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Outline of the lecture:

This lecture addresses the following points.

I Applications of the main decomposition theorems to derive
cup-products in cohomology for generalized moment-angle
complexes.

I Connections to a robotics problem described earlier.



Ingredients:

I Let (X,A) = {(Xi, Ai, xi)mi=1} denote a set of triples of
CW–complexes with base-point xi in Ai.

I Let K denote an abstract simplicial complex with m vertices
labeled by the set

[m] = {1, 2, . . . ,m}.

I The main subject of this lecture is the relationship between
the structure of the cup products in the cohomology ring of
the generalized moment-angle complexes

Z(K; (X,A)),

and the decompositions of the suspensions of the
moment-angle complexes..



Methods:

I Given any space, the diagonal map

∆ : Y → Y × Y

induces a map in cohomology

∆∗ : H∗(Y × Y )→ H∗(Y ).

I The Eilenberg-Zilber map

H∗(Y )⊗H∗(Y )→ H∗(Y × Y )

composed with ∆∗ gives a bilinear map

∪ : H i(Y )⊗Hj(Y )→ H i+j(Y ),

the cup-product in cohomology.



Two earlier examples:

I This product endows H∗(Y ) with the structure of a graded
commutative, associative ring with identity. This ring
structure has many applications in several subjects, and is
basic in the world of moment-angle complexes.

I Two basic examples arose earlier as

H∗(Z(K; (X,A))

for (X,A) = (CP∞, ∗) or (X,A) = (S1, ∗) in terms of the
Stanley-Reisner ring of the simplicial complex K, and
variations due to Davis-Januszkiewicz, Charney-Davis,
Denham-Suciu as well as others.



Stanley-Reisner rings, and their analogues:

I Let
VK

denote the graded, free abelian group with generators
v1, · · · , vm one for each vertex of K, and of gradation two.

I Let
WK

denote the graded, free abelian group with generators
(denoted ambiguously) v1, · · · , vm one for each vertex of K,
and of gradation one.

I Caution: The same notation vi is used for two different
objects here.



Stanley-Reisner rings, and their analogues:

I Let
Z[VK ]

denote the polynomial ring generated by the vi ( which are
assumed to have gradation two).

I Let
IV (K)

denote the Stanley-Reisner ideal, the ideal generated

vi1 · · · vir

for every simplex σ = (i1, · · · , ir) not in K.



Stanley-Reisner rings, and their analogues:

I Given K, recall that the Stanley-Reisner ring of K, denoted

Z[K]

here is
Z[VK ]/IV (K),

the quotient of the polynomial ring Z[VK ] by the relations
given by

vi1 · · · vit = 0

for every simplex σ = (i1, · · · , it) not in K.

I The cohomology ring of Z(K; (CP∞, ∗)) is isomorphic to the
Stanley-Reisner ring Z[K].



Stanley-Reisner rings, and their analogues:

I Let
Λ[WK ]

denote the exterior algebra generated by the vi ( which are
assumed to have gradation one).

I Let
IW (K)

denote the Stanley-Reisner ideal, the ideal generated

vi1 · · · vik

for every simplex σ = (i1, · · · , ik) not in K.



Stanley-Reisner rings, and their analogues:

I Let
ΛSR[K] = Λ[WK ]/IW (K).

I The cohomology ring of

Z(K; (S1, ∗))

is isomorphic to

ΛSR[K]/ = Λ[WK ]/IW (K).



Extensions:

I In case A is contractible, the cohomology ring of

Z(K; (X,A))

is analogous (with the assumptions that the strong form of
the Künneth theorem hold).

I The purpose of the next few sections is to develop methods
which extend this product structure to a broader setting.



Methods returned:

I The main goal is to understand the diagonal map

∆ : Z(K; (X,A))→ Z(K; (X,A))× Z(K; (X,A))

on the level of cohomology.

I It suffices to give the homological properties of the suspension
of the diagonal map

Σ(∆) : Σ(Z(K; (X,A)))→ Σ(Z(K; (X,A))×Z(K; (X,A)))

as the induced maps determine one another ( at least on the
level of cohomology).



