Box splines

Let C_{N} be the N dimensional hypercube:

$$
C_{N}:=\left\{t_{1}, t_{2}, \ldots, t_{N} ; 0 \leq t_{i} \leq 1\right\}
$$

We slice it with the hyperplane:

$$
H_{t}=\left\{\sum_{i=1}^{N} t_{i}=t\right\}
$$

$$
\operatorname{Box}_{N}(t)=\operatorname{volume}\left(C_{N} \cap H_{t}\right) .
$$

Then $\operatorname{Box}_{N}(t)$ is supported on $0 \leq t \leq N$. On each interval [$k, k+1$] given by a polynomial of degree $N-1$. But different polynomials on each interval. Their $N-2$ first derivatives agree at the extreme of intervals.

Remark the symmetry:
$\operatorname{Box}_{N}(t)=\operatorname{Box}_{N}(N-t)$
We also see that

$$
\frac{d}{d t} \operatorname{Box}_{N}(t)=\operatorname{Box}_{N-1}(t)-\operatorname{Box}_{N-1}(t-1)
$$

That is

$$
\frac{d}{d t} \operatorname{Box}_{N}(t)=\left(\nabla \operatorname{Box}_{N-1}\right)(t)
$$

where ∇ is the difference operator. (We will not use this equation in this elementary talk: it holds in the distribution sense, for $N>1$, because of C^{N-2}-differentiability properties)

Example: $B o x_{1}(t)$

$\operatorname{Box}_{2}(t)$

$\operatorname{Bot}_{3}(t)$

Wonderful properties of Box splines

For example

$$
\sum_{n \in \mathbb{Z}} \operatorname{Box}_{N}(t-n)=1
$$

The following pictures (see Procesi document) shows the sum of $\operatorname{Box}_{1}(t-n), \operatorname{Box}_{2}(t-n), \operatorname{Box}_{3}(t-n)$ over the integers $n=-1,0, \ldots, 8$.

This property follows right away from the geometric definition: Example: Box : By drawing... Compute $\sum_{n} \mathrm{Box}_{2}(t-n)$: We have to sum all the volumes of $x_{1}+x_{2}=t-n$ for any n.
Now x_{1} ranges between 0 and 1 . Put $x_{2}=t-x_{1}-n$ where n is the integer floor $\left(t-x_{1}\right)$ so that x_{2} is between 0 and 1 . So it is just parametrized by $0 \leq x_{1} \leq 1$. More generally, we will see that:

Theorem
For any polynomial P of degree strictly less than N,

$$
t->\sum_{n} P(n) \operatorname{Box}_{N}(t-n)
$$

is a polynomial function of t.

$N=1$

- Constant function: already seen.
- $P(t)=t$ of degree too big:

Drawing: I think I sum over $n=0,1,2,3,4$
Compute $\sum_{n} n \operatorname{Box}_{1}(t-n)$ not a polynomial !!

$N=2$

- Constant function: already seen.

Function $P(t)=t$ of degree 1: true
Drawing: I think I summed over $n=-1,0,1,2,3,4, . ., 8$

Series of differential operators

If $\mathbf{T}\left(\frac{d}{d t}\right)=\sum_{n=0}^{\infty} t_{n}\left(\frac{d}{d t}\right)^{n}$ is a series of differential operators, we can act on polynomials.
$\left(\mathbf{T}\left(\frac{d}{d t}\right) P\right)(t)$ can be computed as for n large $\left(\frac{d}{d t}\right)^{n} P=0$.
We will use the series

$$
\left(\frac{\left(1-\exp \left(-\frac{d}{d t}\right)\right)}{\frac{d}{d t}}\right)=1-\frac{1}{2} \frac{d}{d t}+\frac{1}{3!}\left(\frac{d}{d t}\right)^{2}
$$

and the inverse

Definition

We define the Todd operator

$$
\begin{gathered}
\operatorname{Todd}\left(\frac{d}{d t}\right)=\frac{\frac{d}{d t}}{\left(1-\exp \left(-\frac{d}{d t}\right)\right)} \\
=1+\frac{1}{2} \frac{d}{d t}+\frac{1}{12}\left(\frac{d}{d t}\right)^{2}-\frac{1}{720}\left(\frac{d}{d t}\right)^{4}+\cdots
\end{gathered}
$$

