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The setting and the problems:

This report addresses

I joint work with Tony Bahri, Martin Bendersky, and Sam Gitler
in addition to

I an engineering question in joint work with Dan Koditschek,
and Clark Haynes.

I Much of this report gives a picture of ’how and where’ some
mathematical structures fit together with an outline of basic
proofs and basic properties.



The setting and the problems continued:

I Let (X,A) denote a pair of spaces.

I Let K denote an abstract simplicial complex with m vertices.

I The main subject of these lectures are properties of so-called
generalized

generalized moment-angle complexes

denoted
Z(K; (X,A))

which are subspaces of the product Xm.



Ingredients:

I Let (X,A) = {(Xi, Ai, xi)mi=1} denote a set of triples of
CW–complexes with base-point xi in Ai.

I Let K denote an abstract simplicial complex with m vertices
labeled by the set

[m] = {1, 2, . . . ,m}.

Thus, a (k − 1)-simplex σ of K is given by an ordered
sequence

σ = (i1, · · · , ik)

with 1 ≤ i1 < · · · < ik ≤ m such that if τ ⊂ σ, then τ is
required to be a simplex of K. In particular the empty set φ is
a subset of σ and so it is in K. Define define the length of I
by the formula |I| = k.



Definition of generalized moment-angle complexes:

I The generalized moment-angle complex or polyhedral product
functor determined by (X,A) and K denoted

Z(K; (X,A))

is defined as follows: For every σ in K, let

D(σ) =
m∏
i=1

Yi, where Yi =
{
Xi if i ∈ σ
Ai if i ∈ [m]− σ

with D(∅) = A1 × · · · ×Am.

I The generalized moment-angle complex is

Z(K; (X,A)) =
⋃
σ∈K

D(σ) = colim D(σ).



Remarks:

I In the special case where Xi = X and Ai = A for all
1 ≤ i ≤ m, it is convenient to denote the generalized
moment-angle complex by Z(K; (X,A)) to coincide with the
notation in work of Graham Denham, and Alex Suciu who
inspired much of the work here.



Examples:

I Let K denote the 2-point complex {1, 2} with
(X,A) = (D1, S0). Then

Z(K; (D1, S0)) = (D1 × S0) ∪ (S0 ×D1) = S1.

I Let K denote the 2-point complex {1, 2} with
(X,A) = (Dn, Sn−1). Then

Z(K; (Dn, Sn−1)) = (Dn × Sn−1) ∪ (Sn−1 ×Dn) = S2n−1.



More examples:

I More generally, Z(K; (D2, S1)) has the homotopy type of the
complement of unions of certain coordinate planes in Cm

corresponding to ‘coordinate subspace arrangements’ as
described next.

I Given a simplicial complex K with m vertices, and a simplex
ω ∈ ∆[m− 1], define

Lω = {(z1, · · · , zm) ∈ Cm| zi1 = · · · = zik = 0}

for
(i1, · · · , ik) ∈ ω.



Complements of coordinate planes:

Definition:

U(K) = ∪ω/∈KCm − Lω

The following is an elegant result due to Taras Panov.

Proposition: The natural inclusion

Z(K; (D2, S1))→ U(K)

is

1. a homotopy equivalence (more precisely, a strong
deformation), and

2. (S1)m-equivariant.



Examples continued:

I In addition, (S1)m = Tm acts naturally on the product (D2)m

and on Z(K; (D2, S1)). The Davis-Januszkiewicz space is the
associated Borel construction

DJ (K) = ETm ×Tm Z(K; (D2, S1)).

I A special case of a beautiful theorem of Denham-Suciu as well
as Davis-Januskiewicz gives that DJ (K) is homeomorphic to

Z(K; (CP∞, ∗)).



Examples continued:

I The generalized moment-angle complex Z(K; (S1, ∗)) is a
K(π, 1) where π is a right-angled Artin group (as described
by Ruth Charney in her lecture).

I These spaces are examples of spaces listing positions of
robotic ’legs’ as illustrated next.



A moving example:

I The following is a moving example of Z(K; (S1, ∗)).