Methods returned:

I The utility of considering the map

Σ(∆) : Σ(Z(K; (X,A)))→ Σ(Z(K; (X,A))×Z(K; (X,A)))

is that there is additional structure arising from two further
decompositions.

I One such arises from the earlier decompositions
Σ(Z(K; (X,A))) as a bouquet of smash moment-angle
complexes.

I The second arises from the decomposition of the suspension
of a product space given in Lecture 1.

I Throughout all of this, there is an assumption that the strong
form of the Künneth theorem holds. There are also natural
extensions to other cohomology theories as noted below.



Starting point:

I The main work for the structure of the products is to analyze
the combinatorics between the stable decompositions and how
these ’fit’ with the diagonal map.

I This method is partially successful and gives some new results.

I However, there is still some mystery behind these
combinatorics ( at least to one person here ).



Extensions to generalized moment-angle complexes to
Theorem 2:

I In the special cases for which (Xi, Ai, xi) are pointed triples
of CW-complexes, Theorem 2 is as follows:

Let K be an abstract simplicial complex with m vertices.
Given (X,A) = {(Xi, Ai)}mi=1 where (Xi, Ai, xi) are pointed
triples of CW-complexes, the homotopy equivalence of
Theorem 1 induces a

natural pointed homotopy equivalence

H : Σ(Z(K; (X,A)))→ Σ(
∨
I⊆[m]

Ẑ(KI ; (XI , AI))).



Isomorphisms:

I Let K be an abstract simplicial complex with m vertices. det
(X,A) = {(Xi, Ai)}mi=1 be pointed triples of CW-complexes.

I By Theorem 2, there is a natural isomorphism of

graded abelian groups

H∗(Z(K; (X,A))→ H∗(
∨
I⊆[m]

Ẑ(KI ; (XI , AI)).

I Similarly, if i > 0, there is a natural isomorphism of

graded abelian groups

H i(Z(K; (X,A)))→ ⊕I⊆[m]H
i(Ẑ(KI ; (XI , AI)).



Notation:

I Let K be an abstract simplicial complex with m vertices. det
(X,A) = {(Xi, Ai)}mi=1 be pointed triples of CW-complexes.

I For brevity, write

Z(KI) = Z(KI ; (XI , AI)),

and

Ẑ(KI) = Ẑ(KI ; (XI , AI)).



Partial diagonal maps:

I Let K be an abstract simplicial complex with m vertices. Let
(X,A) = {(Xi, Ai)}mi=1 be pointed triples of CW-complexes.

I Consider the natural diagonal maps

∆ : Y → Y × Y

where
Y = X1 × · · · ×Xm.



Partial diagonal maps continued:

I If
I = J ∪ L,

there are induced maps

Z(KI)→ Z(KJ)× Z(KL),

and
∆̂J,L
I : Ẑ(KI)→ Ẑ(KJ) ∧ Ẑ(KL)

Ẑ(KI)→ Ẑ(KJ) ∧ Ẑ(KL)

induced by the natural restriction of the diagonal

∆ : X1 × · · · ×Xm → (X1 × · · · ×Xm)× (X1 × · · · ×Xm).



An example of the partial diagonal maps:

I Let I = (1, 2, 3), J = (1, 2), and L = (2, 3) with the point
(a, b, c) ∈ X1 ×X1 ×X3. Then the induced partial diagonal
map

∆̂J,L
I : Ẑ(KI)→ Ẑ(KJ) ∧ Ẑ(KL)

is given by

∆̂J,L
I (a, b, c) = ((a, b), (b, c)) ∈ Ẑ(KJ) ∧ Ẑ(KL).



Partial diagonal maps continued:

I The partial diagonal maps

∆̂J,L
I : Ẑ(KI)→ Ẑ(KJ) ∧ Ẑ(KL)

induce a graded commutative, associative product product on

⊕I⊆[m]H
i(Ẑ(KI ; (XI , AI)).

