{A}(x)$

## SUMMARIZING

## In order to compute we need to

(1) Determine the decomposition of $C(A)$ into cells
(2) Compute on each big cell the homogeneous polynomial of degree $m-n$ coinciding with $T_{A}(x)$.

## GENERAL FORMULA FOR $T_{A}$

One can find explicit polynomials $p_{\underline{b}, A}(x)$, indexed by a combinatorial object called unbroken bases and characterized by certain explicit differential equations so that:
Given a point $x$ in the closure of a big cell $\mathfrak{c}$ we have
Jeffry-Kirwan residue formula

$$
T_{A}(x)=\sum_{\underline{b} \mid \mathfrak{c} \subset C(\underline{b})}|\operatorname{det}(\underline{b})|^{-1} p_{\underline{b}, A}(-x) .
$$

## From $T_{A}$ one computes $B_{A}$

For a given subset $S$ of $A$ define $a_{S}:=\sum_{a \in S} a$

## the basic formula is:

## From $T_{A}$ one computes $B_{A}$

For a given subset $S$ of $A$ define $a_{S}:=\sum_{a \in S} a$ the basic formula is:

$$
B_{A}(x)=\sum_{S \subset A}(-1)^{|S|} T_{A}\left(x-a_{S}\right) .
$$

So $T_{A}$ is the fundamental object.
Notice that the local pieces of $B_{A}$ are no more homogeneous polynomials.

## THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set of polynomials $q_{\underline{b}, \phi}(-x)$ indexed by pairs, a character $\phi$ of finite order and a unbroken basis in $A_{\phi}=\left\{a \in A \mid \phi\left(e^{a}\right)=1\right\}$.

## THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set of polynomials $q_{\underline{b}, \phi}(-x)$ indexed by pairs, a character $\phi$ of finite order and a unbroken basis in $A_{\phi}=\left\{a \in A \mid \phi\left(e^{a}\right)=1\right\}$. The analogue of the Jeffrey-Kirwan formula is:

## Theorem

Given a point $x$ in the closure of a big cell $\mathfrak{c}$ we have

## THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set of polynomials $q_{\underline{b}, \phi}(-x)$ indexed by pairs, a character $\phi$ of finite order and a unbroken basis in $A_{\phi}=\left\{a \in A \mid \phi\left(e^{a}\right)=1\right\}$.
The analogue of the Jeffrey-Kirwan formula is:

## Theorem

Given a point $x$ in the closure of a big cell $\mathfrak{c}$ we have

## Residue formula for partition function

$$
P_{A}(x)=\sum_{\phi \in P(A)} e^{\phi} \sum_{\underline{b} \in \mathcal{N} \mathcal{B}_{A_{\phi}} \mid \mathfrak{c} \subset C(\underline{b})} \mathfrak{q}_{\underline{b}, \phi}(-x)
$$

## From volumes to partition functions

One can deduce the partition function from some combinatorics and multivariate splines (with parameters):

## Theorem

For the points $x$ in the interior of big cells $\mathfrak{c}$ we have

$$
P_{A}(x)=\sum_{\phi \in P(A)} \widehat{Q}_{\phi} T_{A_{\phi, \underline{\phi}}(x)}
$$

## From volumes to partition functions

One can deduce the partition function from some combinatorics and multivariate splines (with parameters):

## Theorem

For the points $x$ in the interior of big cells $\mathfrak{c}$ we have

$$
P_{A}(x)=\sum_{\phi \in P(A)} \widehat{Q}_{\phi} T_{A_{\phi, \underline{\phi}}(x)}
$$

$$
Q_{\phi}=\prod_{a \notin A_{\phi}} \frac{1}{1-e^{-a}} \prod_{a \in A_{\phi}} \frac{a-\langle\phi \mid a\rangle}{1-e^{-a+\langle\phi \mid a\rangle}}
$$

## FIRST STEP

## SOME COMBINATORICS

## IN THE COMBINATORIAL PART

one can explain the ideas relating unbroken bases with cells and all bases with the structure of the polyhedron where the box-spline has its support.
Let us illustrate these ideas through examples.

## Unbroken bases

## From the theory of matroids to cells.

Let $\underline{c}:=a_{i_{1}}, \ldots, a_{i_{k}} \in A, i_{1}<i_{2} \cdots<i_{k}$, be a sublist of linearly independent elements.

## Unbroken bases

## From the theory of matroids to cells.

Let $\underline{c}:=a_{i_{1}}, \ldots, a_{i_{k}} \in A, i_{1}<i_{2} \cdots<i_{k}$, be a sublist of linearly independent elements.

## Definition

We say that $a_{i}$ breaks $\underline{c}$ if there is an index $1 \leq e \leq k$ such that:

- $i \leq i_{e}$.
- $a_{i}$ is linearly dependent on $a_{i_{e}}, \ldots, a_{i_{k}}$.


## EXAMPLE of the elements breaking a basis

## Example

Take as $A$ the list of positive roots for type $A_{3}$.

$$
A=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} .
$$

Let us draw in Red one particular basis and in Green the elements which break it.

## EXAMPLE of the elements breaking a basis

## Example

Take as $A$ the list of positive roots for type $A_{3}$.

$$
A=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}\right\} .
$$

Let us draw in Red one particular basis and in Green the elements which break it.

We have 16 bases
10 broken and 6 unbroken
FIRST THE 10 broken

$$
\begin{aligned}
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{1}, \\
& \alpha_{2},
\end{aligned} \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} .
$$

## We have 6 unbroken, all contain necessarily $\alpha_{1}$ :

$$
\begin{aligned}
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} . \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} . \\
& \alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} . \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3} \\
& \alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{1}+\alpha_{2}, \alpha_{2}+\alpha_{3}, \alpha_{1}+\alpha_{2}+\alpha_{3}
\end{aligned}
$$

Let us visualize the simplices generated by the 6 unbroken:







Decomposition into big cells and unbroken bases
Let us visualize the decomposition into big cells, obtained overlapping the cones generated by unbroken bases.

## A remarkable fact



## The overlapping theorem

You have visually seen a theorem we proved in general:
by overlapping the cones generated by the unbroken bases one obtains the entire decomposition into big cells!!

## HYPERPLANE ARRANGEMENTS

A list of vectors $a_{i}$ can be thought of as a
list of linear equations
defining a

## set of linear hyperplanes.

These intersect in a complicated pattern giving rise to a second interesting combinatorial geometric object, the set of all their intersections called:

## PROJECTIVE PICTURE OF THE ARRANGEMENT $A_{3}$

Same example but as linear functions, or hyperplane arrangement:


We have drawn in the projective plane of 4 -tuples of real numbers with sum 0 , the 6 lines

$$
x_{i}-x_{j}=0,1 \leq i<j \leq 4
$$

## PROJECTIVE PICTURE OF THE ARRANGEMENT $A_{3}$

Same example but as linear functions, or hyperplane arrangement:


We have drawn in the projective plane of 4 -tuples of real numbers with sum 0 , the 6 lines

$$
x_{i}-x_{j}=0,1 \leq i<j \leq 4
$$

the 7 intersection points are also subspaces of the arrangement!

## HYPERPLANE ARRANGEMENTS

## Linear equations

The list of vectors gives rise to a list of linear forms and so to a hyperplane arrangement

## Integral vectors

In the case of vectors in a lattice it is better to think of these vectors $\lambda=\left(a_{1}, \ldots, a_{s}\right), a_{i} \in \mathbb{Z}$ as characters $x \mapsto x^{\lambda}=\prod_{i=1}^{s} x_{i}^{a_{i}}$ on a torus and we we have the toric arrangement formed by the connected components of the intersections of the subgroups $x^{\lambda}=1$.