Yet more examples

I Configuration spaces of certain singular spaces are sometimes
homotopy equivalent to generalized moment-angle complexes
as discovered by Sun Qiang in his thesis. Let X denote a
topological space. Define

Conf(X, k) = {(x1, . . . , xk) ∈ Xk| xi 6= xj if i 6= j}.



Yet more examples continued:

I Let
Xn = Rn ∨ Rn.

Then Qiang shows that the configuration space

colimn→∞Conf(Rn ∨ Rn, k)

is homotopy equivalent to a certain choice of Z(K; (X,A)).
I Here,

K = ∆[k − 1]0,

the 0-skeleton of the (k − 1)-simplex, and

(X,A) = (RP∞, ∗).

I These results at the nascent stages represent ways to measure

‘bottlenecks’

such as in traffic flow, and configuration spaces of singular
spaces.



Initial structure theorems (from the eyes of homotopy
theory)

I The purpose of the next few sections is to provide structure
for the generalized moment-angle complex after suspending
the space.

I The motivation is partially homological as well as
computational and arises from a geometric decomposition.

I The basic decompositions arise from the suspension of a space
X is given by

Σ(X) = C+(X) ∪ C−(X)

where C+(X) is the ”upper cone” and C−(X) is an ”lower
cone” glued together along X.



Technical point regarding base-points

I Notice that Σ(X) does not have a natural base-point. This is
remedied by using the ‘reduced suspension’

C+(X) ∪ C−(X)/([0, 1]× ∗X).



Wedge products, and smash products

I Let (X, ∗X) and (Y, ∗Y ) be pointed CW complexes.

I The wedge product ( or ‘wedge’ in the vernacular)

X ∨ Y

is the subspace of the product X × Y given by

X ∨ Y = (X × ∗Y ) ∪ (∗X × Y ).



Wedge products, and smash products continued

I The smash product ( or ‘smash’ in the vernacular)

X ∧ Y

is the quotient space of the product X × Y given by

X ∧ Y = (X × Y )/(X ∨ Y ).



Examples of smash products:

I The smash product
Sp ∧ Sq

is homotopy equivalent to

Sp+q.

I The smash product
S1 ∧X

is homotopy equivalent to the suspension

Σ(X).



Elementary properties of suspensions, wedge products,
and smash products

I Let X be a connected CW complex, and

Hi(X)

the i-th homology group of X. Then there are natural
isomorphisms:

∆ : Hi+1Σ(X)→ Hi(X)

for all i > 0.



Elementary properties of suspensions, wedge products,
and smash products continued

I If X and Y are pointed CW-complexes, there are natural
(pointed) homotopy equivalences

Σ(X ∨ Y ∨ (X ∧ Y ))→ Σ(X × Y ).

I Thus there is a homotopy equivalance

Sp+1 ∨ Sq+1 ∨ Sp+q+1 → Σ(Sp × Sq).

I The spaces X ∨ Y ∨ (X ∧ Y ), and X × Y are usually not
homotopy equivalent as they usually have different cup
product structures in cohomology.



Smash moment-angle complexes and their applications

The purpose of the next few slides is to describe the structure of
the suspension of moment-angle complexes

Z(K; (X,A))

in terms of ‘smash moment-angle complexes’ to be made precise
next. This information is then applied to obtain information about

I homology,

I cohomology for various cohomology theories in addition to
singular cohomology, and

I the cup product structure for the cohomology ring of the
moment angle complex.



‘Smash moment-angle complexes’

I Recall that moment-angle complexes are subspaces of product
spaces.

I Passing to the ‘world’ of pointed spaces ( in which all maps
are required to preserve base-points), there are natural
analogues called

‘smash moment-angle complexes’

where all products in the earlier definition are replaced by
smash products.



‘Smash moment-angle complexes’ continued

I Given (X,A, ∗), and a simplicial complex K with m vertices,
recall that

Z(K; (X,A))

is a subspace of the product

X1 ×X2 × · · · ×Xm.

I Define the ‘smash moment-angle complex’

Ẑ(K; (X,A))

to be the image of Z(K; (X,A)) in the smash product

X1 ∧X2 ∧ · · · ∧Xm.



Example of a decomposition:

A classical theorem is stated first.

