Box Splines in Higher dimensions

Let V be a r-dimensional real vector space. lattice Λ.
Let $X=\left[a_{1}, a_{2}, \ldots, a_{N}\right]$ be a sequence (a multiset) of N non zero vectors in Λ. Here $N>r$.
Zonotope $Z(X)$

$$
Z(X):=\left\{\sum_{i=1}^{N} t_{i} a_{i} ; t_{i} \in[0,1]\right\}
$$

Definition of the Box spline $B(X)(h)$:
$B(X)(h)$ is the volume of the slice of the hypercube

$$
C_{N}:=\left\{t_{i} ; t_{i} \in[0,1]\right\}
$$

with the affine space: $\sum_{i=1}^{N} t_{i} a_{i}=h$ (this gives r equations, and we obtain slice of dimension $N-r$)

Clearly $B(X)$ is a positive measure supported on the zonotope. EXAMPLE $X=[1,0],[0,1],[1,1],[-1,1]$
$B_{X}\left(\left[h_{1}, h_{2}\right]\right)$ get two equations $t_{1}+t_{3}-t_{4}=h_{1}$ $t_{3}+t_{3}+t_{4}=h_{2}$

An hyperplane of V (dimension r) generated by a subsequence of $r-1$ elements of X is called admissible.
$V_{\text {reg,aff }}$ is the complement of the union of all the translates by Λ of admissible hyperplanes.
A connected component τ of the set of regular elements will be called a (affine) alcove.

Figure: Affine alcoves for $X=\left[e_{1}, e_{2}, e_{1}+e_{2}\right]$

The function $B_{X}(t)$ is given on each alcove by a polynomial function of degree $N-r$. Pictures in Procesi document. Wonderful properties

$$
\sum_{\lambda \in \Lambda} B(X)(t-\lambda)=1
$$

Notations
We also associate to $a \in X$ three operators:

- the partial differential operator

$$
\left(\partial_{a} f\right)(v)=\frac{d}{d \epsilon} f(v+\epsilon a),
$$

- the difference operator

$$
\left(\nabla_{a} f\right)(v)=f(v)-f(v-a),
$$

- the integral operator

$$
\left(l_{a} f\right)(v)=\int_{0}^{1} f(v-t a) d t
$$

Series of differential operators

We define the $I Z$ operator

$$
I Z(X)=\prod_{i=1}^{N} \frac{\left(1-\exp \left(-\partial_{a_{i}}\right)\right)}{\partial_{a_{i}}}
$$

and its inverse

$$
\begin{aligned}
& \operatorname{Todd}(X)=\prod_{i=1}^{N} \frac{\partial_{a_{i}}}{\left(1-\exp \left(-\partial_{a_{i}}\right)\right)} \\
& =\prod_{i=1}^{N}\left(1+\frac{1}{2} \partial_{a_{i}}-\frac{1}{12}\left(\partial_{a_{i}}\right)^{2}+\cdots\right)
\end{aligned}
$$

We can apply $\operatorname{Todd}(X)$ to the function $B(X)$ alcove by alcove. Then we take the limit "from the right", that is coming from small vectors in the cone generated by elements of X :

The Mother formula

X unimodular: Every σ basis of V extracted from X generates Λ.

$$
(\operatorname{Todd}(X) B(X))_{\wedge}=\delta_{0}
$$

DEFINED BY LIMIT FROM THE Cone (X) SIDE: (Unimodular case)
that is for any $\lambda \in \Lambda$ and any ϵ small regular in the cone generated by X :

- $\lambda \neq 0$

$$
\lim _{t>0, t \rightarrow 0}(\operatorname{Todd}(X) B(X))(\lambda+t \epsilon)=0
$$

- $\lambda)=0$

$$
\lim _{t>0, t \rightarrow 0}(\operatorname{Todd}(X) B(X))(\lambda+t \epsilon)=1
$$

This formula implies Riemann-Roch theorem for smooth toric varities
Dahmen-Micchelli formula for Partition functions, unimodular case Khovanskii-Pukhlikov Riemann-Roch theorem for polytopes.

Applications

Slightly more complicated formula when the system X is not unimodular.
Riemann-Roch theorem for any toric varieties
Brion-Vergne formula for number of integral points in rational convex polytopes. and generalizations to Transversally elliptic operators: De Concini+Procesi+Vergne

The proof is based again on the relation between discrete convolution and continuous convolution.
Convolution against the Box Spline Let test be a smooth function of $t \in V$.

Definition

If test is a smooth function of $t \in V$, define

- The convolution

$$
\left(\operatorname{Box}(X) *_{c} \operatorname{test}\right)(t)=\int_{u \in V} \operatorname{test}(u) \operatorname{Box}_{N}(t-u) d u
$$

- The semi-discrete convolution

$$
\left(\operatorname{Box}(X) *_{d} \text { test }\right)(t)=\sum_{u \in \Lambda} \operatorname{test}(u) \operatorname{Box}_{N}(t-u)
$$

$*_{c}$ means usual convolution..