## Periodic arrangement

Using logarithms one can interpret the toric arrangement as a periodic hyperplane arrangement.

## PROBLEM

Describe the previous pictures for root systems.
For type $A_{n}$ the unbroken bases are known and can be indexed by certain binary graphs or by permutations of $n$ elements.
The decomposition into cells is unknown.

## THE BOX

The box spline $B_{A}(x)$ is supported in the compact polytope:
THE BOX B(A)

## THE BOX

The box spline $B_{A}(x)$ is supported in the compact polytope:
THE BOX B(A)

## The Box $B(A)$

 that is the compact convex polytope$$
B(A):=\left\{\sum_{i=1}^{m} t_{i} a_{i}\right\}, 0 \leq t_{i} \leq 1, \forall i .
$$

The box $B(A)$ has a nice combinatorial structure, proved by Shephard, it can be paved by a set of parallelepipeds indexed by: all the bases which one can extract from $A$ !

The box $B(A)$ has a nice combinatorial structure, proved by Shephard, it can be paved by a set of parallelepipeds indexed by: all the bases which one can extract from $A$ !

## Example

In the next example

$$
A=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$

we have 15 bases and 15 parallelograms.

## EXAMPLE

$$
A=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$



$$
=\left|\begin{array}{cccccc}
1 & 0 & 1 & -1 & 2 & 1 \\
0 & 1 & 1 & 1 & 1 & 2
\end{array}\right|
$$

START WITH

$$
A=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

$$
A=\left\lvert\, \begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right.
$$

$$
A=\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{array}\right|
$$



$$
A=\left|\begin{array}{ccccc}
1 & 0 & 1 & -1 & 2 \\
0 & 1 & 1 & 1 & 1
\end{array}\right|
$$




## SECOND STEP

THE SPLINES

## SPLINES

The volume $V_{A}(x)=\sqrt{\operatorname{det} A A^{t}} T_{A}(x)$ of the variable polytope $\Pi_{A}(x)$ equals, up to the multiplicative constant $\sqrt{\operatorname{det} A A^{t}}$ to the

## SPLINES

The volume $V_{A}(x)=\sqrt{\operatorname{det} A A^{t}} T_{A}(x)$ of the variable polytope $\Pi_{A}(x)$ equals, up to the multiplicative constant $\sqrt{\operatorname{det} A A^{t}}$ to the

## multivariate spline

 that is the function $T_{A}(x)$ characterized by the formula:$$
\int_{\mathbb{R}^{n}} f(x) T_{A}(x) d x=\int_{\mathbb{R}_{+}^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t,
$$

where $f(x)$ is any continuous function with compact support

## SPLINES

The volume $V_{A}(x)=\sqrt{\operatorname{det} A A^{t}} T_{A}(x)$ of the variable polytope $\Pi_{A}(x)$ equals, up to the multiplicative constant $\sqrt{\operatorname{det} A A^{t}}$ to the

## multivariate spline

 that is the function $T_{A}(x)$ characterized by the formula:$$
\int_{\mathbb{R}^{n}} f(x) T_{A}(x) d x=\int_{\mathbb{R}_{+}^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t,
$$

where $f(x)$ is any continuous function with compact support.

## THIS IS FUBINI'S THEOREM

Decompose the map $A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, A\left(t_{1}, \ldots, t_{m}\right)=\sum_{i} t_{i} a_{i}$ as composition $B C$ where $B$ is an orthogonal projection and $C$ invertible. Set $u:=C(t)$.

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{m}} f(B C(t)) d t=|\operatorname{det}(C)|^{-1} \int_{C\left(\mathbb{R}_{+}^{m}\right)} f(B u) d u \\
& \int_{C\left(\mathbb{R}_{+}^{m}\right)} f(B u) d u=\int_{\mathbb{R}^{n}}\left[\int_{B^{-1} x \cap C\left(\mathbb{R}_{+}^{m}\right)} 1 d m\right] f(x) d x
\end{aligned}
$$

$B^{-1} x \cap C\left(\mathbb{R}_{+}^{m}\right)=C\left(\Pi_{X}(x)\right)$ so $\int_{B^{-1} \times \cap C\left(\mathbb{R}_{+}^{m}\right)} 1 d m$ is the volume of $C\left(\Pi_{X}(x)\right)$ which is $c V_{X}(x)$ for some constant $c$.

## WARNING

We have given a weak definition for $T_{A}(x)$ $T_{A}(x)$ is a tempered distribution, supported on the cone $C(A)$ ! Only when $A$ has maximal rank $T_{A}(x)$ is a function.

## WARNING

We have given a weak definition for $T_{A}(x)$
In general
$T_{A}(x)$ is a tempered distribution, supported on the cone $C(A)$ !

## WARNING

We have given a weak definition for $T_{A}(x)$

## In general

$T_{A}(x)$ is a tempered distribution, supported on the cone $C(A)$ ! Only when $A$ has maximal rank $T_{A}(x)$ is a function.

## BOX SPLINES

While the function $T_{A}(x)$ is the basic object, the more interesting object for numerical analysis is the

## box spline

that is the function $B_{A}(x)$ characterized by the formula:

$$
\int_{\mathbb{R}^{n}} f(x) B_{A}(x) d x=\int_{[0,1]^{m}} f\left(\sum_{i=1}^{m} t_{i} a_{i}\right) d t,
$$

where $f(x)$ is any continuous function.

## The $b_{m}$-spline of Schoenberg $A=\{1,1, \ldots, 1\}$,

 $m+1$-times$b_{m}(x)$ is of class $C^{m-1}$, it is supported in the interval $[0, m+1]$, and given by the formula:

$$
b_{m}(x):=\sum_{i=0}^{k}(-1)^{i}\binom{m+1}{i} \frac{(x-i)^{m}}{m!}, \forall x \in[k, k+1] .
$$

## The $b_{5}$-spline of Schoenberg



## and

$$
\begin{array}{ll}
A=\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right| \text { Hat function } & A=\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
0 & 1 & 1 & 1
\end{array}\right| \\
\text { or Courant element } & \text { Zwart-Powell element }
\end{array}
$$



## EXAMPLE OF A

Non continuous, $A=\left|\begin{array}{lllll}1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2\end{array}\right|(h=1)$


## 3 reasons WHY the ?

## recursive definition

$$
\int_{\mathbb{R}^{n}} B_{A}(x) d x=1
$$

in the case of integral vectors, we have

## PARTITION OF UNITY

The translates $B_{A}(x-\lambda)$, $\lambda$ runs over the integral vectors form a

## 3 reasons WHY the

## recursive definition

$$
B_{[A, v]}(x)=\int_{0}^{1} B_{A}(x-t v) d t
$$

in the case of integral vectors, we have

## PARTITION OF UNITY

The translates $B_{\Lambda}(x-\lambda)$, $\lambda$ runs over the integral vectors form a


## 3 reasons WHY the

## recursive definition

$$
B_{[A, v]}(x)=\int_{0}^{1} B_{A}(x-t v) d t
$$

in the case of integral vectors, we have

## PARTITION OF UNITY

The translates $B_{A}(x-\lambda), \lambda$ runs over the integral vectors form a partition of 1 .

## TRIVIAL EXAMPLE

$A=\{1,1\}$ we have for the box spline

Now let us add to it its translates!

