Integration against the Box Spline

Let test be a smooth function of t. Then we can integrate test $\left(t_{1}+t_{2}+\cdots+t_{N}\right)$ over the hypercube. By Fubini theorem, we obtain

$$
\int_{0}^{1} \int_{0}^{1} \operatorname{test}\left(t_{1}+t_{2}+\cdots+t_{N}\right) d \mathbf{t}=\int_{\mathbb{R}} \operatorname{test}(t) \operatorname{Box}_{N}(t) d t
$$

Definition

If test is a smooth function of t, define

- The usual convolution

$$
\left(\operatorname{Box}_{N} *_{c} \operatorname{test}\right)(t)=\int_{u \in \mathbb{R}} \operatorname{test}(u) \operatorname{Box}_{N}(t-u) d u
$$

- The semi-discrete convolution

$$
\left(\operatorname{Box}_{N} *_{d} \operatorname{test}\right)(t)=\sum_{u \in \mathbb{Z}} \operatorname{test}(u) \operatorname{Box}_{N}(t-u)
$$

If test is a polynomial, we have (use Taylor expansion)

$$
\int_{0}^{1} \operatorname{tes}(t-u) d u=\left(\frac{1-e^{-d / d t}}{d / d t}\right) \operatorname{test}(t)
$$

Thus

$$
\begin{gathered}
\left(\operatorname{Box}_{N} *_{c} \operatorname{test}\right)(t)=\int_{u \in \mathbb{R}} \operatorname{test}(u) \operatorname{Box}_{N}(t-u) d u \\
=\int_{u_{1}=0}^{1} \cdots \int_{u_{N}=0}^{1} \operatorname{test}\left(t-\left(u_{1}+u_{2}+\cdots+u_{N}\right)\right) d u_{1} \cdots d u_{N} \\
=\left(\left(\frac{1-e^{-\frac{d}{d t}}}{\frac{d}{d t}}\right)^{N} \operatorname{test}\right)(t)
\end{gathered}
$$

Theorem

If P is a polynomial function, then

$$
B o x_{N} *_{c} P=\left(\left(\frac{1-e^{-\frac{d}{d t}}}{\frac{d}{d t}}\right)^{N} P\right)(t)
$$

If P is a polynomial function of degree $<N$, then

$$
\operatorname{Box}_{N} *_{c} P=B o x_{N} *_{d} P==\left(\left(\frac{1-e^{-\frac{d}{d t}}}{\frac{d}{d t}}\right)^{N} P\right)(t)
$$

Proof

Let $B o x_{N}$: it is enough to prove this for $P(t)=t^{N-1}$

$$
t->\sum_{n} n^{N-1} \operatorname{Box}_{N}(t-n)
$$

is a polynomial; For smaller degree, we derivate, and we can use the recurrence formula.
I will compute

$$
\sum_{n} P(n) \operatorname{Box}_{N}(t-n)
$$

not exactly for $P(t)=t^{N-1}$ but for the polynomial of degree $N-1$ given by

$$
t \rightarrow \frac{(t+1)(t+2) \cdots(t+N-1)}{(N-1)!}
$$

Consider the standard ($N-1$)-dimensional simplex (dilated)

$$
S_{N-1}(t)=\left\{t_{i} \geq 0 ; t_{1}+t_{2}+\cdots+t_{N}=t .\right\}
$$

$S_{N-1}(t)$ has volume $\frac{t^{N-1}}{(N-1)!}$.
If $t=n$ is an integer the number of integral points in $S_{N-1}(t)$ is

$$
\mathcal{P}_{N}(n)=\frac{(n+1) \cdots(n+N-1)}{(N-1)!} .
$$

Now let us integrate over the first quadrant $t_{i}>0$, the function $e^{-\left(t_{1}+t_{2}+\cdots+t_{N}\right) y}$.

$$
I=\int_{t_{1}>0} \cdots \int_{t_{N}>0} e^{-\left(t_{1}+t_{2}+\cdots+t_{N}\right) y} d t_{1} d t_{2} \cdots d t_{N}
$$

Using Fubini, we compute $/$ by integrating first over the simplices $S_{N-1}(t)$ then over t, thus

$$
I:=\int_{t>0} \frac{t^{N-1}}{(N-1)!} e^{-t y} d t
$$

But we can also decompose the quadrant in cubes $\left[n_{1}, n_{2}, n_{3}, \ldots, n_{N}\right]+$ Hypercube $n_{i}=0,1, \ldots, O \leq t_{i} \leq 1$ and obtain that I is equal to

$$
\sum_{\mathbf{n}} \int_{t_{1}=0}^{1} \cdots \int_{t_{N}=0}^{1} e^{-\left(\left(n_{1}+t_{1}\right)-\left(n_{2}+t_{2}\right)-\left(n_{3}+t_{3}\right)-\cdots-\left(n_{N}+t_{N}\right)\right) y} d t_{1} d t_{2} \cdots d t_{N}
$$