I Theorem 1
Given pointed CW-complexes X1, · · · , Xm, there are natural
homotopy equivalences

H : Σ(X1×X2×· · ·×Xm)→ Σ(
∨

1≤i1<i2···<ik≤m
Xi1∧· · ·∧Xik).



Sketch proof of this example:

I Given a sequence
I = (i1, · · · , ik)

with 1 ≤ i1 < · · · < ik ≤ m, define he natural projection map

πI : X1 ×X2 × · · · ×Xm → XI

onto the product XI specified by I.

I Thus there are induced maps

πI : X1 ×X2 × · · · ×Xm → X̂I .

where X̂I is the smash product of the Xij .



Sketch proof of this example continued:

I The homotopy classes of pointed maps out of suspensions can
be added. Thus, do so.

I The induced map gives the equivalence stated in Theorem 1.



Language:

I Let K denote a simplicial complex with m vertices. Given a
sequence

I = (i1, · · · , ik)

with 1 ≤ i1 < · · · < ik ≤ m, define KI ⊆ K to be the

full sub-complex

of K consisting of all simplices of K which have all of their
vertices in I, that is KI = {σ ∩ I|σ ∈ K}.



A second decomposition:

I Theorem 2
Let K be an abstract simplicial complex with m vertices.
Given (X,A) = {(Xi, Ai)}mi=1 where (Xi, Ai, xi) are pointed
triples of CW-complexes, the homotopy equivalence of
Theorem 1 induces a natural pointed homotopy equivalence

H : Σ(Z(K; (X,A)))→ Σ(
∨
I⊆[m]

Ẑ(KI ; (XI , AI))).



Remarks:

I A sketch of a proof together with applications to
Davis-Januskiewicz spaces, right-angled Artin groups as well
as other moment-angle complexes will be given in the next
few lectures.



Partial orderings:

I Let K denote a simplicial complex.

I There is a partially ordered set (poset) K̄ associated to any
simplicial complex K as follows. A point σ in K̄ corresponds
to a simplex σ ∈ K with order given by reverse inclusion of
simplices.

I Thus σ1 ≤ σ2 in K̄ if and only if σ2 ⊆ σ1 in K.

I The empty simplex ∅ is the unique maximal element of K̄.
Let P be a poset with p ∈ P .

I There are further posets given by

P≤p = {q ∈ P |q ≤ p}

as well as
P<p = {q ∈ P |q < p}.

Thus
K̄<σ = {τ ∈ K̄|τ < σ} = {τ ∈ K|τ ⊃ σ}.



The order complex and further decompositions:

I Given a poset P , there is an associated simplicial complex
∆(P ) called the order complex of P which is defined as
follows.

I Given a poset P , the order complex ∆(P ) is the simplicial
complex with vertices given by the set of points of P and
k-simplices given by the ordered (k + 1)-tuples
(p1, p2, . . . , pk+1) in P with p1 < p2 < · · · < pk+1.



A further decomposition:

To state the next theorem, recall that the symbol ∗ denotes the
join of two spaces.

I Theorem 3

Let K be an abstract simplicial complex with m vertices, and
let

(X,A) = {(Xi, Ai, xi)}mi=1

denote m choices of connected pairs of CW -complexes with
the inclusion Ai ⊂ Xi null-homotopic for all i. Then there is a
homotopy equivalence

Σ(Z(K; (X,A)))→ Σ
∨
I

∨
σ∈KI

|∆((KI))<σ| ∗ D̂(σ).



Examples:

I Corollary

Let (Xi, Ai, xi) denote the triple (Dn+1, Sn, ∗) for all i. Then
there are homotopy equivalences

Σ(Z(K; (Dn+1, Sn)))→
∨
I /∈K

Σ2+n|I||KI |.



Examples continued:

I Theorem 4

Let K be an abstract simplicial complex with m vertices and
(X,A) have the property that all the Ai are contractible.
Then there is a homotopy equivalence

Σ
(
Z
(
K; (X,A)

))
→ Σ(

∨
I∈K

X̂I).



Examples continued:

I Theorem 5

Let K be an abstract simplicial complex with m vertices and
(X,A) have the property that the the Xi are contractible for
all i. Then there is a homotopy equivalence

ΣZ(K; (X,A))→ Σ(
∨
I /∈K

|KI | ∗ ÂI).