## EXAMPLE OF THE HAT FUNCTION

$$
A=\left|\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|
$$

From the function $T_{A}$
0


## EXAMPLE OF THE HAT FUNCTION

we get the box spline hat function summing over the 6 translates of $T_{A}$


## Recall the box-spline for type $B_{2}$



## APPROXIMATION THEORY

The box spline, when the $a_{i}$ are integral vectors, can be effectively used in the finite element method to approximate functions.
We define the CARDINAL SPLINE SPACE

$$
\mathcal{S}_{X}:=\left\{\sum_{i \in \mathbb{Z}^{s}} B_{A}(x-i) a_{i}\right\}
$$

The function $a_{i}$ on $\mathbb{Z}^{s}$ is called a mesh function.
Define $D(A)$ to be the space of polynomials contained in $\mathcal{S}_{X}$.
For a function $f$ we
The semi-discrete convolution

$$
f \mapsto B_{X} *^{\prime} f:=\sum_{i \in \mathbb{Z}^{s}} B_{A}(x-i) f(i)
$$

## The theory of Dahmen-Micchelli

Consists of several Theorems.
The basic is that

- semidiscrete convolution maps $D(A)$ into $D(A)$.
- The dimension of $D(A)$ equals the number of bases which one can extract from $A$.
- $D(A)$ contains all polynomials of degree $<m(A)(m(A)$ is the minimum length of a cocircuit).
- $D(A)$ is the space of solutions of the differential equations $D_{Y} f=0$ as
(1) $Y$ runs over the cocircuits of $A$.
(2) $D_{Y}:=\prod_{a \in Y} D_{a}$
(3) $D_{a}$ is the directional derivative relative to $a$.


## THIRD STEP

## FROM ANALYSIS TO ALGEBRA

## Here comes the algebra

How to compute $T_{A}$ ? or the partition function $P_{A}$ ?
We use the Laplace transform which will change the analytic problem to one in
algebra

## LAPLACE TRANSFORM from $\mathbb{R}^{s}=V$ to $U=V^{*}$.

$$
L f(u):=\int_{V} e^{-\langle u \mid v\rangle} f(v) d v .
$$

In coordinates $u=\left(y_{1}, \ldots, y_{s}\right), v=\left(x_{1}, \ldots, x_{s}\right)$ we have

$$
L f\left(y_{1}, \ldots, y_{s}\right):=\int_{\mathbb{R}^{s}} e^{-\sum_{i=1}^{s} y_{i} x_{i}} f\left(x_{1}, \ldots, x_{s}\right) d x_{1} \ldots d x_{s}
$$

## basic properties

$p \in U, w \in V$, write $p, D_{w}$ for the linear function $\langle p \mid v\rangle$ and the directional derivative on $V$

$$
L\left(D_{w} f\right)(u)=w L f(u), \quad L(p f)(u)=-D_{p} L f(u)
$$

$$
L\left(e^{p} f\right)(u)=L f(u-p), \quad L(f(v+w))(u)=e^{w} L f(u)
$$

## basic properties

$p \in U, w \in V$, write $p, D_{w}$ for the linear function $\langle p \mid v\rangle$ and the directional derivative on $V$

$$
L\left(D_{w} f\right)(u)=w L f(u), \quad L(p f)(u)=-D_{p} L f(u)
$$

$$
L\left(e^{p} f\right)(u)=L f(u-p), \quad L(f(v+w))(u)=e^{w} L f(u)
$$

## basic properties

$p \in U, w \in V$, write $p, D_{w}$ for the linear function $\langle p \mid v\rangle$ and the directional derivative on $V$

$$
L\left(D_{w} f\right)(u)=w L f(u), \quad L(p f)(u)=-D_{p} L f(u)
$$

$$
L\left(e^{p} f\right)(u)=L f(u-p), \quad L(f(v+w))(u)=e^{w} L f(u)
$$

Consider any $a \in V$ as a LINEAR FUNCTION ON $U$ we have:
An easy computation gives the Laplace transforms:

and

Consider any $a \in V$ as a LINEAR FUNCTION ON $U$ we have:
An easy computation gives the Laplace transforms:

$$
L B_{A}=\prod_{a \in A} \frac{1-e^{-a}}{a}
$$

and

$$
L T_{A}=\prod_{a \in A} \frac{1}{a}
$$

## The Laplace transform of the multivariate spline

$$
\begin{gathered}
\int_{\mathbb{R}^{n}} e^{-\sum_{i} y_{i} x_{i}} T_{A}(x) d x=\int_{\mathbb{R}_{+}^{m}} e^{-\sum_{i=1}^{m} t_{i ; i}(y)} d t_{1} \ldots d t_{m}, \\
=\prod_{i=1}^{m} \int_{\mathbb{R}_{+}} e^{-t_{i} a_{i}(y)} d t_{i}=\prod_{i=1}^{m} \frac{1}{a_{i}(y)} .
\end{gathered}
$$

## MORE PARTIAL FRACTIONS

We need to rewrite $L T_{A}=\prod_{a \in A} \frac{1}{a}$ for this we need to develop a theory of partial fractions in several variables, in this case for the algebra

$$
S[V]\left[\prod_{a \in A} a^{-1}\right]
$$

WE DO THIS BY NON COMMUTATIVE ALGEBRA!!!!

## BASIC NON COMMUTATIVE ALGEBRAS

## Algebraic Fourier transform

Weyl algebras
Set $W(V), W(U)$ be the two Weyl algebras of differential operators with polynomial coefficients on $V$ and $U$.

## Fourier transform

There is an algebraic Fourier isomorphism between them, so any $W(V)$ module $M$ becomes a $W(U)$ module $\hat{M}$

## BASIC NON COMMUTATIVE ALGEBRAS

We want to interpret some of these formal properties in the language of Algebra. Recall we set $U:=V^{*}$ the dual space.

## Weyl algebras

Set $W(V), W(U)$ be the two Weyl algebras of differential operators with polynomial coefficients on $V$ and $U$.

In coordinates $x_{1}, \ldots, x_{s}$ of $V$ we identify the basis of $V$ with $\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}$

## BASIC NON COMMUTATIVE ALGEBRAS

## Weyl algebras

$W(V)$ is the algebra generated by $V \oplus U$ with commutation relations

$$
[v, u]=\langle u \mid v\rangle, v \in V, u \in U .
$$

$W(U)$ is the algebra generated by $U \oplus V$ with commutation relations

$$
[v, u]=-\langle u \mid v\rangle, v \in V, u \in U .
$$

## BASIC NON COMMUTATIVE ALGEBRAS

## Algebraic Fourier transform

## Fourier transform

There is an algebraic Fourier isomorphism $A \mapsto \hat{A}$ between them,

$$
\wedge: v \mapsto v, u \mapsto-u
$$

so any $W(V)$ module $M$ becomes a $W(U)$ module $\hat{M}$

The formulas we have for the Laplace transform mean that it is semi-linear with respect to ${ }^{\text {? }}$

$$
L(A f)=\hat{A} L(f)
$$

We shall apply this to tempered distributions, the dual of Schwarz space of rapidly decreasing $C^{\infty}$ functions.

## $D$-modules in Fourier duality:

## Two modules Fourier isomorphic

1. The $D$-module $\mathcal{D}_{A}:=W(V) T_{A}$ generated, in the space of tempered distributions, by $T_{A}$ under the action of the algebra $W(V)$ of differential operators on $V$ with polynomial coefficients.

## $D$-modules in Fourier duality:

## Two modules Fourier isomorphic

1. The $D$-module $\mathcal{D}_{A}:=W(V) T_{A}$ generated, in the space of tempered distributions, by $T_{A}$ under the action of the algebra $W(V)$ of differential operators on $V$ with polynomial coefficients.
2. The algebra $R_{A}:=S[V]\left[\prod_{a \in A} a^{-1}\right]$ obtained from the polynomials on $U$ by inverting the element $d_{A}:=\prod_{a \in A} a$

$$
R_{A}=W(U) d_{A}^{-1}
$$

$R_{A}$ and it is the coordinate ring of the open set $\mathcal{A}_{A}$ complement of the union of the hyperplanes of $U$ of equations $a=0, a \in A$.
It is a cyclic module under $W(U)$ generated by $d_{A}^{-1}$.

