Box splines

Let Cy be the N dimensional hypercube:

Cn ;:{tlvtg,...,tN;OStigl}

We slice it with the hyperplane:

Boxn(t) = volume(Cn N Hy).

Then Boxpy(t) is supported on 0 < t < N. On each interval

[k, k + 1] given by a polynomial of degree N — 1. But different
polynomials on each interval. Their N — 2 first derivatives agree at
the extreme of intervals.



Remark the symmetry:
BOXN(t) = BOXN(N — t)
We also see that

d
EBOXN(t) = BOXNfl(t) — BOXNfl(t — ].)
That is

%Box,v(t) = (VBoxy_1)(t)

where V is the difference operator. (We will not use this equation
in this elementary talk: it holds in the distribution sense , for
N > 1, because of CN~2-differentiability properties)



Example: Box; (t)
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Wonderful properties of Box splines

For example

Z Boxn(t —n) =1

neZ
The following pictures (see Procesi document) shows the sum of
Box1(t — n), Boxa(t — n), Boxz(t — n) over the integers
n=-1,0,...,8.
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This property follows right away from the geometric definition:
Example: Boxo: By drawing... Compute > Boxs(t — n): We have
to sum all the volumes of x; + xo = t — n for any n.

Now x; ranges between 0 and 1. Put xo =t — x; — n where n is
the integer floor(t — x1) so that x, is between 0 and 1. So it is just
parametrized by 0 < x; < 1.

More generally, we will see that:

Theorem
For any polynomial P of degree strictly less than N,

t—>ZP )Boxn(t — n)

is a polynomial function of t.



e Constant function: already seen.

e P(t) =t of degree too big:

Drawing: | think | sum over n=10,1,2,3,4
Compute ), nBoxi(t — n) not a polynomial !!
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.




N =2

e Constant function: already seen.

[ J

Function P(t) = t of degree 1: true

Drawing: | think | summed over n=-1,0,1,2,3,4,..,8




Series of differential operators

If T(%) =30 t,,(%)” is a series of differential operators, we
can act on polynomials.

(T(%)P)(t) can be computed as for n large (%)”P =0.

We will use the series

~ exp(—d

and the inverse

Definition
We define the Todd operator
d d
Todd(— )= — 9% ——
dt’ = (1— exp(—9))
1d 1,d,, 1 dy,
=l i () (=
+2dt+12(dt) 720(dt) +



Integration against the Box Spline

Let test be a smooth function of t. Then we can integrate
test(ty + to + - - - + ty) over the hypercube. By Fubini theorem, we
obtain

1 1
/ / test(ty + tr + - -+ + ty)dt = / test(t)Boxy(t)dt
0 JO R

Definition
If test is a smooth function of t, define
e The usual convolution

(Box . test)(t) = / test(u) Box(t — u)du
ueR
e The semi-discrete convolution

(Boxyy *4 test)( Z test(u)Boxn(t — u)



If test is a polynomial, we have (use Taylor expansion)

1 1 _ e—d/dt
/O test(t — u)du = (W)test(t).

Thus

(Boxp *c test)(t) = / test(u)Boxy(t — u)du
ueR

1 1
:/ / test(t — (uy + up + -+ - + uy))duy - - - duy
u1=0 uny=0

— ((71 —de—m YNtest)(t).

dt



Theorem
[ ]

If P is a polynomial function, then

Bon v« P — (=2 yp)(e).
dt

If P is a polynomial function of degree < N, then

d
N
Boxy *c P = Boxy *q P == ((————)"P)(¢).
dt



Proof

Let Boxy: it is enough to prove this for P(t) = tV=1

t— > Z n"=1Boxy(t — n)

n

is a polynomial; For smaller degree, we derivate, and we can use
the recurrence formula.
| will compute

> P(n)Boxn(t — n)
not exactly for P(t) = tN~! but for the polynomial of degree
N — 1 given by

(t+1)(t+2)---(t+N—-1)
(N —1)!




Consider the standard (N — 1)-dimensional simplex (dilated)

Sn—1(t)={t;i >0 t1+tr+---+ty =t}

Sn—1(t) has volume %

If t = nis an integer the number of integral points in Sy_1(t) is

(n+1)--(n+N-1)
(N - 1)! '

Pn(n) =



Now let us integrate over the first quadrant t; > 0, the function
e~ (it +tn)y

| = / e / ef(““ﬁ'"”’\’)ydtldtz - dtyy.
t;1 >0 ty>0

Using Fubini, we compute / by integrating first over the simplices
Sn—1(t) then over t, thus

I::/ — e Ydt
t>0 (N - 1)!



But we can also decompose the quadrant in cubes
[n1,n2, n3,...,ny| + Hypercube n; =0,1,..., 0 <t; <1 and
obtain that / is equal to

Z/ / —((mtt)=(mtt2)=(nstts)——(nmn+tn))y gt, dit,, - .

= / Z e (=m)Y Boxy (t)e™ ¥ dt
teR

nj

= / Z Prn(n)e™™ Boxy(t)e” ¥ dt
€R 130

—/ ZPN(n)BoxN(t— n)e ¥dt.
€R ;50

- dty.



