
Box splines

Let CN be the N dimensional hypercube:

CN := {t1, t2, . . . , tN ; 0 ≤ ti ≤ 1}
We slice it with the hyperplane:

Ht = {
N∑

i=1

ti = t}

BoxN(t) = volume(CN ∩ Ht).

Then BoxN(t) is supported on 0 ≤ t ≤ N. On each interval
[k, k + 1] given by a polynomial of degree N − 1. But different
polynomials on each interval. Their N − 2 first derivatives agree at
the extreme of intervals.



Remark the symmetry:
BoxN(t) = BoxN(N − t)
We also see that

d

dt
BoxN(t) = BoxN−1(t)− BoxN−1(t − 1)

That is
d

dt
BoxN(t) = (∇BoxN−1)(t)

where ∇ is the difference operator. (We will not use this equation
in this elementary talk: it holds in the distribution sense , for
N > 1, because of CN−2-differentiability properties)



Example:Box1(t)



Box2(t)



Bot3(t)



Wonderful properties of Box splines
For example ∑

n∈Z
BoxN(t − n) = 1

The following pictures (see Procesi document) shows the sum of
Box1(t − n),Box2(t − n),Box3(t − n) over the integers
n = −1, 0, . . . , 8.





This property follows right away from the geometric definition:
Example: Box2: By drawing... Compute

∑
n Box2(t − n): We have

to sum all the volumes of x1 + x2 = t − n for any n.
Now x1 ranges between 0 and 1. Put x2 = t − x1 − n where n is
the integer floor(t − x1) so that x2 is between 0 and 1. So it is just
parametrized by 0 ≤ x1 ≤ 1.
More generally, we will see that:

Theorem
For any polynomial P of degree strictly less than N,

t− >
∑
n

P(n)BoxN(t − n)

is a polynomial function of t.



N = 1

• Constant function: already seen.
• P(t) = t of degree too big:
Drawing: I think I sum over n = 0, 1, 2, 3, 4
Compute

∑
n nBox1(t − n) not a polynomial !!



N = 2

• Constant function: already seen.
•
Function P(t) = t of degree 1: true
Drawing: I think I summed over n = −1, 0, 1, 2, 3, 4, .., 8



Series of differential operators

If T( d
dt ) =

∑∞
n=0 tn(

d
dt )

n is a series of differential operators, we
can act on polynomials.
(T( d

dt )P)(t) can be computed as for n large ( d
dt )

nP = 0.
We will use the series

(
(1− exp(− d

dt ))
d
dt

) = 1− 1

2

d

dt
+

1

3!
(
d

dt
)2

and the inverse

Definition
We define the Todd operator

Todd(
d

dt
) =

d
dt

(1− exp(− d
dt ))

= 1 +
1

2

d

dt
+

1

12
(
d

dt
)2 − 1

720
(
d

dt
)4 + · · ·



Integration against the Box Spline
Let test be a smooth function of t. Then we can integrate
test(t1 + t2 + · · ·+ tN) over the hypercube. By Fubini theorem, we
obtain

∫ 1

0

∫ 1

0
test(t1 + t2 + · · ·+ tN)dt =

∫

R
test(t)BoxN(t)dt

Definition
If test is a smooth function of t, define
• The usual convolution

(BoxN ∗c test)(t) =
∫

u∈R
test(u)BoxN(t − u)du

• The semi-discrete convolution

(BoxN ∗d test)(t) =
∑

u∈Z
test(u)BoxN(t − u)



If test is a polynomial, we have (use Taylor expansion)

∫ 1

0
test(t − u)du = (

1− e−d/dt

d/dt
)test(t).

Thus

(BoxN ∗c test)(t) =
∫

u∈R
test(u)BoxN(t − u)du

=

∫ 1

u1=0
· · ·

∫ 1

uN=0
test(t − (u1 + u2 + · · ·+ uN))du1 · · · duN

= ((
1− e−

d
dt

d
dt

)Ntest)(t).