## The module $R_{A}$

## Localization

It is well known that once we invert an element in a polynomial algebra we get a holonomic module over the algebra of differential operators. $\quad R_{A}$ is holonomic!

## The module $R_{A}$

## Localization

It is well known that once we invert an element in a polynomial algebra we get a holonomic module over the algebra of differential operators. $\quad R_{A}$ is holonomic!

In particular $R_{A}$ has a finite composition series and it is cyclic

## The module $R_{A}$

## Localization

It is well known that once we invert an element in a polynomial algebra we get a holonomic module over the algebra of differential operators. $\quad R_{A}$ is holonomic!

In particular $R_{A}$ has a finite composition series and it is cyclic

We want to describe a composition series of $R_{A}$.

## The building blocks

## The irreducible module $N_{W}$

For each subspace $W$ of $U$ we have an irreducible module $N_{W}$ generated by the $\delta$ function of $W$.

As $W$ runs over the subspaces of the hyperplane arrangement given by the equations $a_{i}=0, a_{i} \in A$
the $N_{W}$ run over all the composition factors of $R_{A}$ (with multiplicities)

## Take coordinates $x_{1}, \ldots, x_{n}$

$$
W=\left\{x_{1}=x_{2}=\ldots=x_{k}=0\right\}
$$

$N_{W}$ is generated by an element $\delta_{W}$ satisfying:

$$
x_{i} \delta_{W}=0, i \leq k, \quad \frac{\partial}{\partial x_{i}} \delta, i>k .
$$

## Take coordinates $x_{1}, \ldots, x_{n}$

$$
W=\left\{x_{1}=x_{2}=\ldots=x_{k}=0\right\}
$$

$N_{W}$ is generated by an element $\delta_{W}$ satisfying:

$$
x_{i} \delta_{W}=0, i \leq k, \quad \frac{\partial}{\partial x_{i}} \delta, i>k
$$

$N_{W}$ is free of rank 1 generated by $\delta_{W}$ over:

$$
\mathbb{C}\left[x_{1}, x_{2}, \ldots, x_{k}, \frac{\partial}{\partial x_{k+1}}, \ldots, \frac{\partial}{\partial x_{n}}\right]
$$

## The filtration of $R_{A}$ by polar order

## Definition

$R_{A}$ is filtered by the $W(U)$-submodules:
filtration degree $\leq k$
$R_{A, k}$ the span of all the fractions $f \prod_{a \in A} a^{-h_{a}}, h_{a} \geq 0$ for which the set of vectors $a$, with $h_{a}>0$, spans a space of dimension $\leq k$.

We have $R_{A, s}=R_{A}$.

## The filtration of $R_{A}$ by polar order

## For all $k$ we have that $R_{A, k} / R_{A, k-1}$ is semisimple.

- The isotypic components of $R_{A, k} / R_{A, k-1}$ are of type $N_{W}$ as $W$ runs over the subspaces of the arrangement of codimension $k$.
- The space
$R_{A, s} / R_{A, s-1}$ is a free module over

$$
S[U]=\mathbb{C}\left[\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}\right]
$$

## The filtration of $R_{A}$ by polar order

The linear span of all the fractions $\prod_{i=1}^{m} a_{i}^{-h_{i}}, h_{i} \geq 0$ so that the $a_{i}$ with $h_{i}>0$ span is a complement of $R_{A, s-1}$ in $R_{A, s}$ and it is a free module over

$$
S[U]=\mathbb{C}\left[\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}\right]
$$

It is important to choose a basis.

## Theorem

## A basis for $R_{A, s} / R_{A, s-1}$ over $S[U]$ is given by

the classes of the elements $\prod_{a \in \underline{b}} a^{-1}$ as $\underline{b}$ runs over the set of unbroken bases.

## The expansion of $d_{A}^{-1}=\prod_{a \in A} a^{-1}$

Denote by $\mathcal{N B}$ the unbroken bases extracted from $A$.
We have a more precise THEOREM.

$$
\frac{1}{\prod_{a \in A} a}=\sum_{\underline{b} \in \mathcal{N B}} p_{\underline{b}} \prod_{a \in \underline{b}} a^{-1}, p_{\underline{b}} \in S[U]=\mathbb{C}\left[\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}\right]
$$

## EXAMPLE

## Example

## USE COORDINATES $x, y$ SET

$$
\begin{gathered}
A=[x+y, x, y]=[x, y]\left|\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right| \\
\frac{1}{(x+y) x y}=\frac{1}{x(x+y)^{2}}+\frac{1}{y(x+y)^{2}}= \\
-\frac{\partial}{\partial y}\left(\frac{1}{x(x+y)}\right)-\frac{\partial}{\partial x}\left(\frac{1}{y(x+y)}\right)
\end{gathered}
$$

## EXAMPLE

## Example

$$
\begin{gathered}
A=[x+y, x, y,-x+y]=[x, y]\left|\begin{array}{cccc}
1 & 0 & 1 & -1 \\
1 & 1 & 0 & 1
\end{array}\right| \\
\frac{1}{(x+y) \times y(-x+y)}=\frac{1}{(x+y)^{3} x}+\frac{4}{(x+y)^{3}(-x+y)}-\frac{1}{(x+y)^{3} y}
\end{gathered}
$$

$$
1 / 2\left[\frac{\partial^{2}}{\partial^{2} y}\left(\frac{1}{(x+y) x}\right)+\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^{2}\left(\frac{1}{(x+y)(-x+y)}\right)-\frac{\partial^{2}}{\partial^{2} x}\left(\frac{1}{(x+y) y}\right)\right]
$$

## We now need the basic inversion

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis,

## We now need the basic inversion

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis, $d:=\left|\operatorname{det}\left(a_{1}, \ldots, a_{s}\right)\right|$

## We now need the basic inversion

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis, $d:=\left|\operatorname{det}\left(a_{1}, \ldots, a_{s}\right)\right|$
$\chi_{C(A)}$ the characteristic function of the positive quadrant $C(A)$ generated by $A$.

## We now need the basic inversion

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a basis, $d:=\left|\operatorname{det}\left(a_{1}, \ldots, a_{s}\right)\right|$
$\chi_{C(A)}$ the characteristic function of the positive quadrant $C(A)$ generated by $A$.

Basic example of inversion

$$
L\left(d^{-1} \chi_{C(A)}\right)=\prod_{i=1}^{n} a_{i}^{-1}
$$

## We are ready to invert!

## We want to invert

$$
d_{A}^{-1}=\sum_{\underline{b} \in \mathcal{N B}} p_{\underline{b}, A}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}\right) \prod_{a \in \underline{b}} a^{-1}
$$

From the basic example and the properties!
$\square$

## We are ready to invert!

## We want to invert

$$
d_{A}^{-1}=\sum_{\underline{b} \in \mathcal{N B}} p_{\underline{b}, A}\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{s}}\right) \prod_{a \in \underline{b}} a^{-1}
$$

From the basic example and the properties!
We get

$$
\sum_{\underline{b} \in \mathcal{N B}} p_{\underline{b}, A}\left(-x_{1}, \ldots,-x_{s}\right) d_{\underline{b}}^{-1} \chi_{C(\underline{b})}
$$

## EXAMPLE

Inverting

$$
1 / 2\left[\frac{\partial^{2}}{\partial^{2} y}\left(\frac{1}{x(x+y)}\right)+\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)^{2}\left(\frac{1}{(x+y)(-x+y)}\right)-\frac{\partial^{2}}{\partial^{2} x}\left(\frac{1}{y(x+y)}\right)\right]
$$

we get

$$
1 / 2\left[y^{2} \chi_{C((1,0),(1,1))}+\frac{(x+y)^{2}}{2} \chi_{C((1,1),(-1,1)}-x^{2} \chi_{C((0,1),(1,1))}\right]
$$

## The theory of Dahmen-Micchelli

We need a basic definition of combinatorial nature

## Definition

We say that a sublist $Y \subset A$ is a cocircuit, if the elements in $A-Y$ do not span $V$.
$\square$
$\square$

constant coefficients
( $D_{a}$ is directional derivative, first order operator)

## The theory of Dahmen-Micchelli

We need a basic definition of combinatorial nature

## Definition

We say that a sublist $Y \subset A$ is a cocircuit, if the elements in $A-Y$ do not span $V$.