Examples continued:

I Theorem 6

Let K be an abstract simplicial complex with m vertices and
(X,A) have the property that all the Ai are contractible.
Then there is a homotopy equivalence

Ẑ(K; (X,A)) =

{
∗ if K is not the simplex ∆[m− 1], and

X̂ [m] if K is the simplex ∆[m− 1]

where
X̂ [m] = X1 ∧ · · · ∧Xm

the m-fold smash product.



Some history: 1

I The spaces Z(K; (D2, S1)) are at the confluence of work of
many people. A short introduction to a small sample of some
of this work is given next.



Some history: 2

I Generalized moment-angle complexes, have been studied by
topologists since the 1960’s thesis of G. Porter. In the 1970’s
E. B. Vinberg and in the late 1980’s S. Lopez de Medrano
developed some of their features.



Some history: 3

I In seminal work during the early 1990’s, M. Davis and
J. Januszkiewicz introduced quasi-toric manifolds, a
topological generalization of projective toric varieties which
were being studied intensively by algebraic geometers. They
observed that every quasi-toric manifold is the quotient of a
moment-angle complex Z(K; (D2, S1)) by the free action of a
real torus.

I Namely, a quasi-toric manifold M is given by the quotient

M = Z(K; (D2, S1))/T d

where
T d ⊂ Tm

is a sub-torus of Tm, and where T d acts freely on
Z(K; (D2, S1)).



Some history: 4

I Let R denote the ring given by Z, Q, or a finite field. Given
K, there is an associated ring known as the Stanley-Reisner
ring of K, defined below, and denoted R[K] here. The ring
R[K] is a quotient of a finitely generated polynomial ring
P (K) = R[v1, . . . , vm] with generators vi for each vertex of
K and relations given by

vi1 · · · vik = 0

for every simplex σ = (i1, · · · , ik) in K.

I M. Hochster, in purely algebraic work, calculated the
Tor-modules TorP (K)(R[K], R) in terms of the full
subcomplexes of K. In this work Hochster also produced an
algebraic decomposition of these Tor-modules.



Some history: 5

I Subsequently, and independently, Goresky-MacPherson
studied the cohomology of complements of subspace
arrangements U(A) and related decompositions of their
cohomology. These spaces included complements of certain
coordinate subspace arrangements. A more direct proof was
subsequently given by Ziegler-Zivaljević.



Some history: 6

I Later, as well as independently, Davis-Januszkiewicz
introduced manifolds now called quasi-toric varieties, a
topological generalization of projective toric varieties. They
proved that a certain choice of Borel construction for the
space Z(K; (D2, S1)) which they define precisely had
cohomology ring given by R[K] for R = Z, the
Stanley-Reisner ring of K. These spaces are now known as
the Davis-Januszkiewicz spaces.



Some history: 7

I Buchstaber-Panov synthesized these different developments by
proving that the spaces Z(K; (D2, S1)) are strong
deformation retracts of complements of certain coordinate
subspace arrangements U(A) appearing earlier in work of
Goresky-MacPherson. They also proved that the cohomology
algebra of Z(K; (D2, S1)) is isomorphic to TorP (K)(Z[K],Z)
which had been considered earlier by Hochster.



Some history: 8

I There has been further, extensive work on moment-angle
complexes. A few samples are Notbohm-Ray, Grbic-Theriault,
Strickland, Baskakov, Buchstaber-Panov, Panov,
Baskakov-Buchstaber-Panov, Buchstaber-Panov-Ray, M.
Franz, Panov-Ray-Vogt, and Kamiyama-Tsukuda.

I Further elegant closely related results are due to De
Concini-Procesi, Danilov, Hu, Jewell, Jewell-Orlik-Shapiro.
Extensions to generalized moment-angle complexes had been
defined earlier in work of Anick.

I Applications to robotics are the focus of work by
Cohen-Haynes-Koditschek.



Some history: 9

I The direction of this current joint work is guided by the
development in elegant work of Denham-Suciu.



Thank you very much.

I Please remember to hand in the homework !