I This product is denoted ∗. Namely, if

u ∈ Hs(Ẑ(KJ)),

and
v ∈ Ht(Ẑ(KL)),

then define

u ∗ v = (∆̂J,L
I )∗(u⊗ v) ∈ Hs+t(Ẑ(KI)).



The cup-product:

Theorem 7

I Let K be an abstract simplicial complex with m vertices.
Assume that (X,A) = {(Xi, Ai, xi)}mi=1 is a family of based
CW-pairs. Then the product induced by the pairing

u ∗ v = (∆̂J,L
I )∗(u⊗ v) ∈ Hs+t(Ẑ(KI))

is the cup-product.



Structure theorems for the cup-product:

Theorem 8

I Let K be an abstract simplicial complex with m vertices.
Assume that (X,A) = {(Xi, Ai, xi)}mi=1 is a family of based
CW-pairs for which

Xi = Σ(Yi), and Ai = Σ(Bi)

with Bi ⊂ Yi for all i.

I If
I = J ∪ L

with J ∩ L 6= ∅ with u ∈ Hs(Ẑ(KJ)), and v ∈ Ht(Ẑ(KL))
for s, t > 0, then

u ∗ v = (∆̂J,L
I )∗(u⊗ v) = 0 ∈ Hs+t(Ẑ(KI)).



Remark:

I The previous theorem gives conditions which guarantee the
vanishing of certain cup-products.

I The theorem does not state any conclusion about
non-vanishing of cup-products.



A third structure theorems for the cup-product:

Theorem 9

I Let K be an abstract simplicial complex with m vertices.
Assume that (X,A) = {(Xi, Ai, xi)}mi=1 is a family of based
CW-pairs for which

Xi = Σ(Yi), and Ai = Σ(Bi)

with Bi ⊂ Yi for all i.

I The ‘ungraded rings’

H∗(Z(K; (X,A)))

and
H∗(Z(K; (Σ2qX,Σ2qA)))

are isomorphic for all integers q > 0.



Remark:

I The previous theorem concerning ungraded structures of the
cohomology ring is the precise analogue of the case with
configuration spaces of points either Euculidean space

H∗Conf(Rn, k), and H∗Conf(Rn+2q, k)

as well as

H∗Conf(Rn ×M,k), and H∗Conf(Rn+2q ×M,k)

where M is any manifold.



Remark:

I Several questions about torsion arose during this workshop
where the analogue for the cohomology of

H∗Conf(Rn, k)/Σk

and
H∗Conf(Rn+2q, k)/Σk)

are quite different in case q > 0 as seen in Springer Lecture
Notes in Math. v. 533. For example, the p-torsion in
H∗Conf(R2, k)/Σk is all of order p. On the other hand,
there is arbitrarily large p-torsion in the cohomology of

H∗Conf(Rn, k)/Σk

for all n > 2, and k sufficiently large.



A third structure theorems for the cup-product:

I Let K be an abstract simplicial complex with m vertices.
Assume that (X,A) = {(Xi, Ai, xi)}mi=1 is a family of
pointed, based CW-pairs.

I Let K be an abstract simplicial complex with m vertices.
Assume that (CX,X) = {(CXi, Xi, xi)}mi=1 is a family of
based CW-pairs such that the finite product

(X1×· · ·×Xm)×(Z(KI1 ; (D1, S0))×· · ·×Z(KIt ; (D1, S0)))

for all Ij ⊆ [m] satisfies the strong form of the Künneth
theorem. Then the cup-product structure for the cohomology
algebra H∗(Z(K; (CX,X))) is a functor of the cohomology
algebras of Xi for all i, and Z(KI ; (D1, S0)) for all I.



A language and context for legged robotic motion

I This section is based on joint work with Clark Haynes, and
Dan Koditschek.

I The problem is to devise a practical, useful language for
describing legged motion of certain robots.



Setting

I The topological ingredients are a space of positions again, the
so-called moment-angle complexes.

I The interiors of cells in a cell decomposition gives ’gait states’
for the legs of a legged motion.

I The purpose here is to describe the possible gait states in
terms of Young diagrams, then to construct vector fields on
these interiors.

I Further applications are intended.