Then if test is a polynomial, we have

$$
\left(B(X) *_{c} \operatorname{tes} t\right)(t)=\left(\prod_{i=1}^{N} \frac{1-e^{-\partial_{a_{i}}}}{\partial_{a_{i}}} \text { test }\right)(t)
$$

Comparison between $B(X) *_{c} f$ and $B(X) *_{d} f$??
Analogue of the polynomials of degree strictly less than N. Dahmen-Micchelli polynomials .

Dahmen-Micchelli polynomials

Definition: p is a Dahmen-Micchelli polynomial if: $\partial_{Y} p=0$ for any cocircuit Y, that is Y is the complement in X of the elements in $a \in X \cap H$, where H is a hyperplane.
Terminology of Holtz-Ron: long subsets Y of X : the complement Y do not generate V.
Example $X=[1,1, \ldots, 1]: \frac{d}{d t}^{N} p=0$: polynomials of degree $<N$.

Semi-discrete convolution

When is $B(X) *_{d} f$ equal to $B(X) *_{c} f$??: We need sufficiently many such polynomials f.

Theorem
If p is a polynomial, then

$$
B(X) *-c f=\prod_{i} \frac{1-e^{-\partial_{a_{i}}}}{\partial_{a_{i}}} f
$$

If p is a Dahmen-Micchelli polynomial then $B(X) *_{d} f$ equal to $B(X) *_{c} f$:
Problem very similar to Euler-MacLaurin formula.
???
I will define an EULER-MAC LAURIN formula for hyperplanes arrangement.

Euler MacLaurin formula in Dimension 1

Goal: Evaluate $\sum_{n \in \mathbb{Z}} f(n)$ for f smooth (rapidly decreasing), and compare it with the integral $\int_{\mathbb{R}} f(t) d t$

$$
\sum_{n \in \mathbb{Z}} f(n)=\int_{\mathbb{R}} f(t) d t+R_{k}
$$

where R_{k} depends only of the k-th derivative of f

Bernoulli polynomials $\mathcal{B}_{k}(t)$

- $\mathcal{B}_{0}(t)=1$
- $k>0 \frac{d}{d t} \mathcal{B}_{k}(t)=\mathcal{B}_{k-1}(t)$
- $\int_{0}^{1} \mathcal{B}_{k}(t)=0$

I want them periodic: Take \mathcal{B}_{k} between $[0,1]$ and repeat it by translation

$$
\mathcal{B}_{k}(t)=B_{k}(t-[t])
$$

$\mathcal{B}_{1}(t)$ not continuous.

Bernoulli polynomials: One variable

Other definition by Fourier series:

$$
0<t<1
$$

$$
\mathcal{B}_{k}(t)=-\sum_{n \neq 0} \frac{e^{2 i \pi n t}}{(2 i \pi n)^{k}}
$$

Figure: Graph of $-\mathcal{B}_{1}(t)=\frac{1}{2}-t+[t]$

Euler-Mac Laurin formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\int_{\mathbb{R}} f(t) d t n+\int_{\mathbb{R}} \mathcal{B}_{k}(t)\left(\left(\frac{d}{d t}\right)^{k} f\right)(t) .
$$

Proof: Repeated use of the fundamental formula of Calculus $\int_{a}^{b} f^{\prime}=f(b)-f(a)$.
Compute $\int_{\mathbb{R}} f^{\prime}(t) \mathcal{B}_{1}(t)$ interval by interval. Other proof: Poisson formula.

Euler-Mac Laurin formula For Hyperplanes arrangements

Need the analog of Bernoulli periodic polynomials: some locally polynomial functions on alcoves that satisfy some equations. I will call them W not to mix them with the Box spline.. If $a \in X$, $X-a$ is another system in V, while X / a is a system in $V / \mathbb{R} a$: pull back of a function f on V / \mathbb{R} a still denoted by f.
If X do not span V, define $W(X)=0$.
If X is a basis $\sigma, W_{X}\left(\sum_{i} t_{i} a_{i}\right)=\operatorname{det}(\sigma) \prod_{i=1}^{r} \mathcal{B}_{1}\left(t_{i}\right)$.
Theorem
(Zagier, Szenes)
There exists unique piecewise polynomials functions satisfying:

$$
\begin{gathered}
\partial_{a} W(X)=W(X-a)-W(X / a) \\
\int_{V / \Lambda} W(X)=0
\end{gathered}
$$

