
Box Splines in Higher dimensions

Let V be a r -dimensional real vector space. lattice Λ.
Let X = [a1, a2, . . . , aN ] be a sequence (a multiset) of N non zero
vectors in Λ. Here N > r .
Zonotope Z (X )

Z (X ) := {

N∑
i=1

tiai ; ti ∈ [0, 1]}.

Definition of the Box spline B(X )(h):
B(X )(h) is the volume of the slice of the hypercube

CN := {ti ; ti ∈ [0, 1]}

with the affine space:
∑N

i=1 tiai = h (this gives r equations, and
we obtain slice of dimension N − r)



Clearly B(X ) is a positive measure supported on the zonotope.
EXAMPLE X = [1, 0], [0, 1], [1, 1], [−1, 1]
BX ([h1, h2]) get two equations t1 + t3 − t4 = h1
t3 + t3 + t4 = h2



An hyperplane of V (dimension r) generated by a subsequence of
r − 1 elements of X is called admissible.
Vreg,aff is the complement of the union of all the translates by Λ of
admissible hyperplanes.
A connected component τ of the set of regular elements will be
called a (affine) alcove.
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Figure: Affine alcoves for X = [e1, e2, e1 + e2]



The function BX (t) is given on each alcove by a polynomial
function of degree N − r . Pictures in Procesi document.
Wonderful properties

∑
λ∈Λ

B(X )(t − λ) = 1.



Notations
We also associate to a ∈ X three operators:
• the partial differential operator

(∂af )(v) =
d

dǫ
f (v + ǫa),

• the difference operator

(∇af )(v) = f (v)− f (v − a),

• the integral operator

(Iaf )(v) =

∫ 1

0
f (v − ta)dt.



Series of differential operators

We define the IZ operator

IZ (X ) =
N∏
i=1

(1− exp(−∂ai ))

∂ai

and its inverse

Todd(X ) =

N∏
i=1

∂ai
(1− exp(−∂ai ))

=

N∏
i=1

(1 +
1

2
∂ai −

1

12
(∂ai )

2 + · · · )

We can apply Todd(X ) to the function B(X ) alcove by alcove.
Then we take the limit ”from the right”, that is coming from small
vectors in the cone generated by elements of X :



The Mother formula

X unimodular: Every σ basis of V extracted from X generates Λ.

(Todd(X )B(X ))Λ = δ0

DEFINED BY LIMIT FROM THE Cone(X ) SIDE: (Unimodular
case)
that is for any λ ∈ Λ and any ǫ small regular in the cone generated
by X :
• λ 6= 0

lim
t>0,t→0

(Todd(X )B(X ))(λ+ tǫ) = 0

• λ) = 0
lim

t>0,t→0
(Todd(X )B(X ))(λ+ tǫ) = 1



This formula implies Riemann-Roch theorem for smooth toric
varities
Dahmen-Micchelli formula for Partition functions, unimodular case
Khovanskii-Pukhlikov Riemann-Roch theorem for polytopes.



Applications

Slightly more complicated formula when the system X is not
unimodular.
Riemann-Roch theorem for any toric varieties
Brion-Vergne formula for number of integral points in rational
convex polytopes.
and generalizations to Transversally elliptic operators: De
Concini+Procesi+Vergne



The proof is based again on the relation between discrete
convolution and continuous convolution.
Convolution against the Box Spline Let test be a smooth
function of t ∈ V .

Definition
If test is a smooth function of t ∈ V , define
• The convolution

(Box(X ) ∗c test)(t) =

∫
u∈V

test(u)BoxN(t − u)du

• The semi-discrete convolution

(Box(X ) ∗d test)(t) =
∑
u∈Λ

test(u)BoxN(t − u)

∗c means usual convolution..



Then if test is a polynomial, we have

(B(X ) ∗c test)(t) = (

N∏
i=1

1− e−∂ai

∂ai
test)(t).



Comparison between B(X ) ∗c f and B(X ) ∗d f ??
Analogue of the polynomials of degree strictly less than N.
Dahmen-Micchelli polynomials .



Dahmen-Micchelli polynomials

:
Definition: p is a Dahmen-Micchelli polynomial if: ∂Y p = 0 for
any cocircuit Y , that is Y is the complement in X of the elements
in a ∈ X ∩ H, where H is a hyperplane .
Terminology of Holtz-Ron: long subsets Y of X : the complement
Y do not generate V .

Example X = [1, 1, . . . , 1]: d
dt

N
p = 0: polynomials of degree < N.



Semi-discrete convolution

When is B(X ) ∗d f equal to B(X ) ∗c f ??: We need sufficiently
many such polynomials f .

Theorem
If p is a polynomial, then

B(X ) ∗ −cf =
∏
i

1− e−∂ai

∂ai
f .

If p is a Dahmen-Micchelli polynomial then B(X ) ∗d f equal to
B(X ) ∗c f :

Problem very similar to Euler-MacLaurin formula.
???
I will define an EULER-MAC LAURIN formula for hyperplanes
arrangement.