We obtain thus that for every y > 0

FN-1 ,
I::/ — e Ydt
>0 (N —1)!

:/ S Pu(n)Boxu(t — n)e Y,
eR 0

and also

CONCLUSION: For t > 0, we have almost everywhere

thl

;PN n)Boxy(t — n) = O

So we have it on each interval where Boxy is continuous.



Recall that we want to compute

ZP )Boxy(t — n)

nez
for the polynomial

(t+1)(t+2)---(t+N-1)

£ (N—1)!

The sum is over the integers n such that t — n < N, as Boxy is
supported on [0, N]. thus over the integers
—(N-1),—(N—-2),—(N —3),...,—1,0. But my polynomial
vanishes there, and for n > 0 coincide with Ppy(n). Thus | obtain

Fort >0
#N-1

ZP )Boxn(t — n) = -1

neZ



Same calculation for t < 0, using Boxy/(t) = Boxy(N — t)

ZP )Boxy(t — n) ZP(n)BoxN(N—i-n—t)
neZ nezZ

= P(—m — N)Boxy(—t — m)
nezZ
Remark that P(—m — N) = (—=1)(N-DP(m)
and we obtain the same formula

Fort <0
#N-1

> P(n)Box(t -0 = o

nez



It remains to see that

(1—e®%)

tN_l
( 0
t

YN binomial(t + N — 1, N — 1) = WD

For example, by induction.
Using distributions, we could have seen directly that

d
(I)N(BOXN xq P) =0

so that the result is a polynomial of degree < N.
as

d
i (Boxy *4 P) = (VBoxy_1) xq P = Boxy_1 * VP.



Consequence of this theorem

Let f be any function on Z. Consider the function on R

F(t) := (Boxn *q f)(t) := Y _ f(n)Boxn(t — n).

Then F is a locally polynomial function of t (on each interval it is
given by a polynomial function of t). We can derivate F over any
open interval by any series of differential operator P(%).



The Todd operator

Theorem
Let f be any function on Z.:
Let
Fn(t) = (Boxn *q4 )( Z f(n)Boxn(t — n).

Then Fp(t) is a function on R, polynomial on each interval.
Then f(n) (n an integer) is obtained by the limit from the right of

f(n)= lim ((Todd(d/dt))N(Boxy %4 f))(n+ €)

e>0,e—>0



Why we want to do it

For some very interesting cases, the function (Boxy %4 f) is known
and related to the "classical’ geometry.

If we know regularity properties of (Boxy *4 f), then we deduce
regularities properties for f.

Going from Fp to f is going from the classical mechanics to
quantum mechanics.

We will see examples later.



Proof

We want to prove this equation, for n = 0 (enough). Then Fp(t)
for t > 0 near 0 (HERE | USE THE LIMIT on the RIGHT) involves
only the values f(0), f(—1), f(—2),...f(—(N — 1)) of f, indeed
Boxn(t + N) =0 for t > 0, as Boxy is supported on [0, N].

We can choose a unique polynomial P of degree N — 1 which
coincide with f at 0,—1,...,—(N —1). Near t > 0, small,

(BOXN *g f)(t) = (BOX/V *g P)(t)

Differentiate with the reverse operator, we obtain our identity
f(0) = (Todd (2 ))N(Boxy *4 f)(0).



A wonderful property of the Box spline

Apply this to f(n) = 0 except for n = 0 where f(0) = 1.
THAT IS
f = do.

Then

Theorem
Consider the locally polynomial function

((Todd(d/dt))N Boxy)(t)

Then
((Todd(d/dt))N Boxy)|z = do

(limits from the right)



Examples

0,31
0,6
0.4
02
1 0
s
64
4
24
1 [ 1
24
44
64




We have used essentially the relation that Ppy(n), the number of
integral points in the the standard simplex can be obtained from
the volume vol(Sy(t)) by applying the Todd operator.

Consider M := Py_1(C) realized by

{(21,22, - ,ZN);Z ‘Zi’2 _ t}/ef9

with symplectic form Q; = tc. Here c is the Fubini-Study
canonical 2-form on M, with [ cN=1 = 1. We compute

o th
vol(M;) ::/Me RUED]]



Let t = n an integral value,

Let £,, be the line bundle on M with holomorphic sections
polynomials on degree n: Thus HO(M, L,) has basis zZt . zp
with n; > 0; > n; = n. That is the number of integral points in
SN,l(n).

If we apply the Todd operator

Todd(%) /M e’

we obtain

For t = n, we then obtain

Todd(jt)/MetCh:n:/Mchern(L,,)Todd(l\/I).

The Riemann Roch theorem asserts that this is the dimension of
HO(M, L,,) (no higher cohomology).



The Mother Formula

CONCLUSION:
The relation

((Todd( )" Boxw) = = &

is the mother formula:

Children

e: Inversion formula for semi-discrete convolution
[ ]

Riemann-Roch theorem for Py_1(C).

[ ]

Multiplicities formulae: last talk.