$$
\begin{aligned}
& =\int_{t \in \mathbb{R}} \sum_{n_{i}} e^{-\left(\sum n_{i}\right) y} \operatorname{Box}_{N}(t) e^{-t y} d t \\
& =\int_{t \in \mathbb{R}} \sum_{n \geq 0} \mathcal{P}_{N}(n) e^{-n y} \operatorname{Box}_{N}(t) e^{-t y} d t \\
& =\int_{t \in \mathbb{R}} \sum_{n \geq 0} \mathcal{P}_{N}(n) \operatorname{Box}_{N}(t-n) e^{-t y} d t
\end{aligned}
$$

We obtain thus that for every $y>0$

$$
I:=\int_{t>0} \frac{t^{N-1}}{(N-1)!} e^{-t y} d t
$$

and also

$$
=\int_{t \in \mathbb{R}} \sum_{n \geq 0} \mathcal{P}_{N}(n) \operatorname{Box}_{N}(t-n) e^{-t y} d t
$$

CONCLUSION: For $t>0$, we have almost everywhere

$$
\sum_{n \geq 0} \mathcal{P}_{N}(n) \operatorname{Box}_{N}(t-n)=\frac{t^{N-1}}{(N-1)!}
$$

So we have it on each interval where $B x_{N}$ is continuous.

Recall that we want to compute

$$
\sum_{n \in \mathbb{Z}} P(n) \operatorname{Box}_{N}(t-n)
$$

for the polynomial

$$
t \rightarrow \frac{(t+1)(t+2) \cdots(t+N-1)}{(N-1)!}
$$

The sum is over the integers n such that $t-n \leq N$, as $B o x_{N}$ is supported on $[0, N]$. thus over the integers
$-(N-1),-(N-2),-(N-3), \ldots,-1,0$. But my polynomial vanishes there, and for $n \geq 0$ coincide with $\mathcal{P}_{N}(n)$. Thus I obtain For $t \geq 0$

$$
\sum_{n \in \mathbb{Z}} P(n) \operatorname{Box}_{N}(t-n)=\frac{t^{N-1}}{(N-1)!}
$$

Same calculation for $t<0$, using $\operatorname{Box}_{N}(t)=\operatorname{Box}_{N}(N-t)$

$$
\begin{gathered}
\sum_{n \in \mathbb{Z}} P(n) \operatorname{Box}_{N}(t-n)=\sum_{n \in \mathbb{Z}} P(n) \operatorname{Box}_{N}(N+n-t) \\
=\sum_{n \in \mathbb{Z}} P(-m-N) \operatorname{Box}_{N}(-t-m)
\end{gathered}
$$

Remark that $P(-m-N)=(-1)^{(N-1)} P(m)$ and we obtain the same formula
For $t<0$

$$
\sum_{n \in \mathbb{Z}} P(n) \operatorname{Box}_{N}(t-n)=\frac{t^{N-1}}{(N-1)!}
$$

It remains to see that

$$
\left(\frac{\left(1-e^{-\partial_{t}}\right)}{\partial_{t}}\right)^{N} \text { binomial }(t+N-1, N-1)=\frac{t^{N-1}}{(N-1)!}
$$

For example, by induction.
Using distributions, we could have seen directly that

$$
\left(\frac{d}{d t}\right)^{N}\left(B o x_{N} *_{d} P\right)=0
$$

so that the result is a polynomial of degree $<N$. as

$$
\frac{d}{d t} *\left(\operatorname{Box}_{N} *_{d} P\right)=\left(\nabla \operatorname{Box}_{N-1}\right) *_{d} P=B o x_{N-1} * \nabla P .
$$

Consequence of this theorem

Let f be any function on \mathbb{Z}. Consider the function on \mathbb{R}

$$
F(t):=\left(\operatorname{Box}_{N} *_{d} f\right)(t):=\sum_{n} f(n) \operatorname{Box}_{N}(t-n)
$$

Then F is a locally polynomial function of t (on each interval it is given by a polynomial function of t). We can derivate F over any open interval by any series of differential operator $P\left(\frac{d}{d t}\right)$.