Formula for $W(X)$

$$
W(X)(v)=\sum_{\left.\gamma \in \Gamma,<a_{i}, \gamma\right\rangle \neq 0} \frac{e^{2 i \pi\langle v, \gamma\rangle}}{\prod_{a \in X} 2 i \pi\langle a, \gamma\rangle} .
$$

Notation $\partial_{Y}=\prod_{a \in Y} \partial_{a}$.
Let \mathcal{R} be the collection of subspaces in V spanned by some subsets of elements a_{i}. On V / \mathfrak{s}, we have the arrangement X / \mathfrak{s}, and the function $W(X / \mathfrak{s})$ a locally polynomial function on V / \mathfrak{s}.
We lift it up to V by $V \rightarrow V / s$.
If $\mathfrak{s} \in \mathcal{R}$, we consider $X \backslash \mathfrak{s}$ the list of vectors in X not lying in the subspace \mathfrak{s}.
Theorem
(Boysal+V)

$$
\sum_{\lambda \in \Lambda} f(\lambda)=\sum_{\mathfrak{s} \in \mathcal{R}} \int_{V}\left(\partial_{X-\mathfrak{s}} f\right)(t) W(X / \mathfrak{s})(t) d t
$$

Example $X=[1,1, \ldots, 1]$, then \mathcal{R} consists of two elements: $\mathfrak{s}=V$ and $\mathfrak{s}=\{0\}$
Then:

$$
\sum_{n \in \mathbb{Z}} f(n)=\int_{V} f(t) d t+\int_{V} f^{(k)}(t) \mathcal{B}_{k}(t) d t
$$

Proof: Use The most beautiful formula in mathematics: the Poisson formula
f smooth, rapidly decreasing:
Let

$$
\hat{f}(y)=\int_{V} e^{2 i \pi\langle y, x\rangle} f(x) d x
$$

THEN

$$
\begin{aligned}
\sum_{\lambda \in \Lambda} f(\lambda) & =\sum_{\gamma \in \Gamma} \hat{f}(\gamma) . \\
\Gamma & =\Lambda^{*}
\end{aligned}
$$

And we group together the term of the Poisson formula.

Proof of Euler Mac Laurin formula for hyperplanes arrangement

That is instead of writing

$$
\sum_{u \in \Gamma}(\hat{f})(u)
$$

we group together the terms in $\Gamma=\Lambda^{*}$ in the same strata according to the hyperplane arrangement $a_{i}=0$, then we take the primitives that we can :
Example $\sum_{n \neq 0} e^{i n t}=\frac{d}{d t} \sum_{n \neq 0} \frac{e^{i n t}}{n}$.

A formula for semi-discrete convolution

- Recall the difference operator

$$
\left(\nabla_{a} f\right)(v)=f(v)-f(v-a),
$$

If I, J are subsequences of X, we define the operators $\partial_{I}=\prod_{a \in I} \partial_{a}$ and $\nabla_{J}=\prod_{b \in J} \nabla_{b}$.

Theorem

Let f be a smooth function on V. We have

$$
\begin{gathered}
B(X) *_{d} f-B(X) *_{c} f \\
=\sum_{\mathfrak{s} \in \mathcal{R} ; \mathfrak{s} \neq V} \sum_{I \subset X \backslash \mathfrak{s}}(-1)^{|/|} B((X \cap \mathfrak{s}) \sqcup I) *_{c}\left(W(X / \mathfrak{s}) \partial_{l} \nabla_{J} f\right) .
\end{gathered}
$$

In this formula J is the complement of the sequence I in $X \backslash \mathfrak{s}$.
Proof: Use our Euler-Mac Laurin formula and $\partial_{Y} B(X)=\nabla_{Y} B(X \backslash Y)$, if Y is a subsequence of X.

Dahmen-Micchelli polynomials

If p is a Dahmen-Micchelli polynomial if: For any $\mathfrak{s} \neq V$, $\partial_{X \backslash_{5} p}=0$.
In particular if I, J are subsets of X such that $I \cup J=X \backslash \mathfrak{s}$, then $\partial_{I} \nabla_{J} p=0$.
Corollary:
Theorem
p Dahmen-Micchelli: Then $B(X){ }_{c} p=B(X) *_{d} p$

The Mother Formula

THEOREM X unimodular

$$
(\operatorname{Todd}(X) B(X))_{\wedge}=\delta_{0} .
$$

Slightly more complicated for the general case. Proof: By induction, there exists a Dahmen Micchelli polynomial p such that $p(0)=1$ and $p(z)=0$ for all points in $(Z(X)-\epsilon) \cap \Lambda$. Then same proof.

Inversion formula

Let f be a function on Λ. Then

$$
f(\lambda)=\operatorname{Todd}(X)\left(B(X) *_{d} f\right)(\lambda)
$$

Applications to representation theory

Next lecture