The basic differential operators
For such $Y$ set $D_{Y}:=\prod_{a \in Y} D_{a}$, a differential operator with constant coefficients.
( $D_{a}$ is directional derivative, first order operator)

For a given unbroken circuit basis $\underline{b}$, consider the element $D_{\underline{b}}:=\prod_{a \notin \underline{b}} D_{a}$.

For a given unbroken circuit basis $\underline{b}$, consider the element

$$
D_{\underline{b}}:=\prod_{a \notin \underline{b}} D_{a} .
$$

## Characterization by differential equations

The polynomials $p_{\underline{b}, A}$ are characterized by the differential equations

For a given unbroken circuit basis $\underline{b}$, consider the element

$$
D_{\underline{b}}:=\prod_{a \notin \underline{b}} D_{a} .
$$

## Characterization by differential equations

The polynomials $p_{\underline{b}, A}$ are characterized by the differential equations

$$
D_{Y} p=0, \forall Y, \quad \text { a cocircuit in } A
$$

$$
D_{\underline{b}} p_{\underline{c}, A}\left(x_{1}, \ldots, x_{s}\right)=\left\{\begin{array}{lll}
1 & \text { if } \quad \underline{b}=\underline{c} \\
0 & \text { if } & \underline{b} \neq \underline{c}
\end{array}\right.
$$

## The space $D(A)$

A remarkable space of polynomials

$$
D(A):=\left\{p \mid D_{Y} p=0, \forall Y, \quad \text { a cocircuit in } A\right\}
$$

## The theorem of Dhamen Micchelli

$\operatorname{dim} D(A)$ equals the total number of bases extracted from $A$

## The theorem of Dhamen Micchelli

$\operatorname{dim} D(A)$ equals the total number of bases extracted from $A$

## We have a more precise theorem

The polynomials $p_{b, A}$ form a basis for the top degree part $(m-n)$ of $D(A)$.

## The theorem of Dhamen Micchelli

$\operatorname{dim} D(A)$ equals the total number of bases extracted from $A$

## We have a more precise theorem

The polynomials $p_{b, A}$ form a basis for the top degree part $(m-n)$ of $D(A)$.
The graded dimension of $D(A)$ is given by

## The theorem of Dhamen Micchelli

$\operatorname{dim} D(A)$ equals the total number of bases extracted from $A$

## We have a more precise theorem

The polynomials $p_{b, A}$ form a basis for the top degree part $(m-n)$ of $D(A)$.
The graded dimension of $D(A)$ is given by
$n(\underline{b})$ is the number of elements of $A$ breaking $\underline{b}$.

## For $A_{3}$ we get

The graded dimension is:

$$
6 q^{3}+6 q^{2}+3 q+1
$$

Remark that for all polynomials in three variables it is:

$$
\ldots+10 q^{3}+6 q^{2}+3 q+1
$$

## Interpretation

The theorem of Dahmen-Micchelli can be formulated both in terms of commutative as well as non-commutative algebra.

## APPROXIMATION POWER

## THE STRANG-FIX CONDITIONS

## THE STRANG-FIX CONDITIONS

The interest of the space of polynomials $D(A)$ comes in approximation theory from the problem of studying the approximation of a function $f(x)$ by the finite element method:
discrete convolution

$$
f(x) \mapsto \sum_{\underline{i} \in \mathbb{Z}^{n}} B_{A}(x-\underline{i}) f(\underline{i})
$$

Or at order $n \in \mathbb{N}$ :

$$
f(x) \mapsto \sum_{\underline{i} \in \mathbb{Z}^{n}} B_{A}(n x-\underline{i} / n) f(\underline{i} / n)
$$

More generally we want to find weights $c_{\underline{i}}$ and approximate $f$ by $f(x) \mapsto \sum_{\underline{i} \in \mathbb{Z}^{n}} B_{A}(n x-\underline{i} / n) c_{\underline{i}}$ and determine a constant $k \in \mathbb{N}$ so that (on some bounded region):

$$
\left|f(x)-\sum_{\underline{i} \in \mathbb{Z}^{s}} B_{A}(n x-\underline{i} / n) c_{\underline{i}}\right| \leq C n^{-k}
$$

The maximum $k$ is the
approximation power of $B_{A}$.

Given a spline $M(x)$ on $\mathbb{R}^{s}$, with compact support one may define THE CARDINAL SPLINE SPACE to be the space $\mathcal{S}_{M}$ of all (infinite) linear combinations:

$$
\mathcal{S}_{M}:=\left\{\sum_{\underline{i} \in \mathbb{Z}^{s}} M(x-\underline{i}) c_{\underline{i}}\right\} .
$$

The approximation power of $M(x)$ is related to two questions:
For which polynomials $f(x)$ we have that $\sum_{i \in \mathbb{Z}^{s}} M(x-\underline{i}) f(\underline{i})$ is a polynomial?
2. Which polynomials lie in the cardinal spline space?

## THE REMARKABLE SPACE $D(A)$

## Theorem

A polynomial $f(x)$ is in the cardinal spline space if and only if

$$
D_{Y} f=0, \forall Y \subset A \mid \text { the span of } A \backslash Y \text { is not } V
$$

In other words $D_{Y} f=0, \forall Y \subset A$ which are cocircuits.

The Strang-Fix conditions is a general statement:
The approximation power of a function $M$ is the maximum $r$ such that the space of all polynomials of degree $\leq r$ is contained in the cardinal space $\mathcal{S}_{M}$.

## The case of $B_{A}$

For the cardinal spline space in the case $B_{A}(x)$ with $A$ integral we have:

1. $D(A)$ is characterized as the space of polynomials $f(x)$ which reproduce, i.e.map to polynomials under the discrete convolution.
2. $D(A)$ is also characterized as the space of polynomials lying in the cardinal spline space.

## Strang-Fix conditions

The power of approximation by discrete convolution is measured by the maximum degree of the space of polynomials which reproduce under discrete convolution.

Consider the following algorithm applied to a function $g$ :

$$
g_{h}:=\sum_{\underline{i} \in \Lambda} F(x / h-\underline{i}) g(h \underline{i})
$$

There are functions $F$ in the cardinal spline space such that this transformation is the identity on polynomials of degree $<m(A)$, these are the super-functions. For such functions the previous algorithm satisfies the requirements of the Strang-Fix approximation

## Theorem

We have, under the explicit algorithm previously constructed that, for any domain $G$ :

$$
\left\|f_{h}-f\right\|_{L^{\infty}(G)}=O\left(h^{m(A)}\right)
$$

For every multi-index $\alpha \in \mathbb{N}^{s}$ with $|\alpha| \leq m(A)-1$, we have:

$$
\left\|\partial^{\alpha} f_{h}-\partial^{\alpha} f\right\|_{L^{\infty}(G)}=\left\|\partial^{\alpha}\left(f_{h}-f\right)\right\|_{L^{\infty}(G)}=O\left(h^{m(A)-|\alpha|}\right)
$$

## PARTITION FUNCTIONS

## THE DISCRETE CASE

## PARTITION FUNCTION

Also in general for vectors we have
The partition function is a quasi polynomial on each big cell in fact on the larger neighborhood $\mathfrak{c}-B(A)$ on the big cell $\mathfrak{c}$.
$B(A):=\sum_{i=1}^{m} t_{i} a_{i}, 0 \leq t_{i} \leq 1$ is the support of the box spline.