The Todd operator

Theorem

Let f be any function on \mathbb{Z} :
Let

$$
F_{N}(t)=\left(B o x_{N} *_{d} f\right)(t):=\sum_{n} f(n) B o x_{N}(t-n)
$$

Then $F_{N}(t)$ is a function on \mathbb{R}, polynomial on each interval.
Then $f(n)$ (n an integer) is obtained by the limit from the right of

$$
f(n)=\lim _{\epsilon>0, \epsilon->0}\left((\operatorname{Todd}(d / d t))^{N}\left(\operatorname{Box}_{N} *_{d} f\right)\right)(n+\epsilon)
$$

Why we want to do it

For some very interesting cases, the function $\left(B o x_{N} *_{d} f\right)$ is known and related to the "classical" geometry.
If we know regularity properties of $\left(B o x_{N} *_{d} f\right)$, then we deduce regularities properties for f.
Going from F_{N} to f is going from the classical mechanics to quantum mechanics.
We will see examples later.

Proof

We want to prove this equation, for $n=0$ (enough). Then $F_{N}(t)$ for $t>0$ near 0 (HERE I USE THE LIMIT on the RIGHT) involves only the values $f(0), f(-1), f(-2), \ldots f(-(N-1))$ of f, indeed $\operatorname{Box}_{N}(t+N)=0$ for $t>0$, as $B o x_{N}$ is supported on $[0, N]$. We can choose a unique polynomial P of degree $N-1$ which coincide with f at $0,-1, \ldots,-(N-1)$. Near $t>0$, small,

$$
\left(B o x_{N} *_{d} f\right)(t)=\left(B o x_{N} *_{d} P\right)(t)
$$

Differentiate with the reverse operator, we obtain our identity $f(0)=\left(\operatorname{Todd}\left(\frac{d}{d t}\right)\right)^{N}\left(B o x_{N} *_{d} f\right)(0)$.

A wonderful property of the Box spline

Apply this to $f(n)=0$ except for $n=0$ where $f(0)=1$. THAT IS

$$
f=\delta_{0}
$$

Then
Theorem
Consider the locally polynomial function

$$
\left((\operatorname{Todd}(d / d t))^{N} B o x_{N}\right)(t)
$$

Then

$$
\left.\left((\operatorname{Todd}(d / d t))^{N} B o x_{N}\right)\right|_{\mathbb{Z}}=\delta_{0}
$$

(limits from the right)

Examples

We have used essentially the relation that $\mathcal{P}_{N}(n)$, the number of integral points in the the standard simplex can be obtained from the volume $\operatorname{vol}\left(S_{N}(t)\right)$ by applying the Todd operator.
Consider $M:=P_{N-1}(\mathbb{C})$ realized by

$$
\left\{\left(z_{1}, z_{2}, \ldots, z_{N}\right) ; \sum_{i}\left|z_{i}\right|^{2}=t\right\} / e^{i \theta}
$$

with symplectic form $\Omega_{t}=t c$. Here c is the Fubini-Study canonical 2 -form on M, with $\int c^{N-1}=1$. We compute

$$
\operatorname{vol}\left(M_{t}\right):=\int_{M} e^{t c}=\frac{t^{N-1}}{(N-1)!}
$$

Let $t=n$ an integral value,
Let \mathcal{L}_{n} be the line bundle on M with holomorphic sections polynomials on degree n : Thus $H^{0}\left(M, \mathcal{L}_{n}\right)$ has basis $z_{1}^{n_{1}} \ldots z_{N}^{n_{N}}$ with $n_{i} \geq 0 ; \sum n_{i}=n$. That is the number of integral points in $S_{N-1}(n)$.
If we apply the Todd operator

$$
\operatorname{Todd}\left(\frac{d}{d t}\right) \int_{M} e^{t c}
$$

we obtain

$$
\int_{M} e^{t c}\left(\frac{c}{1-e^{-c}}\right)^{N}
$$

For $t=n$, we then obtain

$$
\left.\operatorname{Todd}\left(\frac{d}{d t}\right) \int_{M} e^{t c}\right|_{t=n}=\int_{M} \operatorname{chern}\left(L_{n}\right) \operatorname{Todd}(M)
$$

The Riemann Roch theorem asserts that this is the dimension of $H^{0}\left(M, L_{n}\right)$ (no higher cohomology).

The Mother Formula

CONCLUSION:
The relation

$$
\left.\left(\left(\operatorname{Todd}\left(\frac{d}{d t}\right)\right)^{N} B o x_{N}\right)\right|_{\mathbb{Z}}=\delta_{0}
$$

is the mother formula:
Children
-: Inversion formula for semi-discrete convolution

Riemann-Roch theorem for $P_{N-1}(\mathbb{C})$.

Multiplicities formulae: last talk.

