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Outline of the lecture:

This lecture addresses the following points.

I Sketches of proofs for some of the decompositions in Lecture
1 are given.

I Homological consequences of these decompositions are given.

I A short synopsis of the development of this subject (especially
since the referee took special care with this information).



Ingredients:

I Let (X,A) = {(Xi, Ai, xi)mi=1} denote a set of triples of
CW–complexes with base-point xi in Ai.

I Let K denote an abstract simplicial complex with m vertices
labeled by the set

[m] = {1, 2, . . . ,m}.

I The main subject of these lectures is the structure of
generalized moment-angle complexes

Z(K; (X,A)).



The special case of K = ∆[m− 1] the (m− 1)-simplex:

I Recall that the generalized moment-angle complex is the union

Z(K; (X,A)) =
⋃
σ∈K

D(σ) = colim D(σ)

where Dσ is defined next.

I For every σ in K, let

D(σ) =
m∏
i=1

Yi, where Yi =
{
Xi if i ∈ σ
Ai if i ∈ [m]− σ

with D(∅) = A1 × · · · ×Am.

I Thus if K = ∆[m− 1], then by definition

Z(K; (X,A)) =
⋃
σ∈K

D(σ) = colim D(σ) = X1 × · · ·Xm.



Three basic points follow directly:

I (1) The generalized moment-angle complex

Z(K; (X,A))

is a colimit (a union in this case).

I (2) In case K = ∆[m− 1] the (m− 1)-simplex, then

Z(K; (X,A)) = X1 × · · · ×Xm

which, by Theorem 1, admits a natural homotopy
equivalence

H : Σ(X1×X2×· · ·×Xm)→ Σ(
∨

1≤i1<i2···<ik≤m
Xi1∧· · ·∧Xik).



Three basic points follow directly continued:

I (3) Basic decompositions of the suspension of a
moment-angle complex arise as wedge decomposition of
smash moment-angle complexes.

Thus the smash moment-angle complex is fundamental for the
structure of the suspension as well as the structure of the
homology.



Extensions to generalized moment-angle complexes to
Theorem 2:

I In the special cases for which (Xi, Ai, xi) are pointed triples
of CW-complexes, Theorem 2 follows by naturality:

Let K be an abstract simplicial complex with m vertices.
Given (X,A) = {(Xi, Ai)}mi=1 where (Xi, Ai, xi) are pointed
triples of CW-complexes, the homotopy equivalence of
Theorem 1 induces a

natural pointed homotopy equivalence

H : Σ(Z(K; (X,A)))→ Σ(
∨
I⊆[m]

Ẑ(KI ; (XI , AI))).



Extensions to generalized moment-angle complexes to
Theorem 2 continued:

I First observe that Theorem 2 is a restatement of Theorem 1
in the special case of

D(σ) = Y1 × · · · × Ym.

I Next observe that the decompositions of Theorem 1 are
natural. Thus these decompositions are compatible for all
D(σ) = Y1 × · · · × Ym for all σ in K.



Extensions to generalized moment-angle complexes to
Theorem 2 continued:

I Recall that the homotopy colimit of a diagram of spaces
D(P ) is defined as

hocolim(D(P )) = {
∐
p∈P

∆(P≤p)×D(p)}/∼

where ∼ is the natural equivalence relation obtained from the
natural inclusions.

I The proof given below for the stable decompositions of
moment-angle complexes relies on work of
Welker-Ziegler-Živaljević on homotopy colimits of diagrams of
spaces stated next.



Extensions to generalized moment-angle complexes to
Theorem 2 continued:

I Let D(P ) be a diagram over P having the property that the
map

colimq>p D(q) ↪→ D(p)

is a closed cofibration. Then the natural projection map

π(D) : hocolim(D(P )) −→ colim(D(P ))

induced by the projection

∆(P≤p)×D(p) −→ D(p)

is a homotopy equivalence.



Extensions to generalized moment-angle complexes to
Theorem 2 continued:

I The spaces Z(K; (X,A) is the colimit of the D(σ).

I In the special cases for which (Xi, Ai, xi) are pointed triples
of finite CW-complexes, the natural map

π(D) : hocolim(D(σ)) −→ colim(D(σ)) = Z(K; (X,A))

is a homotopy equivalence.

I The decomposition given in Theorem 2 follows from
commutation with the decomposition maps H by naturality.