## PARTIAL FRACTIONS

The classical method of study of the partition function associated to a list of numbers $a_{1}, \ldots, a_{i}, \ldots, a_{m}$ is to expand in partial fractions the generating function:

$$
\prod_{i=1}^{m} \frac{1}{1-x^{a_{i}}}=\prod_{i=1}^{m} \sum_{k=0}^{\infty} x^{k a_{i}}=\sum_{b} P_{A}(b) x^{b}
$$

This is done by using the decomposition $1-x^{n}=\prod_{k=0}^{n-1}\left(1-\zeta_{n}^{k} x\right)$ where $\zeta_{n}=e^{\frac{2 \pi i}{n}}$.

## PARTIAL FRACTIONS

One then develops in partial fractions as a sum of terms each with pole only in a root of 1 , each term can be then developed in a simpler way and one obtains a possible formula.
This is also achieved as a residue computation.

## IN HIGHER DIMENSION?

One can still develop a much more sophisticated theory of partial fractions and residues!!!

## THE DISCRETE CASE

We think of the partition function

$$
P_{A}(b)=\#\left\{t_{1}, \ldots, t_{m} \in \mathbb{N} \mid \sum_{i=1}^{m} t_{i} a_{i}=b\right\}
$$

as a distribution

## THE DISCRETE CASE

We think of the partition function

$$
P_{A}(b)=\#\left\{t_{1}, \ldots, t_{m} \in \mathbb{N} \mid \sum_{i=1}^{m} t_{i} a_{i}=b\right\}
$$

as a distribution
with
$\begin{array}{ll}\sum_{\lambda \in \Lambda} P_{A}(\lambda) \delta_{\lambda} . & \begin{array}{l}\text { Laplace } \\ \text { transform }\end{array}\end{array}$

## THE DISCRETE CASE

We think of the partition function

$$
P_{A}(b)=\#\left\{t_{1}, \ldots, t_{m} \in \mathbb{N} \mid \sum_{i=1}^{m} t_{i} a_{i}=b\right\}
$$

as a distribution
with
$\sum_{\lambda \in \Lambda} P_{A}(\lambda) \delta_{\lambda}$.
Laplace
transform

$$
\sum_{\lambda \in \Lambda} P_{A}(\lambda) e^{-\lambda}=\prod_{a \in A} \frac{1}{\left(1-e^{-a}\right)} .
$$

One can see that the leading part of the formula for the partition function is given by the multivariate spline $T_{A}$ and also that there are formulas using differential operators to pass from the functions $T_{A}$ to the partition functions.

## OTHER FOURIER ISOMORPHIC ALGEBRAS

The periodic Weyl algebras $\tilde{W}(U)$ and $W^{\#}(\Lambda)$

$$
\tilde{W}(U)=\mathbb{C}\left[e^{ \pm t_{1}}, \ldots, e^{ \pm t_{n}}, \frac{\partial}{\partial t_{1}}, \ldots, \frac{\partial}{\partial t_{n}}\right]
$$

algebra of difference operators

$$
\begin{gathered}
W^{\#}(\Lambda)=\mathbb{C}\left[x_{1}, \ldots, x_{n}, \nabla_{ \pm x_{1}}, \ldots, \nabla_{ \pm x_{n}}\right] \\
\nabla_{x_{i}}\left(x_{j}\right)=\left\{\begin{array}{l}
x_{j} \text { if } i \neq j \\
x_{i}-1
\end{array}\right.
\end{gathered}
$$

## $D$-modules in Fourier duality:

## Two modules Fourier isomorphic

1. The $W^{\#}$-module $\mathcal{D}_{A}^{\#}:=W^{\#}(\Lambda) \mathcal{P}_{A}$ generated, in the space of tempered distributions, by the partition distribution $\mathcal{P}_{A}$.
2. The $W(U)$ module $S_{A}=\mathbb{C}[\Lambda]\left[\prod_{a \in A}\left(1-e^{-a}\right)^{-1}\right]$ is the algebra obtained from the character ring $\mathbb{C}[\Lambda]$ by inverting $u_{A}:=\prod_{a \in A}\left(1-e^{-a}\right)$.

## The toric arrangement

$T$ the torus of character group $\wedge$
$\square$ complement of the union of the subgroups of $T$ of equations $e^{a}=1, a \in A$.

## The toric arrangement

$T$ the torus of character group $\wedge$
$S_{A}=\mathbb{C}[\Lambda]\left[u_{A}^{-1}\right]$ is the coordinate ring of the open set $\mathcal{T}_{A} \subset T$ complement of the union of the subgroups of $T$ of equations $e^{a}=1, a \in A$.

## The toric arrangement

## The toric arrangement

The toric arrangement is the finite set consisting of all the connected components of the subvarieties obtained by intersecting the subgroups of $T$ of equations $e^{a}=1, a \in A$.

EXAMPLE $s=1, T=\mathbb{C}^{*}, A=\{5,3\}$
The arrangement consists of the connected components of the variety $x^{5}=1$ or $x^{3}=1$, i.e. of the five, fifth roots of 1 and the three third roots of 1 .

## Points of the arrangement

The elements of the toric arrangement are ordered by reverse inclusion, particular importance is given to the points of the arrangement, $P(A)$ which are the zero-dimensional, i.e. points, elements of the arrangement.
A very special case is when $P(A)$ reduces to the point 1 , this is the unimodular case.

Each point $p \in P(A)$ determines a sublist:

$$
A_{p}:=\left\{a \in A \mid e^{a}(p)=1\right\} .
$$

## EXAMPLE ZP

$$
A=\left|\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & 0 & 1 & 1
\end{array}\right|
$$

The subgroups are

$$
x y=1, x=1, y=1, x^{-1} y=1
$$

We have two points in $P(A)$

$$
\begin{gathered}
(1,1),(-1,-1) \\
A_{(1,1)}=A, \quad A_{(-1,-1)}=\left|\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right| .
\end{gathered}
$$

## THE FILTRATION

We have as for hyperplanes a filtration by polar orders on $S_{A}$.

## THE FILTRATION

We have as for hyperplanes a filtration by polar orders on $S_{A}$.
Each graded piece is semisimple.
The isopypic components appearing in grade $k$ correspond to the connected components of the toric arrangement of codimension $k$

## THE FILTRATION

We have as for hyperplanes a filtration by polar orders on $S_{A}$.

## Each graded piece is semisimple.

The isopypic components appearing in grade $k$ correspond to the connected components of the toric arrangement of codimension $k$

For the top part $S_{A, n} / S_{A, n-1}$ we have a sum over the points of the arrangement $P(A)$.

## THE FILTRATION

We have as for hyperplanes a filtration by polar orders on $S_{A}$.

## Each graded piece is semisimple.

The isopypic components appearing in grade $k$ correspond to the connected components of the toric arrangement of codimension $k$

For the top part $S_{A, n} / S_{A, n-1}$ we have a sum over the points of the arrangement $P(A)$.

The isotypic component associated to a point $e^{\phi}$ decomposes as direct sum of irreducibles indexed by the unbroken bases in

$$
A_{\phi}:=\left\{a \in A \mid e^{\langle a \mid \phi\rangle}=1\right\} .
$$

The previous formula shows in particular, that the partition function is on each cell a

## Local structure of $\mathcal{P}_{A}$

## LINEAR COMBINATION OF POLYNOMIALS TIME PERIODIC EXPONENTIALS.

Such a function is called a QUASI POLINOMIAL

## Basic equations

As for the case of the multivariate spline:
The quasi polynomials appearing in the formula for $\mathcal{P}_{A}$ satisfy special difference equations

## DIFFERENCE OPERATORS

For $a \in \Lambda$ and $f$ a function on $\Lambda$ we define the the

## difference operator:

$$
\nabla_{a} f(x)=f(x)-f(x-a), \nabla_{a}=1-\tau_{a} .
$$

## Example

As special functions we have the characters, eigenvectors of difference operators.