Definition of moment-angle complex

I The moment-angle complex determined by (X,A) and K
denoted Z(K; (X,A)) is defined as follows:

I For every σ in K, let

D(σ) =
m∏
i=1

Yi, where Yi =
{
Xi if i ∈ σ
Ai if i ∈ [m]− σ.

with D(∅) = A1 × · · · ×Am.

I The generalized moment-angle complex is

Z(K; (X,A) =
⋃
σ∈K

D(σ) = colim D(σ).



Spaces of legs

I Let
Legs(m, q)

denote the space of ordered m-tuples in a circle S1 with at
most q ”off of the ground”. That means at most q of the
coordinates are in the open upper hemisphere U+ of the
circle, the complement of the closed lower hemisphere E−.

I A mathematical starting point is as follows: If q = 2,

Legs(m, 2) = Z(K; (S1, E−))

where K is the complete graph with m vertices. If q ≥ 2 and
K = ∆[m− 1]q−1, the (q − 1)-skeleton of the
(m− 1)-simplex, then

Legs(m, q) = Z(K; (S1, E−)).



Enumerating ’gait states’ in spaces of legs

I This section provides a language which describes ’gait states’.

I A convenient form of this language is in terms of Young
diagrams a construction originally invented to study the
representation theory of the symmetric groups.



Young diagrams

I A Young diagram or Ferrers diagram is an array of n+ 1
boxes in k + 1 rows. Filling in these boxes with all of the
integers 1, 2, . . . , n, n+ 1 gives all of the Young tableaux.

I These Young tableaux index cells in Tn ( where n+ 1 boxes is
not a misprint) in a way that is intuitively meaningful as well
as a setting to compute.



Young diagrams, more formally

I The set of ’filled in Young diagrams’, ’Young tableaux’
Y (n+ 1, k + 1) is the set of arrays

[ai,j ] =

a1,1 · · · a1,j1

a2,1 · · · a2,j2

· · · · · · · · ·
ak+1,1 · · · ak+1,jk+1

with n+ 1 entries given by the set of all of the integers
between 1, and n+ 1.



Young diagrams, more formally

I The diagrams
[ai,j ]

are also specified by their rows

(Ri)

with notation
[ai,j ] = (Ri)

where
1 ≤ i ≤ k + 1.



Face operations in Young diagrams

I Define

di([ai,j ]) = di(Rt) = (Sq) ∈ Y (n+ 1, k) with 1 ≤ i ≤ k

where

Sq =


Rq if q < i,

[Rq|Rq+1] if q = i < k + 1,

Rq+1 if q > i.



Face operations continued

I Define

dk+1([ai,j ]) = di(Rt) = (Sq) ∈ Y (n+ 1, k)

where

Sq =

{
[R1|Rk+1] if q = 1,

Rq if 1 < q ≤ k.



Cyclic permutations and face operations in Young diagrams

I Recall that Ck+1 denotes the cyclic group generated by the
(k + 1)-cycle tk+1 = (1, 2, · · · , k + 1).

I The operations

di : Y (n+ 1, k + 1)→ Y (n+ 1, k),

and
tk+1 : Y (n+ 1, k + 1)→ Y (n+ 1, k + 1)

satisfy the identities

ditk+1 = tkdi−1 if 1 ≤ i ≤ k,

and
d0tk+1 = dk.



‘Local flows’:

I Each gait state corresponds to the interior of a cell in the
moment-angle complex.

I Flows are defined on each cell to prescribe motion.



Conclusion

I The ’gait states’ in a product of circles is enumerated by the
’cyclic-Delta’ set structure given above.

I The open cells correspond to all possible ’gait states’.

I The ’motions’ of the boxes in the Young diagrams via the
natural action of the cyclic group corresponds to motions of
legs.

I One application with ’before’ and ’after’ slides is given next.

I The above mathematical structures are naive as well as
essentially classical. The application to a problem in
engineering appears to be new, and gives an efficient solution.

I The precise answers and connection with cyclic homology are
still unclear.



Thank you very much.

I Where is your homework ?