Euler MacLaurin formula in Dimension 1

Goal: Evaluate
∑

n∈Z f (n) for f smooth (rapidly decreasing), and
compare it with the integral

∫
R
f (t)dt

∑
n∈Z

f (n) =

∫
R

f (t)dt + Rk

where Rk depends only of the k-th derivative of f



Bernoulli polynomials Bk(t)

• B0(t) = 1
• k > 0 d

dt
Bk(t) = Bk−1(t)

•
∫ 1
0 Bk(t) = 0

I want them periodic: Take Bk between [0, 1] and repeat it by
translation

Bk(t) = Bk(t − [t])

B1(t) not continuous.



Bernoulli polynomials: One variable

Other definition by Fourier series:
0 < t < 1

Bk(t) = −
∑
n 6=0

e2iπnt

(2iπn)k

1/2

−1/2

−1−2−3 1 2 3

Figure: Graph of −B1(t) =
1
2 − t + [t]



Euler-Mac Laurin formula

∑
n∈Z

f (n) =

∫
R

f (t)dtn+

∫
R

Bk(t)((
d

dt
)k f )(t).

Proof: Repeated use of the fundamental formula of Calculus∫ b

a
f ′ = f (b)− f (a).

Compute
∫
R
f ′(t)B1(t) interval by interval. Other proof: Poisson

formula.



Euler-Mac Laurin formula For Hyperplanes arrangements

Need the analog of Bernoulli periodic polynomials: some locally
polynomial functions on alcoves that satisfy some equations. I will
call them W not to mix them with the Box spline.. If a ∈ X ,
X − a is another system in V , while X/a is a system in V /Ra: pull
back of a function f on V /Ra still denoted by f .
If X do not span V , define W (X ) = 0.
If X is a basis σ , WX (

∑
i tiai) = det(σ)

∏r
i=1 B1(ti ).

Theorem
(Zagier, Szenes)
There exists unique piecewise polynomials functions satisfying:

∂aW (X ) = W (X − a)−W (X/a)

∫
V /Λ

W (X ) = 0



Formula for W (X )

W (X )(v) =
∑

γ∈Γ,<ai ,γ> 6=0

e2iπ〈v ,γ〉∏
a∈X 2iπ〈a, γ〉

.



Notation ∂Y =
∏

a∈Y ∂a.
Let R be the collection of subspaces in V spanned by some
subsets of elements ai . On V /s, we have the arrangement X/s,
and the function W (X/s) a locally polynomial function on V /s.
We lift it up to V by V → V /s.
If s ∈ R, we consider X \ s the list of vectors in X not lying in the
subspace s.

Theorem
(Boysal+V)

∑
λ∈Λ

f (λ) =
∑
s∈R

∫
V

(∂X−sf )(t)W (X/s)(t)dt

Example X = [1, 1, ..., 1], then R consists of two elements: s = V
and s = {0}
Then:

∑
n∈Z

f (n) =

∫
V

f (t)dt +

∫
V

f (k)(t)Bk(t)dt.



Proof: Use The most beautiful formula in mathematics: the
Poisson formula
f smooth, rapidly decreasing:
Let

f̂ (y) =

∫
V

e2iπ〈y ,x〉f (x)dx .

THEN

∑
λ∈Λ

f (λ) =
∑
γ∈Γ

f̂ (γ).

Γ = Λ∗.

And we group together the term of the Poisson formula.



Proof of Euler Mac Laurin formula for hyperplanes

arrangement

That is instead of writing

∑
u∈Γ

(f̂ )(u)

we group together the terms in Γ = Λ∗ in the same strata
according to the hyperplane arrangement ai = 0,
then we take the primitives that we can :
Example

∑
n 6=0 e

int = d
dt

∑
n 6=0

e int

n
.



A formula for semi-discrete convolution

• Recall the difference operator

(∇af )(v) = f (v)− f (v − a),

If I , J are subsequences of X , we define the operators
∂I =

∏
a∈I ∂a and ∇J =

∏
b∈J ∇b.



Theorem
Let f be a smooth function on V . We have

B(X ) ∗d f − B(X ) ∗c f

=
∑

s∈R;s6=V

∑
I⊂X\s

(−1)|I |B((X ∩ s) ⊔ I ) ∗c (W (X/s)∂I∇J f ).

In this formula J is the complement of the sequence I in X \ s.

Proof: Use our Euler-Mac Laurin formula and
∂YB(X ) = ∇YB(X \ Y ), if Y is a subsequence of X .



Dahmen-Micchelli polynomials

:
If p is a Dahmen-Micchelli polynomial if: For any s 6= V ,
∂X\sp = 0.
In particular if I , J are subsets of X such that I ∪ J = X \ s, then
∂I∇Jp = 0.
Corollary:

Theorem
p Dahmen-Micchelli: Then B(X ) ∗c p = B(X ) ∗d p



The Mother Formula

THEOREM X unimodular

(Todd(X )B(X ))Λ = δ0.

Slightly more complicated for the general case. Proof: By
induction, there exists a Dahmen Micchelli polynomial p such that
p(0) = 1 and p(z) = 0 for all points in (Z (X )− ǫ)∩ Λ. Then same
proof.



Inversion formula

Let f be a function on Λ. Then

f (λ) = Todd(X )(B(X ) ∗d f )(λ)



Applications to representation theory

Next lecture