Extensions to generalized moment-angle complexes to
Theorem 2 continued:

I The statement of Theorem 2 follows. Let K be an abstract
simplicial complex with m vertices. Given
(X,A) = {(Xi, Ai)}mi=1 where (Xi, Ai, xi) are pointed triples
of CW-complexes, the homotopy equivalence of Theorem 1
induces a

natural pointed homotopy equivalence

H : Σ(Z(K; (X,A)))→ Σ(
∨
I⊆[m]

Ẑ(KI ; (XI , AI))).



Caution:

I Theorem 2 does not identify the homotopy types of the smash
moment-angle complexes

Ẑ(KI ; (XI , AI)).

I More work is required.

I One example, Theorem 6, is developed next.



Identification of the smash moment-angle complex in a
special case álaTheorem 6:

I Recall the Theorem 6:

Let K be an abstract simplicial complex with m vertices and
(X,A) have the property that all the Ai are contractible.
Then there is a homotopy equivalence

Ẑ(K; (X,A)) =

{
∗ if K is not the simplex ∆[m− 1], and

X̂ [m] if K is the simplex ∆[m− 1].



Identification of the smash moment-angle complex in a
special case álaTheorem 6 continued:

I Theorem 2 and Theorem 6 have the following consequence.

I Let K be an abstract simplicial complex with m vertices and
(X,A) have the property that all the Ai are contractible.
Then there is a homotopy equivalence

Σ(Z(K; (X,A))→ Σ(
∨
σ∈K

X̂σ)

where X̂σ = Xi1 ∧ · · · ∧Xik for σ = (i1, . . . , ik) ∈ K.



Identification of the smash moment-angle complex in a
special case álaTheorem 6 continued:

I This section gives a sketch of the proof of Theorem 6.

I Since each Ai is assumed to be contractible, the smash
moment-angle complexes

Ẑ(K; (X,A))

are contractible for all K not equal to the (m− 1)-simplex
∆[m− 1].

I Furthermore,

Ẑ(∆[m− 1]; (X,A) = X̂ [m].

I Theorem 6 follows.



A further application of Theorem 6:

I Theorem 6 will be used next to work out the cohomology ring
of Z(K; (X,A) with some natural hypotheses.

I Consider the natural inclusion

ι : Z(K; (X,A)→ X1 × · · · ×Xm

together with the quotient space

W (K; (X,A)) = (X1 × · · · ×Xm)/Z(K; (X,A).

I The inclusion ι is one of closed CW-complexes. Thus, the
map ι is a cofibration with cofibre

W (K; (X,A)).



A further application of Theorem 6:

I The suspension of the natural inclusion

Σ(ι) : Σ(Z(K; (X,A))→ Σ(X1 × · · · ×Xm)

is split by Theorem 6.

I Since the inclusion ι is one of closed CW-complexes, the map
ι is a cofibration with cofibre

W (K; (X,A)).

I Furthermore, the cofibre of this inclusion is split after
suspendng and is a wedge of smash products of the Xi.



Applications of Theorem 6 to cohomology:

I A finite set of path-connected spaces X1, . . . , Xm is said to
satisfy the strong form of the Künneth Theorem over R
provided that the natural map

⊗1≤j≤kH
∗(Xij ;R)→ H∗(Xi1 × . . .×Xik ;R)

is an isomorphism for every sequence of integers
1 ≤ i1 < i2 < . . . , ik ≤ m.

I Assume throughout this section that the cohomology ring
H∗(X;R) satisfies the natural strong form of the Künneth
theorem for the cohomology of X. Thus the natural map

H∗(X;R)⊗m → H∗(Xm;R)

is an isomorphism.



Cohomological consequences:

I Assume that the cohomology ring H∗(X;R) which satisfies
natural strong form of the Künneth theorem for the
cohomology of X so that the natural map

H∗(X;R)⊗m → H∗(Xm;R)

is an isomorphism.



Cohomological consequences:

I With these assumptions, define the generalized
Stanley-Reisner ideal

I(K) ⊂ H∗(X;R)⊗m

as the two-sided ideal generated by all elements

xj1 ⊗ xj2 ⊗ · · · ⊗ xjr

for which xjt ∈ H̄∗(Xjt ;R) and the sequence J = (j1, . . . , jr)
is not a simplex of K.