Theorem
•
If P is a polynomial function, then

BoxN ∗c P = ((
1− e−

d
dt

d
dt

)NP)(t).

•
If P is a polynomial function of degree < N, then

BoxN ∗c P = BoxN ∗d P == ((
1− e−

d
dt

d
dt

)NP)(t).



Proof

Let BoxN : it is enough to prove this for P(t) = tN−1

t− >
∑
n

nN−1BoxN(t − n)

is a polynomial; For smaller degree, we derivate, and we can use
the recurrence formula.
I will compute ∑

n

P(n)BoxN(t − n)

not exactly for P(t) = tN−1 but for the polynomial of degree
N − 1 given by

t → (t + 1)(t + 2) · · · (t + N − 1)

(N − 1)!



Consider the standard (N − 1)-dimensional simplex (dilated)

SN−1(t) = {ti ≥ 0; t1 + t2 + · · ·+ tN = t.}

SN−1(t) has volume tN−1

(N−1)! .

If t = n is an integer the number of integral points in SN−1(t) is

PN(n) =
(n + 1) · · · (n + N − 1)

(N − 1)!
.



Now let us integrate over the first quadrant ti > 0, the function
e−(t1+t2+···+tN)y .

I =

∫

t1>0
· · ·

∫

tN>0
e−(t1+t2+···+tN)ydt1dt2 · · · dtN .

Using Fubini, we compute I by integrating first over the simplices
SN−1(t) then over t, thus

I :=

∫

t>0

tN−1

(N − 1)!
e−tydt



But we can also decompose the quadrant in cubes
[n1, n2, n3, . . . , nN ] + Hypercube ni = 0, 1, . . ., O ≤ ti ≤ 1 and
obtain that I is equal to

∑
n

∫ 1

t1=0
· · ·

∫ 1

tN=0
e−((n1+t1)−(n2+t2)−(n3+t3)−···−(nN+tN))ydt1dt2 · · · dtN .

=

∫

t∈R

∑
ni

e−(
∑

ni )yBoxN(t)e
−tydt

=

∫

t∈R

∑

n≥0

PN(n)e
−nyBoxN(t)e

−tydt

=

∫

t∈R

∑

n≥0

PN(n)BoxN(t − n)e−tydt.



We obtain thus that for every y > 0

I :=

∫

t>0

tN−1

(N − 1)!
e−tydt

and also

=

∫

t∈R

∑

n≥0

PN(n)BoxN(t − n)e−tydt.

CONCLUSION: For t > 0, we have almost everywhere

∑

n≥0

PN(n)BoxN(t − n) =
tN−1

(N − 1)!
.

So we have it on each interval where BoxN is continuous.



Recall that we want to compute

∑

n∈Z
P(n)BoxN(t − n)

for the polynomial

t → (t + 1)(t + 2) · · · (t + N − 1)

(N − 1)!

The sum is over the integers n such that t − n ≤ N, as BoxN is
supported on [0,N]. thus over the integers
−(N − 1),−(N − 2),−(N − 3), . . . ,−1, 0. But my polynomial
vanishes there, and for n ≥ 0 coincide with PN(n). Thus I obtain
For t ≥ 0 ∑

n∈Z
P(n)BoxN(t − n) =

tN−1

(N − 1)!



Same calculation for t < 0, using BoxN(t) = BoxN(N − t)

∑

n∈Z
P(n)BoxN(t − n) =

∑

n∈Z
P(n)BoxN(N + n − t)

=
∑

n∈Z
P(−m − N)BoxN(−t −m)

Remark that P(−m − N) = (−1)(N−1)P(m)
and we obtain the same formula
For t < 0 ∑

n∈Z
P(n)BoxN(t − n) =

tN−1

(N − 1)!
.



It remains to see that

(
(1− e−∂t )

∂t
)Nbinomial(t + N − 1,N − 1) =

tN−1

(N − 1)!
.