## DIFFERENCE EQUATIONS

Parallel to the study of $D(A)$, one can study the system of difference equations

$$
\nabla_{Y} f=0, \text { where } \nabla_{Y}:=\prod_{v \in Y} \nabla_{v}
$$

as $Y \in \mathcal{E}(A)$ runs over the cocircuits.

## DIFFERENCE EQUATIONS

Parallel to the study of $D(A)$, one can study the system of difference equations
$\nabla_{Y} f=0$, where $\nabla_{Y}:=\Pi_{v \in Y} \nabla_{v}$
as $Y \in \mathcal{E}(A)$ runs over the cocircuits.

Let us denote the space of solutions by:

$$
\nabla(A):=\left\{f: \Lambda \rightarrow \mathbb{C}, \mid \nabla_{Y}(f)=0, \forall Y \in \mathcal{E}(A)\right\} .
$$

## SECOND THEOREM OF DAHMEN-MICCHELLI

## Weighted dimension

The dimension of $\nabla(A)$ is the Volume of the box $B(A)$ ! $\delta(A)$ we have:

$$
\delta(A):=\sum_{\underline{b} \in \mathcal{B}(A)}|\operatorname{det}(\underline{b})| .
$$

This formula has a strict connection with the paving of the box.

## Example

Let us take

$$
A=\left|\begin{array}{cccc}
0 & 1 & 1 & -1 \\
1 & 0 & 1 & 1
\end{array}\right|
$$



See that $\delta(A)=1+1+1+1+1+2=7$ is the number of points in which the box $B(A)$, shifted generically a little, intersects the lattice!

## FROM DIFFERENCE TO DIFFERENTIAL EQUATIONS

## logarithm isomorphism

There is a formal machinery which allows us to interpret, locally around a point, difference equations as restriction to the lattice of differential equations, we call it the
logarithm isomorphism
We have this for any module over the periodic Weyl algebra $\mathbb{C}\left[\frac{\partial}{\partial x_{i}}, e^{x_{i}}\right]$ as soon as for algebraic reasons (nilpotency) we can deduce from the action of $e^{x_{i}}$ also an action of $x_{i}$.

## WONDERFUL MODELS

## RESIDUES

There is an approach to compute the partition function based on residues
Start from the case of numbers. Fix positive numbers $\underline{h}:=\left(h_{1}, \ldots, h_{m}\right)$.

## Given an integer $n$,

 the number of ways $n=\sum_{i} k_{i} h_{i}$ is the coefficient of $x^{-1}$ in$$
P_{\underline{h}}(x)=\prod_{i} \frac{x^{-n-1}}{1-x^{h_{i}}}
$$

Thus it is a residue.
We can use the residue theorem by passing to the other poles which are roots on one.

## multidimensional residues

In order to define multidimensional residues we need divisors with normal crossings or a function which in some coordinates $x_{i}$ has a pole on the hyperplanes $x_{i}=0, i=1, \ldots, s$.
The residue is the coefficient of $\prod_{i} x_{i}^{-1}$.

## Definition

Given a subset $A \subset X$ the list $\bar{A}:=X \cap\langle A\rangle$ will be called the completion of $A$. In particular $A$ is called complete if $A=\bar{A}$.

The space of vectors $\phi \in U$ such that $\langle a \mid \phi\rangle=0$ for every $a \in A$ will be denoted by $A^{\perp}$. Notice that clearly $\bar{A}$ equals to the list of vectors $a \in X$ which vanish on $A^{\perp}$.
From this we see that we get a bijection between the complete subsets of $X$ and subspaces of the arrangement defined by $X$.

A central notion in what follows is given by

## Definition

Given a complete set $A \subset X$, a decomposition is a decomposition $A=A_{1} \cup A_{2}$ in non empty sets, such that:

$$
\langle A\rangle=\left\langle A_{1}\right\rangle \oplus\left\langle A_{2}\right\rangle .
$$

Clearly the two sets $A_{1}, A_{2}$ are necessarily complete.

## We shall say that :

a complete set $A$ is irreducible if it does not have a non trivial decomposition.

## Theorem

Every set $A$ can be decomposed as $A=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ with the $A_{i}$ irreducible and:

$$
\langle A\rangle=\left\langle A_{1}\right\rangle \oplus\left\langle A_{2}\right\rangle \oplus \cdots \oplus\left\langle A_{k}\right\rangle
$$

This decomposition is unique up to order.
$A=A_{1} \cup A_{2} \cup \cdots \cup A_{k}$ is called the decomposition into irreducibles of $A$.

## Example

An interesting example is that of the configuration space of $s$-ples of point in a line (or the root system $A_{s-1}$ ). In this case $X=\left\{z_{i}-z_{j} \mid 1 \leq i<j \leq s\right\}$.
In this case, irreducible sets are in bijection with subsets of $\{1, \ldots, s\}$ with least 2 elements. If $S$ is such a subset the corresponding irreducible is $I_{S}=\left\{z_{j}-z_{j} \mid\{i, j\} \subset S\right\}$.
Given a complete set $C$, the irreducible decomposition of $C$ corresponds to a family of disjoint subsets $S_{1}, \ldots, S_{k}$ of $\{1, \ldots, s\}$ each with at least 2 elements.

## Definition

A family $\mathcal{S}$ of irreducibles $A_{i}$ is called nested if, given elements $A_{i_{1}}, \ldots, A_{i_{h}} \in \mathcal{S}$ mutually incomparable we have that $C:=A_{1} \cup A_{2} \cup \cdots \cup A_{i}$ is complete and $C:=A_{1} \cup A_{2} \cup \cdots \cup A_{i}$ is its decomposition into irreducibles.

Consider the hyperplane arrangement $\mathcal{H}_{X}$ and the open set

$$
\mathcal{A}_{X}=U /\left(\cup_{H \in \mathcal{H}_{X}} H\right)
$$

complement of the union of the given hyperplanes.
Let us denote by $\mathcal{I}$ the family of irreducible subsets in $X$.
We construct a minimal smooth variety $Z_{X}$ containing $\mathcal{A}_{X}$ as an open set with complement a normal crossings divisor, plus a proper map $\pi: Z_{X} \rightarrow U$ extending the identity of $\mathcal{A}_{X}$.

For any irreducible subset $A \in \mathcal{I}$ take the vector space $V / A^{\perp}$ and the projective space $\mathbb{P}\left(V / A^{\perp}\right)$.
Notice that, since $A^{\perp} \cap \mathcal{A}_{X}=\emptyset$ we have a natural projection $\pi_{A}: \mathcal{A}_{X} \rightarrow \mathbb{P}\left(V / A^{\perp}\right)$. If we denote by $j: \mathcal{A}_{X} \rightarrow U$ the inclusion we get a map

## The model

$$
i:=j \times\left(\times_{a \in \mathcal{I}} \pi_{A}\right): \mathcal{A}_{X} \rightarrow U \times\left(\times_{a \in \mathcal{I}} \mathbb{P}\left(U / A^{\perp}\right)\right)
$$

## Definition

The model $Z_{X}$ is the closure of $i\left(\mathcal{A}_{X}\right)$ in $U \times\left(\times_{a \in \mathcal{I}} \mathbb{P}\left(U / A^{\perp}\right)\right)$.