Cohomological consequences:

I Let K be an abstract simplicial complex with m vertices and
let

(X,A) = {(Xi, Ai, xi)}mi=1

be m pointed, connected CW-pairs. If all of the Ai are
contractible, and coefficients are taken in a ring R for which
either

1. R is a field, or
2. the cohomology of X with coefficients in R satisfies the strong

form of the Künneth Theorem.

There is an isomorphism of algebras

(
m⊗
i=1

H∗(Xi;R)/I(K)→ H∗(Z(K; (X,A));R).



Cohomological consequences:

I The cohomology rings of the Davis-Januskiewicz spaces as
well as Z(K; (S1, ∗)) had been computed earlier.

I The main feature to note is that the structure arising from the
suspension of these spaces forces the structure of the
associated cohomology rings for many of the spaces
Z(K; (X,A)).



Some history: 1

I The spaces Z(K; (D2, S1)) are at the confluence of work of
many people. A short introduction to a small sample of some
of this work is given next.



Some history: 2

I Generalized moment-angle complexes, have been studied by
topologists since the 1960’s thesis of G. Porter. In the 1970’s
E. B. Vinberg and in the late 1980’s S. Lopez de Medrano
developed some of their features.



Some history: 3

I In seminal work during the early 1990’s, M. Davis and
J. Januszkiewicz introduced quasi-toric manifolds, a
topological generalization of projective toric varieties which
were being studied intensively by algebraic geometers. They
observed that every quasi-toric manifold is the quotient of a
moment-angle complex Z(K; (D2, S1)) by the free action of a
real torus.

I Namely, a quasi-toric manifold M is given by the quotient

M = Z(K; (D2, S1))/T d

where
T d ⊂ Tm

is a sub-torus of Tm, and where T d acts freely on
Z(K; (D2, S1)).



Some history: 4

I Let R denote the ring given by Z, Q, or a finite field. Given
K, there is an associated ring known as the Stanley-Reisner
ring of K, defined below, and denoted R[K] here. The ring
R[K] is a quotient of a finitely generated polynomial ring
P (K) = R[v1, . . . , vm] with generators vi for each vertex of
K and relations given by

vi1 · · · vik = 0

for every simplex σ = (i1, · · · , ik) in K.

I M. Hochster, in purely algebraic work, calculated the
Tor-modules TorP (K)(R[K], R) in terms of the full
subcomplexes of K. In this work Hochster also produced an
algebraic decomposition of these Tor-modules.



Some history: 5

I Subsequently, and independently, Goresky-MacPherson
studied the cohomology of complements of subspace
arrangements U(A) and related decompositions of their
cohomology. These spaces included complements of certain
coordinate subspace arrangements. A more direct proof was
subsequently given by Ziegler-Zivaljević.



Some history: 6

I Later, as well as independently, Davis-Januszkiewicz
introduced manifolds now called quasi-toric varieties, a
topological generalization of projective toric varieties. They
proved that a certain choice of Borel construction for the
space Z(K; (D2, S1)) which they define precisely had
cohomology ring given by R[K] for R = Z, the
Stanley-Reisner ring of K. These spaces are now known as
the Davis-Januszkiewicz spaces.



Some history: 7

I Buchstaber-Panov synthesized these different developments by
proving that the spaces Z(K; (D2, S1)) are strong
deformation retracts of complements of certain coordinate
subspace arrangements U(A) appearing earlier in work of
Goresky-MacPherson. They also proved that the cohomology
algebra of Z(K; (D2, S1)) is isomorphic to TorP (K)(Z[K],Z)
which had been considered earlier by Hochster.



Some history: 8

I There has been further, extensive work on moment-angle
complexes. A few samples are Notbohm-Ray, Grbic-Theriault,
Strickland, Baskakov, Buchstaber-Panov, Panov,
Baskakov-Buchstaber-Panov, Buchstaber-Panov-Ray, M.
Franz, Panov-Ray-Vogt, and Kamiyama-Tsukuda.

I Further elegant closely related results are due to De
Concini-Procesi, Danilov, Hu, Jewell, Jewell-Orlik-Shapiro.
Extensions to generalized moment-angle complexes had been
defined earlier in work of Anick.

I Applications to robotics are the focus of work by
Cohen-Haynes-Koditschek.



Some history: 9

I The direction of this current joint work is guided by the
development in elegant work of Denham-Suciu.



Next lecture on cup products and robotics:



Thank you very much.

I Please remember to hand in the homework !