For example, by induction.
Using distributions, we could have seen directly that

(
d

dt
)N(BoxN ∗d P) = 0

so that the result is a polynomial of degree < N.
as

d

dt
∗ (BoxN ∗d P) = (∇BoxN−1) ∗d P = BoxN−1 ∗ ∇P.



Consequence of this theorem

Let f be any function on Z. Consider the function on R

F (t) := (BoxN ∗d f )(t) :=
∑
n

f (n)BoxN(t − n).

Then F is a locally polynomial function of t (on each interval it is
given by a polynomial function of t). We can derivate F over any
open interval by any series of differential operator P( d

dt ).



The Todd operator

Theorem
Let f be any function on Z:
Let

FN(t) = (BoxN ∗d f )(t) :=
∑
n

f (n)BoxN(t − n).

Then FN(t) is a function on R, polynomial on each interval.
Then f (n) (n an integer) is obtained by the limit from the right of

f (n) = lim
ε>0,ε−>0

((Todd(d/dt))N(BoxN ∗d f ))(n + ε)



Why we want to do it

For some very interesting cases, the function (BoxN ∗d f ) is known
and related to the ”classical” geometry.
If we know regularity properties of (BoxN ∗d f ), then we deduce
regularities properties for f .
Going from FN to f is going from the classical mechanics to
quantum mechanics.
We will see examples later.



Proof

We want to prove this equation, for n = 0 (enough). Then FN(t)
for t > 0 near 0 (HERE I USE THE LIMIT on the RIGHT) involves
only the values f (0), f (−1), f (−2), . . . f (−(N − 1)) of f , indeed
BoxN(t + N) = 0 for t > 0, as BoxN is supported on [0,N].
We can choose a unique polynomial P of degree N − 1 which
coincide with f at 0,−1, . . . ,−(N − 1). Near t > 0, small,

(BoxN ∗d f )(t) = (BoxN ∗d P)(t)

Differentiate with the reverse operator, we obtain our identity
f (0) = (Todd( d

dt ))
N(BoxN ∗d f )(0).



A wonderful property of the Box spline

Apply this to f (n) = 0 except for n = 0 where f (0) = 1.
THAT IS

f = δ0.

Then

Theorem
Consider the locally polynomial function

((Todd(d/dt))NBoxN)(t)

Then
((Todd(d/dt))NBoxN)|Z = δ0

(limits from the right)



Examples



We have used essentially the relation that PN(n), the number of
integral points in the the standard simplex can be obtained from
the volume vol(SN(t)) by applying the Todd operator.
Consider M := PN−1(C) realized by

{(z1, z2, . . . , zN);
∑

i

|zi |2 = t}/e iθ

with symplectic form Ωt = tc. Here c is the Fubini-Study
canonical 2-form on M, with

∫
cN−1 = 1. We compute

vol(Mt) :=

∫

M
etc =

tN−1

(N − 1)!



Let t = n an integral value,
Let Ln be the line bundle on M with holomorphic sections
polynomials on degree n: Thus H0(M,Ln) has basis z

n1
1 . . . znNN

with ni ≥ 0;
∑

ni = n. That is the number of integral points in
SN−1(n).
If we apply the Todd operator

Todd(
d

dt
)

∫

M
etc

we obtain

∫

M
etc(

c

1− e−c
)N

For t = n, we then obtain

Todd(
d

dt
)

∫

M
etc |t=n =

∫

M
chern(Ln)Todd(M).

The Riemann Roch theorem asserts that this is the dimension of
H0(M, Ln) (no higher cohomology).



The Mother Formula

CONCLUSION:
The relation

((Todd(
d

dt
))NBoxN)|Z = δ0

is the mother formula:
Children
•: Inversion formula for semi-discrete convolution
•
Riemann-Roch theorem for PN−1(C).
•
Multiplicities formulae: last talk.