## There is a very efficient approach to computations by

residue at points at infinity in the wonderful compactification of the associated hyperplane arrangement.
Divisors at infinity correspond to irreducible subsets.
Points at infinity correspond to maximal nested sets. Around each such point one can consider a s-dimensional torus and its class in homology
A basis of the homology or of the corresponding residues corresponds to the tori around special points indexed by unbroken bases.

## The non linear coordinates

Given a MNS $\mathcal{S}$ choose a basis $\underline{b}:=b_{1}, \ldots, b_{s}$ from $X$ so that if $A_{i}$ is the minimal element of $\mathcal{S}$ containing $b_{i}$ we have all the $A_{i}$ distinct.
Construct new coordinates $z_{A}, A \in \mathcal{S}$ using the monomial expressions:

$$
\begin{equation*}
b_{A}:=\prod_{B \in \mathcal{S}, A \subseteq B} z_{B} \tag{2}
\end{equation*}
$$

The residue at the point 0 for these coordinates is denoted by res $\underline{\underline{b}}$. There is a similar theory for toric arrangements. Now we need to build such data for each point of the arrangement getting residues $\operatorname{res}_{\underline{\underline{b}}, \phi}$.

## GENERAL FORMULA FOR $T_{X}$

One can find explicit polynomials $p_{\underline{b}, A}(x)$, indexed by the points at infinity associated to the maximal nested set generated by unbroken bases so that:
Given a point $x$ in the closure of a big cell $\mathfrak{c}$ we have
Jeffry-Kirwan residue formula

$$
T_{A}(x)=\sum_{\underline{b} \mid \mathfrak{c} \subset C(\underline{b})}|\operatorname{det}(\underline{b})|^{-1} p_{\underline{b}, A}(-x) .
$$

## THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set of polynomials $q_{\underline{b}, \phi}(-x)$ indexed by pairs, a character $\phi$ of finite order and a unbroken basis in $A_{\phi}=\left\{a \in A \mid \phi\left(e^{a}\right)=1\right\}$.

## THE FORMULA FOR THE PARTITION FUNCTION

There is a parallel theory, as a result we can compute a set of polynomials $q_{\underline{b}, \phi}(-x)$ indexed by pairs, a character $\phi$ of finite order and a unbroken basis in $A_{\phi}=\left\{a \in A \mid \phi\left(e^{a}\right)=1\right\}$.
The analogue of the Jeffrey-Kirwan formula is:

## Theorem

Given a point $x$ in the closure of a big cell $\mathfrak{c}$ we have

## Residue formula for partition function

$$
P_{A}(x)=\sum_{\phi \in P(A)} e^{\phi} \sum_{\underline{b} \in \mathcal{N} \mathcal{B}_{A_{\phi}} \mid \mathfrak{c} \subset C(\underline{b})} \mathfrak{q}_{\underline{b}, \phi}(-x)
$$

## The residue

The polynomials building the multivariate spline and the partition functions are

## residues:

## Spline

$$
\begin{equation*}
p_{\underline{b}, X}(-y)=\operatorname{det}(\underline{b}) \operatorname{res}_{\underline{b}}\left(\frac{e^{\langle y \mid x\rangle}}{\prod_{a \in X}\langle x \mid a\rangle}\right) . \tag{3}
\end{equation*}
$$

## Partition function

$$
\begin{equation*}
\mathfrak{q}_{\underline{b}, X_{\phi}}(-y)=\operatorname{det}(\underline{b}) \operatorname{res}_{\underline{b}, \phi}\left(\frac{e^{\langle y \mid z\rangle}}{\prod_{a \in X}\left(1-e^{-a(z)-\langle\phi \mid a\rangle}\right)}\right) \tag{4}
\end{equation*}
$$

## SUMMARIZING

## Given a list of vectors $A$.

- We have the two functions $T_{A}, B_{A}$.
- $T_{A}$ is supported on the cone $C(A)$ and coincides on each big cell with a homogeneous polynomial in the space $D(A)$ defined by the differential equations $D_{\gamma} f=0, \quad Y \in \mathcal{E}(A)$
- The space $D(A)$ has as dimension the number $d(A)$ of bases extracted from $A$.

Given a list of vectors $A$.

- We have the two functions $T_{A}, B_{A}$.
- $T_{A}$ is supported on the cone $C(A)$ and coincides on each big cell with a homogeneous polynomial in the space $D(A)$ defined by the differential equations $D_{Y} f=0, \quad Y \in \mathcal{E}(A)$.

Given a list of vectors $A$.

- We have the two functions $T_{A}, B_{A}$.
- $T_{A}$ is supported on the cone $C(A)$ and coincides on each big cell with a homogeneous polynomial in the space $D(A)$ defined by the differential equations $D_{Y} f=0, Y \in \mathcal{E}(A)$.
- The space $D(A)$ has as dimension the number $d(A)$ of bases extracted from $A$.

Given a list of vectors $A$.

- We have the two functions $T_{A}, B_{A}$.
- $T_{A}$ is supported on the cone $C(A)$ and coincides on each big cell with a homogeneous polynomial in the space $D(A)$ defined by the differential equations $D_{Y} f=0, Y \in \mathcal{E}(A)$.
- The space $D(A)$ has as dimension the number $d(A)$ of bases extracted from $A$.
- There are explicit formulas to compute $T_{A}$ on each cell.

Given a list of vectors $A$.

- We have the two functions $T_{A}, B_{A}$.
- $T_{A}$ is supported on the cone $C(A)$ and coincides on each big cell with a homogeneous polynomial in the space $D(A)$ defined by the differential equations $D_{Y} f=0, Y \in \mathcal{E}(A)$.
- The space $D(A)$ has as dimension the number $d(A)$ of bases extracted from $A$.
- There are explicit formulas to compute $T_{A}$ on each cell.
- $B_{A}$ is deduced from $T_{A}$.

When $A$ is in a lattice we have the partition function $P_{A}$.

When $A$ is in a lattice we have the partition function $P_{A}$.

- $P_{A}$ is supported on the intersection of the lattice with the cone $C(A)$ and coincides on each big cell with a quasi polynomial in the space $\nabla(A)$ defined by the difference equations $\nabla_{Y} f=0, \quad Y \in \mathcal{E}(A)$.

When $A$ is in a lattice we have the partition function $P_{A}$.

- $P_{A}$ is supported on the intersection of the lattice with the cone $C(A)$ and coincides on each big cell with a quasi polynomial in the space $\nabla(A)$ defined by the difference equations $\nabla_{Y} f=0, \quad Y \in \mathcal{E}(A)$.
- The space $\nabla(A)$ has as dimension $\delta(A)$ the weighted number of bases extracted from $A$.

When $A$ is in a lattice we have the partition function $P_{A}$.

- $P_{A}$ is supported on the intersection of the lattice with the cone $C(A)$ and coincides on each big cell with a quasi polynomial in the space $\nabla(A)$ defined by the difference equations $\nabla_{Y} f=0, \quad Y \in \mathcal{E}(A)$.
- The space $\nabla(A)$ has as dimension $\delta(A)$ the weighted number of bases extracted from $A$.
- There are explicit formulas to compute $P_{A}$ on each cell.

We have shown that there are interesting constructions in commutative and non commutative algebra associated to the study of these functions.

We have shown that there are interesting constructions in commutative and non commutative algebra associated to the study of these functions.

A particularly interesting case is when we take for $A$ the list of positive roots of a root system, or multiples of this list. In this case one has applications to Clebsh-Gordan coefficients.

We have shown that there are interesting constructions in commutative and non commutative algebra associated to the study of these functions.

A particularly interesting case is when we take for $A$ the list of positive roots of a root system, or multiples of this list. In this case one has applications to Clebsh-Gordan coefficients.

## THE

## TH

## THE

## THE

## THE

E

## THE END



## THE END



